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Mathematical Optimization ?

@ branch of applied maths

(theory, algorithms, software, modeling)

@ applications everywhere
(industry, decision-making, sciences,...)

@ being revolutionized by its interactions with data

(computational statistics, machine learning, 1A)

optim. is at the core of 1A, playing a fundamental role, behind the scenes
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Nonsmooth objective functions are everywhere...

Max functions F(x) = sup h(u,x)
uelU

@ robust optimization, stochastic optimization, decomposition methods

@ Relaxations of combinatorial problems

Nonsmooth regularization F(x) = f(x) + g(x)

@ image/signal processing, inverse problems

@ sparsity-inducing regularizers in machine learning

Nonsmooth composition F(x) =goc(x)

@ risk-averse optimization, eigenvalue optimization

@ deep learning: nonsmooth activation, implicit layers

Probability functions F(x) =P(h(x,£) <0)

@ optimization under uncertainty, energy optimization




So what ?...

Is nonsmoothness really important ? useful ?

Why not just ignoring it ?

@ Ex: nonsmooth deep learning

(with RELU, max-pooling or implicit layers)
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@ Just apply SGD with back-prog

@ Or just apply quasi-Newton with (sub)gradients

Why not smoothing it ?
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@ Smoothing by (inf—)convolution (e.g. Moreau regularization)

@ Smoothings by overparameterization, ad hoc, or...

ndino
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My point: nonsmoothness is relevant !




Example: /;-regularized least-squares (1/2)
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the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds
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Example: /;-regularized least-squares (2/2)
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Example: /;-regularized least-squares (2/2)

. 1
min = [|Ax—y|]®> + A|x|[1  (LASSO)
x€Rd 2

2 T T

—e— Proximal Gradient

—+— Accelerated Proximal Gradient

PR

- »

Proximal operator

[Moreau '60]

. 1
pros () = argmin { £(2) + 512~ v}

(proximal-gradient) algorithms produce iterates...

...that eventually have the same support as the optimal solution

Nonsmoothness attracts (proximal) algorithms




Today’s message

Nonsmoothness is sometimes useful
and always nice-looking

Modest goals of this talk:

@ Spotlights on 2 applications:
— in industry : electricity generation

— in learning : towards robustness and fairness

@ High level: underline ideas, duality, models...

No theorems ! No algorithms ! (Almost) No references !

@ For more, feel free to contact me :

jerome.malick@cnrs.fr




Spotlight #1: Optimization of electricity production
In France: EDF produces electricity by N production units

nuclear 63% renewables 14% oil/gaz/coal 12% hydro 17%

B it |

Question : finding “optimal” daily production schedules

Day-to-day optimization of production (“unit-commitment” )

S min Z’- ¢ x; (production costs)
(S|m(;j)|||f|ed) ZI-X,' =d (demand constraints)
mode
(Xl, L. ,XN) € X1 X --- X Xy (operational constraints)

Hard optimization problem: large-scale, heterogeneous, complex (> 10° variables, > 10° constraints)

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?
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Lagrangian decomposition N . y
H T t t t
@ Dual function (concave) O(u) = min Z G X+ Z u (d - in)
i=1 t=1

= i=1
(Xl,...,XN)€X1X-~-><XN

@ Dualizing the coupling constraint
makes it decomposable by units

| Nonsmooth optimization algorithm |

N
_ AT . had decentralized
9(”) =du+ Z 9,(U) ;S)ri?:e(s)w l T p?oductions
. i:(1 )T
0:(u) = 4 min G —Uu) X
’( ) { x; € X;

@ Nonsmooth algorithm:
inexact prox. bundle [Lemaréchal '75... '95]

— Research in the 1990's

— In action in early 2000's

— Save money and CO2 !

