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Set-up: data-driven optimization under uncertainty

Training data: ⇠1, . . . , ⇠N (in theory: sampled from Ptrain unknown)

e.g. in supervised learning: labeled data ⇠i = (ai , yi ) feature, label

Train model: f (x , ·) the loss function with x the parameter/decision (!,�, ✓, ...)

e.g. least-square regression: f
�
x , (a, y)

�
= (x>a� y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

NX

i=1

f (x , ⇠i )

Prediction with x for di↵erent data ⇠

– Distributional shifts: Ptrain 6= Ptest

– Adversarial attacks

– Generalization: computations with bPN and guarantees on Ptrain

– Other situations, e.g. heterogeneous data

Solution: take possible variations into account during training
1
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(Distributionally) robust optimization

Optimize expected loss for the worst probability in a set of perturbations

rather than min
x

E bPN
[f (x , ⇠)] solve instead min

x
max
Q2U

EQ[f (x , ⇠)]

with U a neighborhood of bPN (called ambiguity set)

modeling vs. computational tractability

U =
n
bPN

o
: min

x

1

N

NX

i=1

f (x , ⇠i ) standard ERM

U = {Q : supp(Q) ⇢ U} : min
x

max
⇠2U

f (x , ⇠) standard robust optimization

U defined by moments e.g. [Delage, Ye, ’10]

U =
n
Q : d(bPN ,Q) 6 ⇢

o
for various distances or divergences

E.g. KL-div., �2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi ’17]

U =
n
Q : W (bPN ,Q) 6 ⇢

o
Wasserstein distance [Kuhn et al. ’18]
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Wasserstein balls as ambiguity sets

Def: Wasserstein distance (given a cost function c)

W (P,Q) = min
⇡⇡⇡

�
E⇡⇡⇡[c(⇠, ⇠

0)] : ⇡⇡⇡ with marginals [⇡⇡⇡]1 = P and [⇡⇡⇡]2 = Q
 

Demystification: in the discrete case

e.g. P = (p1, . . . , pN) and Q = (q1, . . . , qN) in the simplex
8
>>>><

>>>>:

min⇡⇡⇡
PN

i ,j=1
ci ,j ⇡⇡⇡i ,j

PN
j=1

⇡⇡⇡i ,j = pi i = 1, . . . ,N
PN

i=1
⇡⇡⇡i ,j = qj j = 1, . . . ,N

⇡⇡⇡i ,j > 0 i , j = 1, . . . ,N

linear assignment !

Wasserstein-DRO objective for given P and ⇢

⇢
maxQ EQ[f (⇠)]
W (P,Q) 6 ⇢

,

8
<

:

maxQ,⇡⇡⇡ EQ[f (⇠)]
[⇡⇡⇡]1 = P, [⇡⇡⇡]2 = Q
min⇡⇡⇡ E⇡⇡⇡[c(⇠, ⇠0)] 6 ⇢

,

8
<

:

max⇡⇡⇡ E[⇡⇡⇡]2 [f (⇠)]
[⇡⇡⇡]1 = P
E⇡⇡⇡[c(⇠, ⇠0)] 6 ⇢

3



Wasserstein balls as ambiguity sets

Def: Wasserstein distance (given a cost function c)

W (P,Q) = min
⇡⇡⇡

�
E⇡⇡⇡[c(⇠, ⇠

0)] : ⇡⇡⇡ with marginals [⇡⇡⇡]1 = P and [⇡⇡⇡]2 = Q
 

Demystification: in the discrete case

e.g. P = (p1, . . . , pN) and Q = (q1, . . . , qN) in the simplex
8
>>>><

>>>>:

min⇡⇡⇡
PN

i ,j=1
ci ,j ⇡⇡⇡i ,j

PN
j=1

⇡⇡⇡i ,j = pi i = 1, . . . ,N
PN

i=1
⇡⇡⇡i ,j = qj j = 1, . . . ,N

⇡⇡⇡i ,j > 0 i , j = 1, . . . ,N

linear assignment !

