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Mathematical Optimization ?

branch of applied maths
(theory, algorithms, software, modeling)

applications everywhere
(industry, decision-making, sciences,...)

being revolutionized by its interactions with data
(computational statistics, machine learning, IA) (a) L(w) satisfying the PŁ condition (b) gradients of

p
L(w) are far from zero

[34] that the full-batch gradient descent iterates wt+1 = wt � 1
�̄
rL(wt) converge at the linear rate

O(exp(�t/̄)). More recent papers have extended results of this type to a wide variety of algorithms
both for smooth and nonsmooth optimization [27, 7, 21, 30, 1] and to settings when the PŁ inequality
holds only locally on a ball [24, 32].

For stochastic optimization problems under the PŁ condition, the story is more subtle, since the rates
achieved depend on moment bounds on the gradient estimator, such as:

E[kr`(w, z)k2]  AL(w) + BkrL(w)k2 + C, (1.1)

for A, B, C � 0. In the setting where C > 0—the classical regime– stochastic gradient methods
converge sublinearly at best, due to well-known lower complexity bounds in stochastic optimiza-
tion [31]. On the other hand, in the setting where C = 0—interpolation problems—stochastic
gradient methods converge linearly when equipped with an appropriate stepsize, as shown in [2,
Theorem 1], [22, Corollary 2], [38], and [13, Theorem 4.6]. Although linear convergence is assured,
the rate of linear converge under the PŁ condition and interpolation is an order of magnitude worse
than in the deterministic setting. Namely, the three papers[2, Theorem 1], [22, Corollary 2] and
[13, Theorem 4.6] obtain linear rates on the order of exp(�t/̄). On the other hand, in the case
A = C = 0, which is called the strong growth property, the paper [38, Theorem 4] yields the
seemingly better rate exp(�t/B̄). The issue, however, is that B can be extremely large. As an
illustrative example, consider the loss functions `(w, z) = 1

2dist2(w, Qz) where Qz are smooth
manifolds. A quick computation shows that equality kr`(w, z)k2 = 2`(w, z) holds. Therefore,
locally around the intersection of \zQz , the estimate (1.1) with A = C = 0 is exactly equivalent to
the PŁ-condition with B = 1/↵. As a further illustration, Figure 3 shows the possible large value
of the constant B along the SGD iterates for training a neural network on MNIST. Another related
paper is [36]: assuming so-called small gradient confusion and requiring a stronger version of PL
condition (i.e., each individual loss li is µ-PL), the paper [36] showed a slow rate of convergence
exp(�t/n2), where n is the dataset size.

Figure 3: We train a fully-connected neural network on the MNIST dataset. The network has 4 hidden
layers, each with 1024 neurons. We optimize the MSE loss using SGD with a batch size 512 and a
learning rate 0.5. The training was run over 1k epochs, and the ratio E[kr`(w, z)k2]/krL(w)k2 is
evaluated every 100 epochs. The ratio grows almost linearly during training, suggesting that strong
growth is practically not satisfied with a constant coefficient B.
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Nonsmooth objective functions are everywhere...

Max functions F (x) = sup
u∈U

h(u, x)

robust optimization, stochastic optimization, decomposition methods

Relaxations of combinatorial problems

Nonsmooth regularization F (x) = f (x) + g(x)

image/signal processing, inverse problems

sparsity-inducing regularizers in machine learning

Nonsmooth composition F (x) = g ◦ c(x)

risk-averse optimization, eigenvalue optimization

deep learning: nonsmooth activation, implicit layers

Probability functions F (x) = P
(
h(x , ξ) ⩽ 0

)

optimization under uncertainty, energy optimization
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So what ?...

Is nonsmoothness really important ? useful ?

Why not just ignoring it ?

Ex: nonsmooth deep learning

(with RELU, max-pooling or implicit layers)

Just apply SGD with back-prog

Or just apply quasi-Newton with (sub)gradients

Why not smoothing it ?

Smoothing by (inf-)convolution (e.g. Moreau regularization)

Smoothings by overparameterization, ad hoc, or...