\

C. Lemarechal S. Charousset A. Renaud



On the shoulders of giants

My contributions on this topic
@ Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar '15]
@ (Level) asynchronous bundle algorithm [lutzeler, Malick, Oliveira '18]
@ Denoising dual solutions (by TV-regularization) [Zaourar, Malick "13]

@ Introducing weather uncertainty in the model

— robust version of the problem + bundle method [van Ackooij, Lebbe, Malick '16]
— 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick '15]

...handling uncertainty adds extra nonsmoothness (2)
y

Load (MW)

40 60
Time Steps



Spotlight #2: towards robust, resilient, responsible decisions

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with https://stablediffusionweb.com in oct. 2023.

input: “towards robust, resilient, responsible decisions”

10


https://stablediffusionweb.com

Example 2.1: Don’t forget how fragile deep learning can be !

Flying pigs (notebooks of NeurlPS 2018, tutorial on robustness)
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Example 2.2: ML may perform poorly for some people

Example: Global model is trained on average distribution
across clients (ERM)

‘ Server ’

12
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Optimization set-up

@ Training data:  &1,..., &N

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x, (a,y)) = (xTa —y)?

@ Compute x via empirical risk minimization (a.k.a SAA)

N N
1 L 1 .
min 'gl f(x,&) =Eg, [f(x, ] with PN:N Eil ¢,

13



Optimization set-up

@ Training data:  &p,...,¢&n

e.g. in supervised learning: labeled data & = (a;, y;) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,9, ...)

e.g. least-square regression: f(x,(a,y)) = (x"a—y)?

@ Compute x via empirical risk minimization (a.k.a SAA)
1o 1
min NZf(X,g,-) =E; [f(x,&)]  with PN:NZ%
i=1 i=1

@ Prediction with x for different data &
— Adversarial attacks (e.g. flying pigs, driving cakes...)
— Presence of bias, e.g. heterogeneous data

— Distributional shifts: Prain 7 Prest

@ Solution: take possible variations into account during training

...and nonsmoothness comes into play ()

13



(Wasserstein) Distributionally Robust Optimization
Rather than min Eg [f(x,¢)] solve instead min max Eg[f(x,&)]

with I/ a neighborhood of ]?DN

Wasserstein balls as ambiguity sets
U={Q: W(EyQ <p}
W(En, Q) = min{ Eele(¢, €] : [l = P, [l = @}
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(Wasserstein) Distributionally Robust Optimization
Rather than min Eg [f(x,¢)] solve instead min max Eg[f(x,&)]

with I/ a neighborhood of ]?DN

Wasserstein balls as ambiguity sets
U={Q: W(EyQ <p}
W(En, Q) = min{ Eele(¢, €] : [l = P, [l = @}

WDRO objective function for given x, @/\/. p

maxg.x Eg[f(x,)] maxe Epx, [f(x, )]
maxg Egq[f(x,&)] @{ Q_AQ _ { _p @
~ [t]i =Py, [m2=Q < [r]s =Pn
{ W(]PN,Q) <p min, EW[C(E,ﬁ’)] <p E‘,‘-[C(g,f/)] <p

< &ngg )\P +1EH3N[max§/ {f(x’é'/) _ )\C(£7€/)}]

...(finite dimension) nonsmooth... computable in some (specific) cases [Kuhn et al. '18]

...actually many more [Vincent, Azizian, lutzeler, Malick '24]

14



lllustration: (W)DRO reshapes test histograms
Classification task, federated learning context [Laguel, Pillutla, Harchaoui, Malick 23]
ConvNet with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error: standard vs. robust
(dashed lines: 10%/90%-quantiles)

0.150

0.125 A1

0.100 A

0.075 A1

Recall the goal: 0.050 A

0.025 A1
Low
Error

Count

igh 0.000 .
tigh 0.0 0.1 0.2 0.3 0.4 0.!

Error
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Main current topic in my group

Our work
@ Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick '23]

@ (abstract, entropic) regularizations of WDRO [Azizian, lutzeler, Malick '22]

@ Statistical guarantees [Azizian, lutzeler, Malick '23] [Le, Malick '24]

@ Numerical work for an easy-to-use toolbox skWDRO [Vincent, Azizian, lutzeler, Malick '24]
V.

robustify our model with skWDRO !

scikitlearn interface + pytorch wrapper

Try it out !

