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Set-up: data-driven optimization under uncertainty

@ Training data:  &1,...,&y  (in theory: sampled from Py, unknown)

e.g. in supervised learning: labeled data & = (aj, yi) feature, label

@ Train model: f(x,-) the loss function with x the parameter/decision (w, 3,0, ...)

e.g. least-square regression: f(x, (a, y)) =(x"a—y)

@ Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)
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mXin N Z f(x,&)
i=1

@ Prediction with x for different data &
Distributional shifts: Pyiain 7# Prest

Adversarial attacks

Generalization: computations with Py and guarantees on Py,

Other situations, e.g. heterogeneous data

@ Solution: take possible variations into account during training
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(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than mXin Eg, [f(x,§)]  solve instead mXin max Eo[f(x,&)]

with U/ a neighborhood of @N (called ambiguity set)



(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than mXin Eg, [f(x,§)]  solve instead mXin max Eo[f(x,&)]

with U/ a neighborhood of @N (called ambiguity set)

modeling vs. computational tractability

N
- 1
o U= {IP’N} boomin Iz; f(x,&)) standard ERM
o U ={Q:supp(Q) C U}: min Ena&( f(x,&) standard robust optimization
x g€

@ U defined by moments e.g. [Delage, Ye, '10]

o U= {Q ; d([@,\,, Q) < p} for various distances or divergences
E.g. KL-div., x2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

o U = {Q : W(@N,Q) < p} Wasserstein distance [Kuhn et al. "18]



Wasserstein balls as ambiguity sets

Def: Wasserstein distance (given a cost function c)

W(P,Q) = mﬂin{E,,[c({,{')] . with marginals [r]; = Pand [r], = Q}
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Wasserstein DRO (WDRO)
WDRO objective for given P, p - and choice c(&, &) = ||€ — ¢'||?

maxgy  Epr,[f(6)]
(Primal) [l =P

Ecfll€ €171 < p

(Dual) min Ap + Ee[ maxg {f(€) = All€ — €'|17}]

=



Wasserstein DRO (WDRO)
WDRO objective for given P, p - and choice c(&, &) = ||€ — ¢'||?

maXg IE[1r]2 [f(g)]

(Primal) [l =P
Ecfl€ €171 <p
(Dual) min Ap + Ex[ maxe {F(') = All¢ = ¢'II°}]

Ex: classification. Compute separator 6 by min. logistic loss (&) = log(1 + exp(—y a' 6))
& = (aj,y;)€ R? x {1, +1} sampled from two Gaussian distributions
with variances c =1 and 0 =5 - reversed in testing !

Training qata Testing data Logistic Regression WDRO Logistic Regression

) Y




WDRO : success !(?)

WDRO is very attractive

@ Statistical/practical properties
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

@ Computable in many cases
e.g. [Kuhn et al. "18], [Zhao Guan '18]...

@ Natural in many applications
back to [Scarf 1958] | + (...) + recent trend in learning, e.g. [Kuhn et al. '20]

o Interprets up to first-order as a penalization by |V¢f(x,§)|| e.g. [Gao et al. '18]



WDRO : success !(?)

WDRO is very attractive — in theory and in pratice 7

@ Statistical/practical properties — warning : dimensionality ! (spotlight #1)
e.g. [Blanchet et al. '18] and [Blanchet and Shapiro '23]

e Computable in many cases — but not always ! (spotlight #2)
e.g. [Kuhn et al. "18], [Zhao Guan '18]...

@ Natural in many applications — but not always ! (spotlight #3)
back to [Scarf 1958] | + (...) + recent trend in learning, e.g. [Kuhn et al. '20]

o Interprets up to first-order as a penalization by |V¢f(x,§)|| e.g. [Gao et al. '18]



spotlight #1 : generalization guarantees

ﬁ Azizian Waiss, Franck lutzeler, and Jérome Malick
Excat generalization guarantees for (regularized) WDRO models
Just accepted in NeurlPS, 2023




Existing generalization guarantees

@ Suppose &1,...,En ~ Prain (where € € RY)
N
@ Computations with I@N: EZ 0¢;... guarantees with Pyin 7
N — !

@ We manipulate the WDRO risk R,(f) =  max Eg[f(£)]
W(Pn,Q)<p

@ Obviously, if p,N large enough such that W(]P’traim@,v) < p, then

Ro(f) > Ep,,[f()]
————

can compute & optimize cannot access
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@ Suppose &1,...,En ~ Prain (where € € RY)
. 1Y _
@ Computations with Py = /VZ; 0¢;... guarantees with Pyin 7
@ We manipulate the WDRO risk R,(f) = max  Eg[f(§)]
W(HDN7Q)<p

@ Obviously, if p,N large enough such that W(]P’traim@,v) < p, then
Rﬁ(f) 2 IEIFDtrain [f(g)]
SN—— ~—
can compute & optimize cannot access

But it requires p oc 1/¥/N  [Fournier and Guillin '15]

Not optimal: p o 1/\/N suffices

— asymptotically [Blanchet et al '22]
— in particular cases [Shafieez-Adehabadeh et al '19]
— or with error terms [Gao '22]