My point: nonsmoothness is relevant !
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Example: ℓ1-regularized least-squares (1/2)

min
x∈Rd

1

2
∥Ax − y∥2 + λ∥x∥1 (LASSO)

Illustration (on an instance with d = 2)
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the support of optimal solutions is stable under small perturbations

Nonsmoothness traps solutions in low-dimensional manifolds
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Example: ℓ1-regularized least-squares (2/2)

min
x∈Rd

1

2
∥Ax − y∥2 + λ∥x∥1 (LASSO)
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[Moreau ’60]

proxγg (y) = argmin
z

{
g(z) +

1

2γ
∥z − y∥2

}

(proximal-gradient) algorithms produce iterates...

...that eventually have the same support as the optimal solution

Nonsmoothness attracts (proximal) algorithms
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Today’s message

Nonsmoothness is sometimes useful
and always nice-looking

(a) L(w) satisfying the PŁ condition (b) gradients of
p

L(w) are far from zero

[34] that the full-batch gradient descent iterates wt+1 = wt � 1
�̄
rL(wt) converge at the linear rate

O(exp(�t/̄)). More recent papers have extended results of this type to a wide variety of algorithms
both for smooth and nonsmooth optimization [27, 7, 21, 30, 1] and to settings when the PŁ inequality
holds only locally on a ball [24, 32].

For stochastic optimization problems under the PŁ condition, the story is more subtle, since the rates
achieved depend on moment bounds on the gradient estimator, such as:

E[kr`(w, z)k2]  AL(w) + BkrL(w)k2 + C, (1.1)

for A, B, C � 0. In the setting where C > 0—the classical regime– stochastic gradient methods
converge sublinearly at best, due to well-known lower complexity bounds in stochastic optimiza-
tion [31]. On the other hand, in the setting where C = 0—interpolation problems—stochastic
gradient methods converge linearly when equipped with an appropriate stepsize, as shown in [2,
Theorem 1], [22, Corollary 2], [38], and [13, Theorem 4.6]. Although linear convergence is assured,
the rate of linear converge under the PŁ condition and interpolation is an order of magnitude worse
than in the deterministic setting. Namely, the three papers[2, Theorem 1], [22, Corollary 2] and
[13, Theorem 4.6] obtain linear rates on the order of exp(�t/̄). On the other hand, in the case
A = C = 0, which is called the strong growth property, the paper [38, Theorem 4] yields the
seemingly better rate exp(�t/B̄). The issue, however, is that B can be extremely large. As an
illustrative example, consider the loss functions `(w, z) = 1

2dist2(w, Qz) where Qz are smooth
manifolds. A quick computation shows that equality kr`(w, z)k2 = 2`(w, z) holds. Therefore,
locally around the intersection of \zQz , the estimate (1.1) with A = C = 0 is exactly equivalent to
the PŁ-condition with B = 1/↵. As a further illustration, Figure 3 shows the possible large value
of the constant B along the SGD iterates for training a neural network on MNIST. Another related
paper is [36]: assuming so-called small gradient confusion and requiring a stronger version of PL
condition (i.e., each individual loss li is µ-PL), the paper [36] showed a slow rate of convergence
exp(�t/n2), where n is the dataset size.

Figure 3: We train a fully-connected neural network on the MNIST dataset. The network has 4 hidden
layers, each with 1024 neurons. We optimize the MSE loss using SGD with a batch size 512 and a
learning rate 0.5. The training was run over 1k epochs, and the ratio E[kr`(w, z)k2]/krL(w)k2 is
evaluated every 100 epochs. The ratio grows almost linearly during training, suggesting that strong
growth is practically not satisfied with a constant coefficient B.
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Modest goals of this talk:

Spotlights on 2 applications:

– in industry : electricity generation

– in learning : towards robustness and fairness

High level: underline ideas, duality, models...

No theorems ! No algorithms ! (Almost) No references !