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(�,�) def.= min
��U(�,�)

�

X�Y
c(x, y)d�(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(�,�) is compact for the weak topology of measures (see
Remark 2.2), � ��

�
cd� is a continuous function for this topology and the con-

straint set is nonempty (for instance, �� � � U(�,�)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.
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�

Figure 2.6: Left: “continuous” coupling � solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].
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Wasserstein DRO (WDRO)

WDRO objective for given P, ⇢ – and choice c(⇠, ⇠0) = k⇠ � ⇠0k2

(Primal)

8
<

:

max⇡⇡⇡ E[⇡⇡⇡]2 [f (⇠)]
[⇡⇡⇡]1 = P
E⇡⇡⇡[k⇠ � ⇠0k2] 6 ⇢

(Dual) min
�>0

�⇢ + EP[ max ⇠0{f (⇠0) � �k⇠ � ⇠0k2} ]

Ex: classification. Compute separator ✓ by min. logistic loss f✓(⇠) = log(1 + exp(�y a>✓))

⇠i = (ai , yi )2 R2 ⇥ {�1,+1} sampled from two Gaussian distributions

with variances � = 1 and � = 5 – reversed in testing !
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WDRO : success !(?)

WDRO is very attractive

Statistical/practical properties

e.g. [Blanchet et al. ’18] and [Blanchet and Shapiro ’23]

Computable in many cases

e.g. [Kuhn et al. ’18], [Zhao Guan ’18]...

Natural in many applications

back to [Scarf 1958] ! + (...) + recent trend in learning, e.g. [Kuhn et al. ’20]

Interprets up to first-order as a penalization by kr⇠f (x , ⇠)k e.g. [Gao et al. ’18]
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spotlight #1 : generalization guarantees

Azizian Waiss, Franck Iutzeler, and Jérôme Malick

Excat generalization guarantees for (regularized) WDRO models

Just accepted in NeurIPS, 2023



Existing generalization guarantees

Suppose ⇠1, . . . , ⇠N ⇠ Ptrain (where ⇠ 2 Rd)

Computations with bPN=
1

N

NX

i=1

�⇠i ... guarantees with Ptrain ?

We manipulate the WDRO risk R⇢(f ) = max
W (bPN ,Q)6⇢

EQ[f (⇠)]

Obviously, if ⇢,N large enough such that W (Ptrain, bPN) 6 ⇢, then

R⇢(f )| {z }
can compute & optimize

> EPtrain
[f (⇠)]| {z }

cannot access

But it requires ⇢ / 1/ d
p
N [Fournier and Guillin ’15]

Not optimal: ⇢ / 1/
p
N su�ces

– asymptotically [Blanchet et al ’22]
– in particular cases [Shafieez-Adehabadeh et al ’19]
– or with error terms [Gao ’22]
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Extended exact generalization guarantees

By a direct approach (work direct to get a concentration result on the (dual) objective)

Theorem ([Azizian, Iutzeler, M. ’23])

Assumptions : compactness on ⇠ + compactness on f + quad. growth of f near its minimizers

For � 2 (0, 1), if ⇢ > O

⇣q
log 1/�

N

⌘

Generalization guarantee: w.p. 1 � �, R⇢(f ) > EPtrain [f (⇠)]

Distribution shifts: w.p. 1 � �,

W (P,Q)2 6 ⇢
⇣
⇢ � O

�q
log 1/�

N

�⌘
it holds R⇢(f ) > EQ [f (⇠)]

Assumptions valid in many cases: linear/logistic regression, kernel models, smooth
neural networks, family of invertible mappings (e.g. normalizing flows)
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Illustration

On logistic regression:

for each ⇢, sample 200 training datasets

solve the WDRO problem on each of them [Blanchet et al ’22]

plot the proba of R⇢(f ) � EPtrain
[f ] > 0 (average, standard deviation)

the training robust loss is indeed an upper-bound on the true loss
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spotlight #2 – towards e�cient computational toolkit:

smoothed/regularized WDRO

Azizian Waiss, Franck Iutzeler, and Jérôme Malick

Regularization for Wasserstein distributionally robust optimization

ESAIM:COCV (Control Optim. Calculus of Variations), 2023



WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. ’18])

R⇢(f ) = min
�>0

�⇢ + EP[ max ⇠0 {f (⇠0) � �k⇠ � ⇠0k2} ]

What about smoothing ? Smoothed counterpart

R
"
⇢(f ) = min

�>0

�⇢ + "EP log

✓
E⇠0⇠⇡0(·|⇠)e

f (⇠0)��k⇠�⇠0k2
"

◆

(Nice interpretation as entropy-regularized WDRO)

