(Wasserstein) distributionally robust optim. in action

Jérôme MALICK

CNRS, Lab. Jean Kuntzmann & MIAI (Institut IA de Grenoble)

Based on joint work with

Waïss Azizian, Franck lutzeler, Yassine Laguel, Zaid Harchaoui, Krishna Pillutla

Set-up: data-driven optimization under uncertainty

- Training data: ξ₁,...,ξ_N (in theory: sampled from ℙ_{train} unknown)
 e.g. in supervised learning: labeled data ξ_i = (a_i, y_i) feature, label
- Train model: f(x, ·) the loss function with x the parameter/decision (ω, β, θ, ...)
 e.g. least-square regression: f(x, (a, y)) = (x^Ta y)²
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i)$$

- Prediction with x for different data ξ
 - Distributional shifts: $\mathbb{P}_{\mathsf{train}} \neq \mathbb{P}_{\mathsf{test}}$
 - Adversarial attacks
 - Generalization: computations with $\widehat{\mathbb{P}}_{\textit{N}}$ and guarantees on \mathbb{P}_{train}
 - Other situations, e.g. heterogeneous data
- Solution: take possible variations into account during training

Set-up: data-driven optimization under uncertainty

- Training data: ξ₁,...,ξ_N (in theory: sampled from P_{train} unknown)
 e.g. in supervised learning: labeled data ξ_i = (a_i, y_i) feature, label
- Train model: f(x, ·) the loss function with x the parameter/decision (ω, β, θ, ...)
 e.g. least-square regression: f(x, (a, y)) = (x^Ta y)²
- Compute x via empirical risk minimization (a.k.a SAA) (minimize the average loss on training data)

$$\min_{\mathbf{x}} \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}, \xi_i) = \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(\mathbf{x}, \xi)] \quad \text{with } \widehat{\mathbb{P}}_N = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_i}$$

- Prediction with x for different data ξ
 - Distributional shifts: $\mathbb{P}_{\mathsf{train}} \neq \mathbb{P}_{\mathsf{test}}$
 - Adversarial attacks
 - Generalization: computations with $\widehat{\mathbb{P}}_{\textit{N}}$ and guarantees on \mathbb{P}_{train}
 - Other situations, e.g. heterogeneous data
- Solution: take possible variations into account during training

(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than $\min_{\mathbf{x}} \mathbb{E}_{\widehat{\mathbb{P}}_N}[f(\mathbf{x},\xi)]$ solve instead

 $\min_{x} \max_{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$

with ${\mathcal U}$ a neighborhood of $\widehat{\mathbb{P}}_N$ (called ambiguity set)

(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

 $\min_{x} \mathbb{E}_{\widehat{\mathbb{P}}_{N}}[f(x,\xi)] \quad \text{solve instead} \quad \min_{x} \max_{\mathbb{Q} \in \mathcal{U}} \mathbb{E}_{\mathbb{Q}}[f(x,\xi)]$ rather than

with \mathcal{U} a neighborhood of $\widehat{\mathbb{P}}_{N}$ (called ambiguity set)

modeling vs. computational tractability

•
$$\mathcal{U} = \left\{\widehat{\mathbb{P}}_{N}\right\}$$
: $\min_{x} \frac{1}{N} \sum_{i=1}^{N} f(x, \xi_{i})$ standard ERM

• $\mathcal{U} = \{\mathbb{Q} : \operatorname{supp}(\mathbb{Q}) \subset U\}$: $\min_{\substack{x \in U \\ \xi \in U}} \max_{\xi \in U} f(x, \xi)$ standard robust optimization

• \mathcal{U} defined by moments e.g. [Delage, Ye, '10]

• $\mathcal{U} = \left\{ \mathbb{Q} : \ d(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leqslant \rho \right\}$ for various distances or divergences E.g. KL-div., χ_2 -div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

•
$$\mathcal{U} = \left\{ \mathbb{Q} : W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leq \rho \right\}$$
 Wasserstein distance [Kuhn *et al.* '18]

Def: Wasserstein distance (given a cost function *c*)

 $\mathcal{W}(\mathbb{P},\mathbb{Q}) = \min_{\boldsymbol{\pi}} \big\{ \mathbb{E}_{\boldsymbol{\pi}}[c(\xi,\xi')] : \boldsymbol{\pi} \text{ with marginals } [\boldsymbol{\pi}]_1 = \mathbb{P} \text{ and } [\boldsymbol{\pi}]_2 = \mathbb{Q} \big\}$