For more, feel free to contact me :

jerome.malick@cnrs.fr
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Spotlight #1: Optimization of electricity production

In France: EDF produces electricity by N production units

nuclear 63% renewables 14% oil/gaz/coal 12% hydro 17%

Question : finding “optimal” daily production schedules

Day-to-day optimization of production (“unit-commitment” )

(
simplified
model

) 



min
∑

i ci
⊤xi (production costs)∑

i xi = d (demand constraints)
(x1, . . . , xN) ∈ X1 × · · · × XN (operational constraints)

Hard optimization problem: large-scale, heterogeneous, complex (⩾ 106 variables, ⩾ 106 constraints)

Out of reach for (mixed-integer linear) solvers... But where is the nonsmoothness ?
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Lagrangian decomposition

Dual function (concave) θ(u) =





min
N∑

i=1

ci
⊤xi +

T∑

t=1

ut
(
d t −

N∑

i=1

x ti

)

(x1, . . . , xN) ∈ X1 × · · · × XN

Dualizing the coupling constraint
makes it decomposable by units

θ(u) = d⊤u +
N∑

i=1

θi (u)

θi (u) =

{
min (ci − u)⊤xi

xi ∈ Xi

Nonsmooth algorithm:
inexact prox. bundle [Lemaréchal ’75... ’95]

Optimization of electricity 
production 
Executive summary 

Every day, EdF (French Electricity Board) has to 
compute production schedules of its power plants 
for the next day. This is a difficult, large-scale, 
heterogeneous optimization problem. 

Challenge overview 

In the mid eighties, a meeting was organized 
between Inria and EdF R&D. The idea was to let 
EdF present some of their applications, to explore 
possible collaborations. Indeed, EdF has a long 
tradition of scientific work, in particular with 
academics. Their production optimization problem 
was presented among others. Its mathematical 
model was clearly established; even the relevant 
software existed, but the solution approach 
needed improvement. The mathematics at stake 
turned out to perfectly fit with Inria competences. 

Implementation of the initiative 

Collaborative work therefore started immediately. 
No difficulty appeared with administrative issues 
such as intellectual property or industrial 
confidentiality. It was a long-term research, so 
deadlines posed no problem either.  

The problem 

The solution approach is by decomposition: each 
power plant (EdF software) optimizes its own 
production on the basis of ``shadow prices'' 
remunerating it; these prices are iteratively 
updated (Inria software) so as to satisfy the 
balance equation. The working horse to compute 
the prices is a nonsmooth optimization algorithm. 
   

 

   

 
 

 

 

 

   
 

The difficulty was to join the EdF and Inria-
software. This turned out to be harder than 
expected. The model appeared as not mature 
enough and significant bugs were revealed. The 

project was basically abandoned and it is only in 
the mid nineties that intensive collaboration could 
resume on a renewed model.  

Results and achievements 

This time, the collaboration was successful and 
the new software became operational a few years 
later. This relatively long delay was due to 
necessary industrial requirements (mainly aimed 
at achieving reasonable reliability). Substantial 
improvements in cost and robustness were 
achieved. EdF is highly satisfied with this 
collaboration, which continues and will probably 
continue for many years. 
 
Current research focuses on developing more 
accurate models of the power plants, entailing 
more delicate price optimization. 
 
Several academic outcomes resulted from this 
operation: 
• to understand better and to improve highly 
sophisticated optimization methods; 
• to assess these methods in the “real world”, 
thereby introducing them for new applications; 
• to exhibit the practical merits of a mathematical 
theory (convex analysis, duality), generally 
considered so far as highly abstract (and taught 
as such in the university cursus). 

Lessons learned 

Beyond science and techniques, a lesson of this 
“success story” is that an academic-industrial 
collaboration should be undertaken with strong 
mutual esteem and confidence, in both directions. 

 
Sandrine Charousset-Brignol (EDF R&D) 
sandrine.charousset@edf.fr 
 
Grace Doukopoulos (EDF R&D) 
grace.doukopoulos@edf.fr  
 
Claude Lemaréchal (INRIA) 
claude.lemarechal@inrialpes.fr 
 
Jérôme Malick (CNRS, LJK) 
jerome.malick@inrialpes.fr  
 
Jérôme Quenu (EDF R&D) 
jerome.quenu@edf.fr 
 
 

           

shadow   
prices 

decentralized 
productions 

 

 Nonsmooth optimization algorithm 

C. Lemarechal S. Charousset A. Renaud

– Research in the 1990’s

– In action in early 2000’s

– Save money and CO2 !
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On the shoulders of giants

My contributions on this topic

Acceleration of the bundle method (using coarse linearizations) [Malick, Oliveira, Zaourar ’15]