Theorem (approximation bounds for WDRO [Azizian, Iutzeler, M. ’21])

Under mild assumptions (non-degeneracy, lipschitz), if the support of P is contained in a

compact convex set ⌅ ⇢ Rd
, then
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⇣
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Great ! but no computational resuls to show yet...
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WDRO objective to be minimized

Dual WDRO is nonsmooth (which complicates resolution [Kuhn et al. ’18])

R⇢(f ) = min
�>0

�⇢ + EP[ max ⇠0 {f (⇠0) � �k⇠ � ⇠0k2} ]

What about smoothing ? Smoothed counterpart
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Smoothed ⇢⇢ZZWDRO in action

Superquantile S✓ [Rockfellar et al ’00] (a.k.a. Conditional Value-at-Risk)

Risk measure with dual formulation

R✓(x) = max
q2�n

(
nX

i=1

qi `(yi , '(x , ai )) : 0 6 qi 6
1

n(1 � ✓)

)

DRO with (smoothed) superquantile in Pytorch

https://github.com/krishnap25/sqwash

Distributionally robust learning in PyTorch

Install: pip install sqwash 

Documentation: krishnap25.github.io/sqwash/ 13

https://github.com/krishnap25/sqwash


spotlight #3 : ⇢⇢ZZWDRO for federated learning

Krishna Pillutla, Yassine Laguel, Jérôme Malick, Zaid Harchaoui

Federated Learning with Superquantile Aggregation for Heterogeneous Data

Machine Learning Journal, 2023



Federated learning in a nutschell

Standard learning : get all the data and learn your model on it

E�cient... but is privacy invasive (hospitals, european laws...)

Idea : move the model not the data !

Usual approach : FedAvg [McMahan et al 2017]

(based on old ideas, e.g. [Mangasarian 1995])
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Federated learning in a nutschell

Standard learning : get all the data and learn your model on it

E�cient... but is privacy invasive (hospitals, european laws...)

Idea : move the model not the data !

Usual approach : FedAvg [McMahan et al 2017]

(based on old ideas, e.g. [Mangasarian 1995])

Usual Approach to Federated Learning

Step 1 of 3: Server broadcasts 
global model to sampled clients

Step 2 of 3: Clients perform some 
local SGD steps on their local data

Server

Step 3 of 3: Aggregate client 
updates securely

Server

Parallel Gradient Distribution [Mangasarian. SICON (1995)]                 
Iterative Parameter Mixing [McDonald et al. ACL (2009)]

BMUF [Chen & Huo. ICASSP (2016)] 
Local SGD [Stich. ICLR (2019)]

The FedAvg Algorithm [McMahan et al. (2017)]:

Server

15



Issue of heterogeneous users

Global model is trained on average distribution 
across clients (ERM)

Server

16



Issue of heterogeneous users

Server

Global model is deployed on individual clients

16



Issue of heterogeneous users

Server

Error

C
ou

nt

Error

High 
Error

Low 
Error

Train-test 
mismatch!

Global model is deployed on individual clients

16



Our solution : superquantile minimization

Step 3 of 3: Aggregate updates 
contributed by tail clients only

Step 3 of 3: Aggregate updates 
contributed by all clients

ERM Algorithm (FedAvg):

Server Server

Loss

C
ou

nt
Tail

Simplicial-FL Algorithm:

min
w

��( (F1(w), �, Fn(w)) )min
w

1
n

n

∑
i=1

Fi(w)

Compatible with secure aggregation and di↵erential privacy

Analysis of the entropy-regularized version (both cvx and non-cvx)

17



Illustration

Classification task – ConvNet with EMNIST dataset (1730 users, 179 images/users)

Histogram over users of test misclassification error: standard vs. DRO
(dashed lines: 10%/90% -percentiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of � nal misclassi� cation error

Conformity level 

Distribution of � nal misclassi� cation error for FedAvg

Distribution of � nal misclassi� cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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DRO reshapes test histograms

18



Conclusion

Main take-aways

Distributionally robust optimization DRO is rich, active topic
and has real-life applications, as in federated learning

WDRO has nice generalization properties

smoothed WDRO has nice properties
(general duality, approximation results, worst-case distribution, generalization)

On-going work

Show that WDRO is not just a nice theory

Further investigate applications... (in fairness?)

thank you all !
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