16



Conclusion

Main take-aways
@ Nonsmooth optimization rocks

@ Electricity managment optimization is huge

Handling size (and uncertainty) leads to nonsmooth optimization

@ Deep learning works very well... unless it does not

Handling robustness leads to nonsmooth optimization

@ More work is needed resilience, fairness...

17



Conclusion

Main take-aways
@ Nonsmooth optimization rocks

@ Electricity managment optimization is huge

Handling size (and uncertainty) leads to nonsmooth optimization

@ Deep learning works very well... unless it does not

Handling robustness leads to nonsmooth optimization

@ More work is needed resilience, fairness...

Merci a vous
pour votre confiance

et pour votre écoute aujourd’hui
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Remark: smooth but stiff problems

Jean-Baptiste Hiriart-Urruty

Claude Lemaréchal
“There is no clear cut between Convex Analysis
. and Minimization
functions that are smooth and Algorithms T

functions that are not.
In-between there is a rather fuzzy
boundary of stiff functions”

) t‘&\m nnnnnn “
J.-B. Hiriart-Urruty C. Lemaréchal :

In sharp contrast with smoothing-like approaches:

@ Toy example from the book (Section VIII.3.3): for a smooth problem, run usual algorithms
nonsmooth methods (prox/level-bundle) >> smooth methods (gradient, conj. grad., g-Newton)
@ Real-life example in energy optimization :

— problem of managment of reservoirs : smooth
— state-of-the-art algos to solve it : nonsmooth

Nonsmoothness can help, even for (difficult) smooth problems




Two-stage stochastic unit-commitment

@ The schedule x is sent to the grid-operator (RTE)
before being activated and before observing uncertainty

@ In real time, a new production schedule can be sent at certain times

@ At time 7, we have the observed load &, ..., &
and the current best forecast £;41,...,&T

@ We propose a stochastic 2-stage problem:

— 2nd stage model: same as 1st stage but with smaller horizon
— fine operational modeling vs difficult to compute
— complexity of ¢(x, &) only allows for simple modeling of randomness

W. van Ackooij

: T
i T min c'y
{ m')’: € i(x ‘i;:E[i();fd)] where ¢(x, &) = yex, Yyi=
: o y coincides with x on 1,..., 7

o New algo: double decomposition (by units and scenarios) using the same ingredients

19



Numerical illustration for stochastic unit-commitment

@ On a 2013 EDF instance (medium-size)

— deterministic problem : 50k continuous variables, 27k binary variables, 815k constraints

— stochastic version (50 scenarios) : 1,200k continuous var., 700k binary var., 20,000k constraints

@ Our method allows to solve it (2) (in reasonable time)

@ Observation: generation transferred from cheap/inflexible to expensive/flexible

@ Example: production schedules for 2 units: determinist vs stochastic

A

W)
I
®» 8 B R
38 8 3 &
- n
@ 3
3 3

=
S

>
3
Generated Power (MW)
3
B

Generated Power (MW)
s B
g B8

®
3

] 50 ]
—— Det. Schedule —— Det. Schedule
—— 2Stage Schedule| —— 2Stage Schedule

20 40 60 80 100 0 20 40 60 80 100

cheap/inflexible unit (nuclear) expensive/flexible unit (gaz)

o
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Robust unit-commitment
penalisation cost ¢(d; d — ) (€)
3

A simple robust approach
(VanAckooij Lebbe Malick '15)

— get rid of bound constraint

2

1

{ d—z (MWh)

— penalize instead the worst gap P ’l,ll e

underproduction overproduction

min x + mox S, (S - €)
ce=
xeX

Complex model of uncertainty set = (vs = finite or = = [diin, doax] ")

dy (demand at time t) (GWh)

The model of Minoux 2012
— is finite but of high cardinality

— expresses temporal dependencies

— preserves a fast computability

0 8 16 240 32 40 48 56 64 72 80 8% 96



WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])
Ru(F) = min Ao+ E-[maxe {F(¢) — Al¢ — ¢/}