(Level) asynchronous bundle algorithm [Iutzeler, Malick, Oliveira ’18]

Denoising dual solutions (by TV-regularization) [Zaourar, Malick ’13]

Introducing weather uncertainty in the model

– robust version of the problem + bundle method [van Ackooij, Lebbe, Malick ’16]

– 2-stage stochastic version + double decomposition algorithm [van Ackooij, Malick ’15]

...handling uncertainty adds extra nonsmoothness ,
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Spotlight #2: towards robust, resilient, responsible decisions

Spectacular success of deep learning, in many fields/applications... E.g. in generation

Ex: picture generated with https://stablediffusionweb.com in oct. 2023.

input: “towards robust, resilient, responsible decisions”

10

https://stablediffusionweb.com


Example 2.1: Don’t forget how fragile deep learning can be !

Flying pigs (notebooks of NeurIPS 2018, tutorial on robustness)
12/02/2020 11&13

Page 1 sur 1file:///Users/jerome/Nomade/Talks/20-montpelier-roadef/pics/pig.svg

pig (99%)

“ML is a wonderful tech-

nology: it makes pigs fly”

[Kolter, Madry ’18]

Attacks against self-driving cars

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019

53/56
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Example 2.2: ML may perform poorly for some people

Example: Global model is trained on average distribution 
across clients (ERM)

Server

Fairness issues, e.g.
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Optimization set-up

Training data: ξ1, . . . , ξN
e.g. in supervised learning: labeled data ξi = (ai , yi ) feature, label

Train model: f (x , ·) the loss function with x the parameter/decision (ω, β, θ, ...)

e.g. least-square regression: f
(
x , (a, y)

)
= (x⊤a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

min
x

1

N

N∑

i=1

f (x , ξi ) = E P̂N
[f (x , ξ)] with P̂N =

1

N

N∑

i=1

δξi

Prediction with x for different data ξ

– Adversarial attacks (e.g. flying pigs, driving cakes...)

– Presence of bias, e.g. heterogeneous data

– Distributional shifts: Ptrain ̸= Ptest

Solution: take possible variations into account during training

...and nonsmoothness comes into play ,

13
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(Wasserstein) Distributionally Robust Optimization

Rather than min
x

E P̂N
[f (x , ξ)] solve instead min

x
max
Q∈U

EQ[f (x , ξ)]

with U a neighborhood of P̂N

Wasserstein balls as ambiguity sets

U = { Q : W (P̂N ,Q) ⩽ ρ }
W (P̂N ,Q) = min

πππ

{
Eπππ[c(ξ, ξ

′)] : [πππ]1 = P̂N , [πππ]2 = Q
}

WDRO objective function for given x , P̂N , ρ

{
maxQ EQ[f (x , ξ)]

W (P̂N ,Q) ⩽ ρ
⇔





maxQ,πππ EQ[f (x , ξ)]

[πππ]1 = P̂N , [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ

′)] ⩽ ρ

⇔





maxπππ E[πππ]2 [f (x , ξ)]

[πππ]1 = P̂N

Eπππ[c(ξ, ξ
′)] ⩽ ρ

⇔ min
λ⩾0

λρ+ EP̂N
[ maxξ′ {f (x , ξ′)− λc(ξ, ξ′)} ]

...(finite dimension) nonsmooth... computable in some (specific) cases [Kuhn et al. ’18]

...actually many more [Vincent, Azizian, Iutzeler, Malick ’24]
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Illustration: (W)DRO reshapes test histograms

Classification task, federated learning context [Laguel, Pillutla, Harchaoui, Malick ’23]

ConvNet with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error: standard vs. robust
(dashed lines: 10%/90%-quantiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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Main current topic in my group

Our work

Applications in federated learning [Laguel, Pillutla, Harchaoui, Malick ’23]

(abstract, entropic) regularizations of WDRO [Azizian, Iutzeler, Malick ’22]

Statistical guarantees [Azizian, Iutzeler, Malick ’23] [Le, Malick ’24]

Numerical work for an easy-to-use toolbox skWDRO [Vincent, Azizian, Iutzeler, Malick ’24]

Perspectives

• Try heavier problems
(image datasets, etc).