Def: Wasserstein distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \left\{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \right\}$$

Demystification: in the discrete case

Def: Wasserstein distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \left\{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \right\}$$

Demystification: in the discrete case

Wasserstein-DRO objective for given $\mathbb P$ and ρ

$$\max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(\xi)]$$

$$W(\mathbb{P}, \mathbb{Q}) \leq \rho$$

Def: Wasserstein distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \left\{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \right\}$$

Demystification: in the discrete case

Wasserstein-DRO objective for given $\mathbb P$ and ρ

$$\begin{cases} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ W(\mathbb{P}, \mathbb{Q}) \leq \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\mathbb{Q}, \pi} \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ [\pi]_1 = \mathbb{P}, [\pi]_2 = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi, \xi')] \leq \rho \\ \beta \end{cases} \xrightarrow{\alpha} \beta \end{cases}$$

Def: Wasserstein distance (given a cost function *c*)

$$W(\mathbb{P},\mathbb{Q}) = \min_{\pi} \left\{ \mathbb{E}_{\pi}[c(\xi,\xi')] : \pi \text{ with marginals } [\pi]_1 = \mathbb{P} \text{ and } [\pi]_2 = \mathbb{Q} \right\}$$

Demystification: in the discrete case

Wasserstein-DRO objective for given $\mathbb P$ and ρ

$$\begin{cases} \max_{\mathbb{Q}} \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ W(\mathbb{P}, \mathbb{Q}) \leq \rho \end{cases} \Leftrightarrow \begin{cases} \max_{\mathbb{Q}, \pi} \mathbb{E}_{\mathbb{Q}}[f(\xi)] \\ [\pi]_1 = \mathbb{P}, [\pi]_2 = \mathbb{Q} \\ \min_{\pi} \mathbb{E}_{\pi}[c(\xi, \xi')] \leq \rho \\ \alpha \end{cases} \Leftrightarrow \begin{cases} \max_{\pi} \mathbb{E}_{[\pi]_2}[f(\xi)] \\ [\pi]_1 = \mathbb{P} \\ \mathbb{E}_{\pi}[c(\xi, \xi')] \leq \rho \\ \alpha \end{cases}$$

Wasserstein DRO (WDRO)

WDRO objective for given \mathbb{P} , ρ – and choice $c(\xi, \xi') = ||\xi - \xi'||^2$

(Primal)

$$\begin{array}{c} \max_{\boldsymbol{\pi}} & \mathbb{E}_{[\boldsymbol{\pi}]_2}[f(\xi)] \\ [\boldsymbol{\pi}]_1 = \mathbb{P} \\ & \mathbb{E}_{\boldsymbol{\pi}}[\|\xi - \xi'\|^2] \leqslant \rho \end{array}$$

(Dual)

$$\min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\mathbb{P}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^2\}]$$

Wasserstein DRO (WDRO)

WDRO objective for given \mathbb{P} , ρ – and choice $c(\xi, \xi') = ||\xi - \xi'||^2$

(Primal)

$$\max_{\boldsymbol{\pi}} \quad \mathbb{E}_{[\boldsymbol{\pi}]_2}[f(\xi)] \\ [\boldsymbol{\pi}]_1 = \mathbb{P} \\ \mathbb{E}_{\boldsymbol{\pi}}[\|\xi - \xi'\|^2] \leqslant \rho$$

(Dual) $\min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\mathbb{P}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^2\}]$

Ex: classification. Compute separator θ by min. logistic loss $f_{\theta}(\xi) = \log(1 + \exp(-y a^{T} \theta))$ $\xi_{i} = (a_{i}, y_{i}) \in \mathbb{R}^{2} \times \{-1, +1\}$ sampled from two Gaussian distributions with variances $\sigma = 1$ and $\sigma = 5$ – reversed in testing !

WDRO is very attractive

- Statistical/practical properties e.g. [Blanchet *et al.* '18] and [Blanchet and Shapiro '23]
- Computable in many cases e.g. [Kuhn *et al.* '18], [Zhao Guan '18]...
- Natural in many applications
 back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. '20]
- Interprets up to first-order as a penalization by $\|\nabla_{\xi} f(x,\xi)\|$ e.g. [Gao *et al.* '18]

WDRO is very attractive - in theory and in pratice ?