Extended exact generalization guarantees

By a direct approach (work direct to get a concentration result on the (dual) objective)

Theorem ([Azizian, lutzeler, M. '23])

Assumptions : compactness on & + compactness on f + quad. growth of f near its minimizers

For§ € (0,1), ifp> 0(\/@)

Generalization guarantee: w.p. 1 — 6, R,(f) = Ep,., [f(£)]

Distribution shifts: w.p. 1 — ¢,

W(P,Q)? < p(p— O(\/552)) it holds R, (f) > Eg [F(¢)

Assumptions valid in many cases: linear/logistic regression, kernel models, smooth
neural networks, family of invertible mappings (e.g. normalizing flows)



llustration
On logistic regression:
@ for each p, sample 200 training datasets
@ solve the WDRO problem on each of them [Blanchet et al '22]
@ plot the proba of Rp(f) — Eptrain[f] > 0 (average, standard deviation)
@ the training robust loss is indeed an upper-bound on the true loss

Logistic Regression

1.0{ — Standard WDRO
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spotlight #2 — towards efficient computational toolkit:
smoothed/regularized WDRO

ﬁ Azizian Waiss, Franck lutzeler, and Jérome Malick
Regularization for Wasserstein distributionally robust optimization
ESAIM:COCV (Control Optim. Calculus of Variations), 2023



WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])

R(F) = min Ap+ Ex[maxe {£(€') — A€ — €'}
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WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. '18])

R(F) = min Ao+ Ex[maxe {£(¢') — A¢ — €/I}}]

=

What about smoothing ? Smoothed counterpart

. . AE)=Alle=¢"|1?
Ry(f) = T}lg Ap+eEplog ( Egroro(.e)€ E
(Nice interpretation as entropy-regularized WDRO)

Theorem (approximation bounds for WDRO [Azizian, lutzeler, M. '21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a
compact convex set = C RY, then

1
f— 8 —
0 < Ry(F)— R(f) < (cs|og€)d

Great ! but no computational resuls to show yet...
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Smoothed WDRO in action

Superquantile Sy [Rockfellar et al '00] (a.k.a. Conditional Value-at-Risk)

Risk measure with dual formulation

n
Ro(x) = max > aillyi p(x,a1) : 0 < gi <
" li=1

n(1—6)
DRO with (smoothed) superquantile in Pytorch

https://github.com/krishnap25/sqwash

import torch.nn.functional as F
from sqwash import reduce_superquantile

for x, y in dataloader:
y_hat = model(x)
batch_losses = F.cross_entropy(y_hat, y, reduction='none') # must set ‘reduction='none'’

loss = reduce_superquantile(batch_losses, superquantile_tail_fraction=0.5) # Additional line
loss.backward() # Proceed as usual from here
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https://github.com/krishnap25/sqwash

spotlight #3 : WDRO for federated learning

ﬁ Krishna Pillutla, Yassine Laguel, Jérdme Malick, Zaid Harchaoui
Federated Learning with Superquantile Aggregation for Heterogeneous Data
Machine Learning Journal, 2023




Federated learning in a nutschell
@ Standard learning : get all the data and learn your model on it
o Efficient... but is privacy invasive (hospitals, european laws...)

@ ldea : move the model not the data !
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Federated learning in a nutschell
@ Standard learning : get all the data and learn your model on it
o Efficient... but is privacy invasive (hospitals, european laws...)
@ Idea : move the model not the data !

@ Usual approach : FedAvg [McMahan et al 2017]
(based on old ideas, e.g. [Mangasarian 1995])

Step 1 of 3: Server broadcasts Step 2 of 3: Clients perform some Step 3 of 3: Aggregate client
global model to sampled clients local SGD steps on their local data updates securely

< Server ’
Server
cuouu
iy
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Issue of heterogeneous users

Global model is trained on average distribution
across clients (ERM)

‘ Server ’

i
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Issue of heterogeneous users

> | Haveagood [

@ ot oy weekend

=

=i

16



Issue of heterogeneous users

Global model is deployed on individual clients

> | Haveagood

Count

Train-test
mismatch!

High
Error

Error
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Our solution : superquantile minimization

ERM Algorithm (FedAvg):

rrlw;n % g{ Fi(w) rr:in S,,( (Fyw), -+, F,(w)) )

Step 3 of 3: Aggregate updates
contributed by all clients

Step 3 of 3: Aggregate updates
contributed by tail clients only

Count

Tail

Loss

@ Compatible with secure aggregation and differential privacy

@ Analysis of the entropy-regularized version (both cvx and non-cvx)

Simplicial-FL Algorithm:

17



lHlustration

Classification task — ConvNet with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error: standard vs. DRO
(dashed lines: 10%/90% -percentiles)
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Conclusion

Main take-aways

@ Distributionally robust optimization DRO is rich, active topic
and has real-life applications, as in federated learning

@ WDRO has nice generalization properties

@ smoothed WDRO has nice properties

(general duality, approximation results, worst-case distribution, generalization)

On-going work
@ Show that WDRO is not just a nice theory

@ Further investigate applications... (in fairness?)

thank you all !
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