• Investigate numerical
behaviour of regularization.

The library allows you to
robustify any decision model
provided one can translate it
in PyTorch.

Try it out!

florian.vincent(at)univ-grenoble-alpes.fr

F. Vincent Robustify with SkWDRO 07/03/2024 23 / 22

Try it out !

robustify our model with skWDRO !

scikitlearn interface + pytorch wrapper

16



Conclusion

Main take-aways

Nonsmooth optimization rocks

Electricity managment optimization is huge

Handling size (and uncertainty) leads to nonsmooth optimization

Deep learning works very well... unless it does not

Handling robustness leads to nonsmooth optimization

More work is needed resilience, fairness...

Merci à vous

pour votre confiance

et pour votre écoute aujourd’hui

17
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Remark: smooth but stiff problems

J.-B. Hiriart-Urruty C. Lemaréchal

“There is no clear cut between
functions that are smooth and
functions that are not.
In-between there is a rather fuzzy
boundary of stiff functions”

In sharp contrast with smoothing-like approaches:

Toy example from the book (Section VIII.3.3): for a smooth problem, run usual algorithms

nonsmooth methods (prox/level-bundle) >> smooth methods (gradient, conj. grad., q-Newton)

Real-life example in energy optimization :

– problem of managment of reservoirs : smooth

– state-of-the-art algos to solve it : nonsmooth

Nonsmoothness can help, even for (difficult) smooth problems

18



Two-stage stochastic unit-commitment

W. van Ackooij

The schedule x is sent to the grid-operator (RTE)
before being activated and before observing uncertainty

In real time, a new production schedule can be sent at certain times

At time τ , we have the observed load ξ1, ..., ξτ
and the current best forecast ξτ+1, ..., ξT

We propose a stochastic 2-stage problem:

{
min c⊤x + E[c(x , ξ)]
x ∈ X ,

∑
i xi = d

where c(x , ξ) =





min c⊤y
y ∈ X ,

∑
i yi = ξ

y coincides with x on 1, . . . , τ

– 2nd stage model: same as 1st stage but with smaller horizon
– fine operational modeling vs difficult to compute
– complexity of c(x , ξ) only allows for simple modeling of randomness

New algo: double decomposition (by units and scenarios) using the same ingredients

19



Numerical illustration for stochastic unit-commitment

On a 2013 EDF instance (medium-size)

– deterministic problem : 50k continuous variables, 27k binary variables, 815k constraints

– stochastic version (50 scenarios) : 1,200k continuous var., 700k binary var., 20,000k constraints

Our method allows to solve it , (in reasonable time)

Observation: generation transferred from cheap/inflexible to expensive/flexible

Example: production schedules for 2 units: determinist vs stochasticAnn Oper Res
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Fig. 4 Comparison of generation schedules given by our two-stage formulation and the deterministic one. a
Inflexible plant, b flexible plant, c hydro valley 1, d hydro valley 2

Table 3 Numerical results of the
algorithm versus its multi-cuts
version : ratio of the number of
iterations increase (iteration
increase), the difference of oracle
calls per stage normalized by the
total number of iterations for the
first stage (1st stage cost), and the
same difference for the second
stage (2nd stage cost)

Instance Heuristic Iteration
increase (%)

1st stage
cost (%)

2nd stage
cost (%)

Low CTI 30.0 3.66 1.95

CTD 33.3 −19.80 −5.11

RH 25.0 2.97 −1.96

allH −52.5 −9.42 −2.42

Medium CTI 44.4 0.36 6.13

CTD 330.0 4.44 −2.13

RH −38.5 0.82 1.45

allH 44.4 0.36 6.13

High CTI 52.6 −49.37 −12.61

CTD −22.2 −27.27 −6.14

RH 12.5 −1.44 0.60

allH 89.5 −50.61 −12.32

Average 45.72 −12.11 −2.20

123

cheap/inflexible unit (nuclear) expensive/flexible unit (gaz)
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Robust unit-commitment

A simple robust approach
(VanAckooij Lebbe Malick ’15)

– get rid of bound constraint

– penalize instead the worst gap

2 DEFINITION AND MOTIVATION

1

2

3

�1

1 2 3�1�2�3

underproduction overproduction

penalisation cost  (d; d� x) (e)

d� x (MWh)