- Statistical/practical properties warning : dimensionality ! (spotlight #1) e.g. [Blanchet *et al.* '18] and [Blanchet and Shapiro '23]
- Computable in many cases but not always ! (spotlight #2)
 e.g. [Kuhn et al. '18], [Zhao Guan '18]...
- Natural in many applications but not always ! (spotlight #3)
 back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. '20]
- Interprets up to first-order as a penalization by $\|\nabla_{\xi} f(x,\xi)\|$ e.g. [Gao *et al.* '18]

spotlight #1 : generalization guarantees

Azizian Waiss, Franck Iutzeler, and Jérôme Malick Excat generalization guarantees for (regularized) WDRO models Just accepted in NeurIPS, 2023

Existing generalization guarantees

• Suppose
$$\xi_1, \ldots, \xi_N \sim \mathbb{P}_{\mathsf{train}}$$
 (where $\xi \in \mathbb{R}^d$)

• Computations with
$$\widehat{\mathbb{P}}_N = \frac{1}{N} \sum_{i=1}^N \delta_{\xi_i} \dots$$
 guarantees with $\mathbb{P}_{\text{train}}$?

• We manipulate the WDRO risk $R_{
ho}(f) = \max_{W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leqslant
ho} \mathbb{E}_{\mathbb{Q}}[f(\xi)]$

• Obviously, if ρ, N large enough such that $W(\mathbb{P}_{train}, \widehat{\mathbb{P}}_N) \leq \rho$, then

Existing generalization guarantees

• Suppose
$$\xi_1, \ldots, \xi_N \sim \mathbb{P}_{\mathsf{train}}$$
 (where $\xi \in \mathbb{R}^d$)

• Computations with
$$\widehat{\mathbb{P}}_{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{i}} \dots$$
 guarantees with $\mathbb{P}_{\text{train}}$?

• We manipulate the WDRO risk $R_{
ho}(f) = \max_{W(\widehat{\mathbb{P}}_N, \mathbb{Q}) \leqslant
ho} \mathbb{E}_{\mathbb{Q}}[f(\xi)]$

• Obviously, if ρ, N large enough such that $W(\mathbb{P}_{train}, \widehat{\mathbb{P}}_N) \leqslant \rho$, then

- But it requires $ho \propto 1/\sqrt[d]{N}$ [Fournier and Guillin '15]
- Not optimal: $ho \propto 1/\sqrt{N}$ suffices
 - asymptotically [Blanchet et al '22]
 - in particular cases [Shafieez-Adehabadeh et al '19]
 - or with error terms [Gao '22]

Extended exact generalization guarantees

By a direct approach (work direct to get a concentration result on the (dual) objective)

Theorem ([Azizian, lutzeler, M. '23])

Assumptions : compactness on ξ + compactness on f + quad. growth of f near its minimizers

For
$$\delta \in (0,1)$$
, if $\rho \geqslant O\left(\sqrt{rac{\log 1/\delta}{N}}
ight)$

Generalization guarantee: w.p. $1 - \delta$, $R_{\rho}(f) \ge \mathbb{E}_{\mathbb{P}_{train}}[f(\xi)]$

Distribution shifts: w.p. $1 - \delta$,

$$W(\mathbb{P},\mathbb{Q})^2 \leqslant
ho \Big(
ho - O\Big(\sqrt{rac{\log 1/\delta}{N}}\Big)\Big)$$
 it holds $R_
ho(f) \geqslant \mathbb{E}_\mathbb{Q}[f(\xi)]$

Assumptions valid in many cases: linear/logistic regression, kernel models, smooth neural networks, family of invertible mappings (e.g. normalizing flows)

Illustration

On logistic regression:

- for each $\rho,$ sample 200 training datasets
- solve the WDRO problem on each of them [Blanchet et al '22]
- plot the proba of $R_{\rho}(f) \mathbb{E}_{\mathbb{P}_{train}}[f] \ge 0$ (average, standard deviation)
- the training robust loss is indeed an upper-bound on the true loss

Azizian Waiss, Franck lutzeler, and Jérôme Malick Regularization for Wasserstein distributionally robust optimization ESAIM:COCV (Control Optim. Calculus of Variations), 2023

WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])

$$R_{\rho}(f) = \min_{\lambda \ge 0} \ \lambda \rho + \mathbb{E}_{\mathbb{P}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^2\}]$$

WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])

$$R_{\rho}(f) = \min_{\lambda \ge 0} \lambda \rho + \mathbb{E}_{\mathbb{P}}[\max_{\xi'} \{f(\xi') - \lambda \|\xi - \xi'\|^2\}]$$

What about smoothing ? Smoothed counterpart

$$R^{\varepsilon}_{\rho}(f) = \min_{\lambda \geqslant 0} \ \lambda \rho + \varepsilon \mathbb{E}_{\mathbb{P}} \log \left(\mathbb{E}_{\xi' \sim \pi_0(\cdot|\xi)} e^{\frac{f(\xi') - \lambda \|\xi - \xi'\|^2}{\varepsilon}} \right)$$

(Nice interpretation as entropy-regularized WDRO)

Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21]) Under mild assumptions (non-degeneracy, lipschitz), if the support of \mathbb{P} is contained in a compact convex set $\Xi \subset \mathbb{R}^d$, then

$$0 \leqslant R_{
ho}(f) - R_{
ho}^{arepsilon}(f) \leqslant \left(C \varepsilon \log rac{1}{arepsilon}
ight) \mathbf{d}$$

Great ! but no computational resuls to show yet...

Smoothed WDRO in action

Superquantile \mathbb{S}_{θ} [Rockfellar *et al* '00] (a.k.a. Conditional Value-at-Risk)

Risk measure with dual formulation

$$R_{\theta}(x) = \max_{q \in \Delta_n} \left\{ \sum_{i=1}^n q_i \, \ell(y_i, \varphi(x, a_i)) : 0 \leqslant q_i \leqslant \frac{1}{n(1-\theta)} \right\}$$

DRO with (smoothed) superquantile in Pytorch

https://github.com/krishnap25/sqwash

```
import torch.nn.functional as F
from sqwash import reduce_superquantile
for x, y in dataloader:
    y_hat = model(x)
    batch_losses = F.cross_entropy(y_hat, y, reduction='none') # must set `reduction='none'`
    loss = reduce_superquantile(batch_losses, superquantile_tail_fraction=0.5) # Additional line
    loss.backward() # Proceed as usual from here
    ...
```

spotlight #3 : WDRO for federated learning

Krishna Pillutla, Yassine Laguel, Jérôme Malick, Zaid Harchaoui Federated Learning with Superquantile Aggregation for Heterogeneous Data Machine Learning Journal, 2023

Federated learning in a nutschell

- Standard learning : get all the data and learn your model on it
- Efficient... but is privacy invasive (hospitals, european laws...)
- Idea : move the model not the data !

Federated learning in a nutschell

- Standard learning : get all the data and learn your model on it
- Efficient... but is privacy invasive (hospitals, european laws...)
- Idea : move the model not the data !
- Usual approach : FedAvg [McMahan et al 2017]

(based on old ideas, e.g. [Mangasarian 1995])

Step 1 of 3: Server broadcasts global model to sampled clients

Step 2 of 3: Clients perform some local SGD steps on their local data

Step 3 of 3: Aggregate client updates securely

Parallel Gradient Distribution [Mangasarian. SICON (1995)] Iterative Parameter Mixing [McDonald et al. ACL (2009)]

Issue of heterogeneous users

Issue of heterogeneous users

Issue of heterogeneous users

Global model is deployed on *individual* clients

Our solution : superquantile minimization

ERM Algorithm (FedAvg):

 $\min_{w} \quad \frac{1}{n} \sum_{i=1}^{n} F_i(w)$

Step 3 of 3: Aggregate updates contributed by **all clients**

Simplicial-FL Algorithm:

 $\min \mathbb{S}_{\theta} \Big(\left(F_1(w), \cdots, F_n(w) \right) \Big)$

Step 3 of 3: Aggregate updates contributed by **tail clients** only

• Compatible with secure aggregation and differential privacy

• Analysis of the entropy-regularized version (both cvx and non-cvx)

Illustration

Classification task – ConvNet with EMNIST dataset (1730 users, 179 images/users) Histogram over users of test misclassification error: standard vs. Drion error (dashed lines: 10%/90% -percentiles)

DRO reshapes test histograms

Conclusion

Main take-aways

- Distributionally robust optimization DRO is rich, active topic and has real-life applications, as in federated learning
- WDRO has nice generalization properties
- smoothed WDRO has nice properties

(general duality, approximation results, worst-case distribution, generalization)

On-going work

- Show that WDRO is not just a nice theory
- Further investigate applications... (in fairness?)

thank you all !