What about smoothing ? Smoothed counterpart

Ry (f) = min Ap + e Eplog <E§'~w0(~lf)e c )

(Nice interpretation as entropy-regularized WDRO)

Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set = C RY, then

0 < Ry(F)— Ri(F) < (Calogé>d

22



Entropic regularization: OT vs. WDRO

[log & du p<v

KL (Kullback-Leiber) divergence: KL(u|v) = { )
+00 otherwise

OT: Sinkhorn distance, very popular from [Cuturi '13]
min{ Er[||¢ — &[] + ¢ KL(m|mo) : w with marginals [r]; = Pand [r], = Q}

WDRO: entropic regularization, seemingly new [Azizian, lutzeler, M. '21]

maxy  Epn, [f(§)]—¢ KL(m[mo)
[, =P
Ex[ll€ — &'[?]+6 KL(m|m0) < p

in OT, take My =P®Q but in WDRO, [mg]2 not fixed !

Subtility: Vs _le=gly?

[r]i =P, [r, =Q=m < m mo(d€, dg’) oc P(d€) Iereze

d¢’

23



DRO/superquantile in action in federated learning

Only step 3 differs between Standard ERM approach and our DRO approach

Step 3 of 3: Aggregate updates
contributed by all clients

Step 3 of 3: Aggregate updates
contributed by tail clients only

Count

\ox
200

Tail

Loss

DRO approach is fully compatible with secure aggregation and differential privacy [Pillutla,
Laguel, M., Harchaoui '22]
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Convergence analysis

Analysis when F; are smooth (and nonconvex)

Challenges: non-smoothness of Ry, biais due to local participation,...

Theorem ([Pillutla, Laguel, M., Harchaoui "23])
Suppose F; are G-Lipschitz and with gradients L-Lipshitz

ALG?2 ALGN\?Y® AL
B VO3 ()| < /S + (1 - )3 (t) L2

with t: nb comm. rounds, T: nb local updates, and A: initial error

where ®(x) = inf {K’g(y) + gHy - x||2} (Moreau® enveloppe) [Davis Drus. '21]
y

Ry an approximation of Ry with unbiased gradient [Levy et al '21]

+ result of linear convergence when F; are convex (add smoothing and regularization)

25



Quantile by secure aggregation

Per-client loss

Noisy client loss histogram
I ‘ I =+ N 5(0,6°1,)

" L Lo L
L b Lo Lok L
e

Histogram

(1 —6)-Quantile
4

Noisy
histogram

~ (1 — )-Quantile
*

Count

Count
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Existing statistical guarantees of WDRO

Suppose &1, ..., én ~ Puain (where & € RY)
N
. L 1 .
Computations with Py = N E ¢, and guarantees with Py,in 7

i=1
We manipulate the WDRO risk : R,(x) = max  Eg[f(x,¢)]
W(Pn,Q)<p
Obviously, if p,N large enough such that W(Ptrain,@,\,) < p, then
R/’(X) 2 IEIFBtrain [f(X, 5)]
—— —_—
can compute & optimize cannot access

It requires p oc 1/v/N [Fournier and Guillin '15]  (issue)

Not optimal: p o< 1/v/N suffices

— asymptotically [Blanchet et al '22]
— in particular cases [Shafieez-Adehabadeh et al '19]
— or with error terms [Gao '22]
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Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, lutzeler, M. '23], [Le, M. '24])

Assumptions: parametric family f(0,-) + compactness on 0 + compactness on ¢ + non-degeneracy
For 6 € (0,1), ifp> O(w%):pn then w.p.1-79,
Generalization guarantee: R,(x) = Ep,,, [f(x,&)]
Distribution shifts:

W(E.QP < p(p—pa) itholds R,(x) > Eq [f(x.&)]
Asymptotic tightness:

W(P,Q)? < p(p+pn) it holds R,(x) < maxgEq[f(x,¢)]

@ Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

@ Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et a/ '19]
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