Figure 2 – A simple one-dimensional two-segments penalization function.
Here we define  as  (d; x) =

PT
t=1  t(d; x) with  t(d; x) = max(↵(dt � xt),�(dt � xt)) with

↵ < 0 and � > 0 and |↵| > |�|. In this definition of  (d; x) we see that underproduction will cost
more than overproduction, this reflects the fact that if we have more electricity than requested,
we can sell this. And in the other case, we will have to buy electricity on the market at high
prices.

following definition of  .
(this definition may seem complex but it is not important for the comprehension of the next
sections)

 (x) = sup
d2D

TX

t=1

max
i=1,...,6

(ai(dt � (Ax)t) + bi), (2)

where ai, bi 2 R and A 2MT,n⇥T (R).

Having this in mind we can now define the so-called (2-stage) robust optimization model I
have studied :

min
x2Rn⇥T

f(x) + (x)

s.t. x 2 X1

(3)

As we can see, we now have an optimization problem which contains itself another optimi-
zation problem ( (x) = sup

d2D
. . .). This is the principle of the « two-stage » optimization : in the

« first-stage » we minimize other the set X1 and with the obtained schedule we observe which d
is selected during the « second-stage » by maximizing other the uncertainty set D. Computing
 (·; x) is then seen as the recourse action.

Depending on the shape of the set D it is possible to establish an oracle for the function  ,
i.e, a numerical algorithm that computes the value of and a sub-gradient of  at x.

2.3 The uncertainty set D and link with two-stage optimization

Here the second-stage is simple and explicit via  , which differs from other approaches (the
one of [14] in particular). Note that Dom( ) = Rn⇥T ; this is said that complete recourse decisions
exist with respect to market conditions, which is a strong assumption (not met in practice).

There are at least three options for the uncertainty set D ✓ RT :

1. the set D has an infinite cardinal and is defined as a band around the average demand :
D = {d 2 RT , maxt=1...T |dt �Dt|  k} with D the average load and k > 0. In this case, it
is possible to provide an explicit description of (x), giving a simpler penalization function2.

2 see A.2 for details of calculations 6/24

{
min c⊤x + max

ξ∈Ξ

∑T
t=1 ψ

(∑
i x

t
i − ξt

)

x ∈ X

Complex model of uncertainty set Ξ (vs Ξ finite or Ξ = [dmin, dmax]
T )
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b

vt,i ∈ V , weight wt,i

Time t (hour)

dt (demand at time t) (GWh)

in (G, V ) equivalent
to some d ∈ D ⊂ RT

The model of Minoux 2012

– is finite but of high cardinality

– expresses temporal dependencies

– preserves a fast computability
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WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. ’18])

Rρ(f ) = min
λ⩾0

λρ+ EP[ maxξ′ {f (ξ′)− λ∥ξ − ξ′∥2} ]

What about smoothing ? Smoothed counterpart

Rε
ρ(f ) = min

λ⩾0
λρ+ εEP log

(
Eξ′∼π0(·|ξ)e

f (ξ′)−λ∥ξ−ξ′∥2
ε

)

(Nice interpretation as entropy-regularized WDRO)

Theorem (approximation bounds for WDRO [Azizian, Iutzeler, M. ’21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a compact
convex set Ξ ⊂ Rd , then

0 ⩽ Rρ(f )− Rε
ρ(f ) ⩽

(
C ε log

1

ε

)
d
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Entropic regularization: OT vs. WDRO

KL (Kullback-Leiber) divergence: KL(µ|ν) =
{∫

log dµ
dν dµ µ≪ ν

+∞ otherwise

OT: Sinkhorn distance, very popular from [Cuturi ’13]

min
πππ

{
Eπππ[∥ξ − ξ′∥2] + εKL(πππ|π0) : πππ with marginals [πππ]1 = P and [πππ]2 = Q

}

WDRO: entropic regularization, seemingly new [Azizian, Iutzeler, M. ’21]





maxπππ E[πππ]2 [f (ξ)]−εKL(πππ|π0)
[πππ]1 = P
Eπππ[∥ξ − ξ′∥2]+δKL(πππ|π0) ⩽ ρ

Subtility:
in OT, take π0 = P⊗Q
[πππ]1 = P, [πππ]2 = Q ⇒ πππ ≪ π0

vs
but in WDRO, [π0]2 not fixed !

π0(dξ, dξ
′) ∝ P(dξ) Iξ′∈Ξe

− ∥ξ−ξ′∥2
σ dξ′
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DRO/superquantile in action in federated learning

Only step 3 differs between Standard ERM approach and our DRO approach

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Step 3 of 3: Aggregate updates 
contributed by all clients

ERM Algorithm (FedAvg):

Server Server

Loss

C
ou

nt
Tail

Simplicial-FL Algorithm:

min
w

!θ( (F1(w), ⋯, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

DRO approach is fully compatible with secure aggregation and differential privacy [Pillutla,

Laguel, M., Harchaoui ’22]
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Convergence analysis

Analysis when Fi are smooth (and nonconvex)

Challenges: non-smoothness of Rθ, biais due to local participation,...

Theorem ([Pillutla, Laguel, M., Harchaoui ’23])

Suppose Fi are G -Lipschitz and with gradients L-Lipshitz

E∥∇Φ2L
θ (xt)∥2 ⩽

√
∆LG 2

t
+ (1− τ)1/3

(
∆LG

t

)2/3

+
∆L

t

with t: nb comm. rounds, τ : nb local updates, and ∆: initial error

where Φµ
θ (x) = inf

y

{
R̄θ(y) +

µ

2
∥y − x∥2

}
(Moreau♡ enveloppe) [Davis Drus. ’21]

R̄θ an approximation of Rθ with unbiased gradient [Levy et al ’21]

+ result of linear convergence when Fi are convex (add smoothing and regularization)
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Quantile by secure aggregation

Loss

C
ou

nt

Tail

-Quantile(1 − θ)
Histogram

Per-client loss

∑

Noisy client loss histogram

h′ i = hi + #ℤ(0,σ2Ib)

Loss

C
ou

nt

Tail≈

-Quantile≈ (1 − θ)
 Noisy  

histogram

∑

42
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Existing statistical guarantees of WDRO

Suppose ξ1, . . . , ξN ∼ Ptrain (where ξ ∈ Rd)

Computations with P̂N =
1

N

N∑

i=1

δξi and guarantees with Ptrain ?

We manipulate the WDRO risk : Rρ(x) = max
W (P̂N ,Q)⩽ρ

EQ[f (x , ξ)]

Obviously, if ρ,N large enough such that W (Ptrain, P̂N) ⩽ ρ, then

Rρ(x)︸ ︷︷ ︸
can compute & optimize

⩾ EPtrain [f (x , ξ)]︸ ︷︷ ︸
cannot access

It requires ρ ∝ 1/ d
√
N [Fournier and Guillin ’15] (issue)

Not optimal: ρ ∝ 1/
√
N suffices

– asymptotically [Blanchet et al ’22]
– in particular cases [Shafieez-Adehabadeh et al ’19]
– or with error terms [Gao ’22]
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Extended exact generalization guarantees of WDRO

Our approach: a direct “optim.” approach (work to get a concentration on the dual function)

Theorem ([Azizian, Iutzeler, M. ’23], [Le, M. ’24])

Assumptions: parametric family f (θ, ·) + compactness on θ + compactness on ξ + non-degeneracy

For δ ∈ (0, 1), if ρ ⩾ O
(√

log 1/δ
N

)
= ρn then w.p. 1− δ,

Generalization guarantee: Rρ(x) ⩾ EPtrain [f (x , ξ)]

Distribution shifts:

W (P,Q)2 ⩽ ρ
(
ρ− ρn

)
it holds Rρ(x) ⩾ EQ [f (x , ξ)]

Asymptotic tightness:

W (P,Q)2 ⩽ ρ
(
ρ+ ρn

)
it holds Rρ(x) ⩽ maxQ EQ [f (x , ξ)]

Universal result: deep learning, kernels, family of invertible mappings (e.g. normalizing flows)

Retrieve existing results in linear/logistic regressions [Shafieez-Adehabadeh et al ’19]
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