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Robust ML/IA

we do not want machine-learned systems
to fail when used in real-word

Example 1: Changes in environnements

Learning to drive in California vs. driving in the Alps

Example 2: Attacks
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Robust ML/IA

we do not want machine-learned systems
to fail when used in real-word

Example 1: Changes in environnements

Learning to drive in California vs. driving in the Alps

Example 2: Attacks [tutorial on robustness @ NeurIPS ’18] (+ ROADEF ’20 !)
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Robust ML/IA

we do not want machine-learned systems
to fail when used in real-word

Example 1: Changes in environnements

Learning to drive in California vs. driving in the Alps

Example 2: Attacks [@ CVPR ’18]

Attacks against autonomous vehicles

Eykholt et al, Robust Physical-World Attacks on Deep Learning Visual Classification, CVPR 2018

Zhang et al., CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the Wild, ICLR 2019

.
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/

Nassi et al., Phantom of the ADAS: Securing Advanced Driver-AssistanceSystems from Split-Second Phantom Attacks, 2020
Qayyum, et al., Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial ML, IEEE Communications, 2019
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we do not want machine-learned systems
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Example 1: Changes in environnements

Learning to drive in California vs. driving in the Alps
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Robust ML/IA

we do not want machine-learned systems
to fail when used in real-word

Example 3: Data heterogeneity

E.g. in federated learning

Google, hospital consortium...

What about non-conforming users ?

Many issues !
(service quality ? fairness issues ?...)

more later...

1

Users’ heterogeneity

Heterogeneity in federated learning

1

I’m having a great 

moment daytime

Next Word Prediction

Eg. on mobile phones
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Data-driven set-up

Training data: ξ1, . . . , ξN ∼ P (unknown)

e.g. in supervised learning: ξi = (ai , yi ) feature, label

Train model: x the parameter/decision, f (x , ·) the loss

e.g. least-square regression: f
(
x , (a, y)

)
= (x>a− y)2

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

min
x

1

N

N∑
i=1

f (x , ξi )

Prediction with x for slightly different data ξ ?
(generalisation, data shifts, adversarial examples,...)

Take variation into account when optimizing/learning !

(Distributionally) robust optimization
(optimize expected loss for a the worst case in a set of perturbation)

min
x

max
Q∈U

EQ[f (x , ξ)]

2
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Modeling issues

E.g. ambiguity/incertainty set U : min
x

max
Q∈U

EQ[f (x , ξ)]

U =
{
P̂N

}
: min

x

1

N

N∑
i=1

f (x , ξi )

U = {Q : supp(Q) ⊂ U} : min
x

max
ξ∈U

f (x , ξ)

U defined by moments e.g. [Delage, Ye, ’10]

U =
{
Q : d(Q, P̂N) 6 ρ

}
for various distances or divergences

E.g. KL-div., χ2-div., max-mean-discrepancy... e.g. [Namkoong, Duchi ’17]

U =
{
Q : W (Q, P̂N) 6 ρ

}
Wasserstein distance (in this talk)

Good statistical/practical properties... e.g. [Kuhn et al. ’18]
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DRO in action #1 : toy example

Least-square linear regression

Data : ξ1, ξ2, . . . , ξN with ξi = (ai , yi ) in two groups (majority vs. minority)

yi = x̄>ai + εi with εi ∼ βNmajor + (1− β)Nminor

Compute from data:

standard regression xERM vs. DRO regression xDRO (KL-regularized)

Generate new data ξ′1, . . . , ξ
′
M

Test the regression errors given by xERM vs xDRO (ri = |x>ai − yi |)
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Test Loss Distribution

Ordinary Least Squares Superquantile RegressionHistogram of the regression errors for unseen data

DRO re-shapes histograms towards more fairness ,

4



DRO in action #1 : toy example

Least-square linear regression

Data : ξ1, ξ2, . . . , ξN with ξi = (ai , yi ) in two groups (majority vs. minority)

yi = x̄>ai + εi with εi ∼ βNmajor + (1− β)Nminor

Compute from data:

standard regression xERM vs. DRO regression xDRO (KL-regularized)

Generate new data ξ′1, . . . , ξ
′
M

Test the regression errors given by xERM vs xDRO (ri = |x>ai − yi |)

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25

Training Loss Distribution

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25
Test Loss Distribution

Ordinary Least Squares Superquantile RegressionHistogram of the regression errors for unseen data

DRO re-shapes histograms towards more fairness ,

4



DRO in action #1 : toy example

Least-square linear regression

Data : ξ1, ξ2, . . . , ξN with ξi = (ai , yi ) in two groups (majority vs. minority)

yi = x̄>ai + εi with εi ∼ βNmajor + (1− β)Nminor

Compute from data:

standard regression xERM vs. DRO regression xDRO (KL-regularized)

Generate new data ξ′1, . . . , ξ
′
M

Test the regression errors given by xERM vs xDRO (ri = |x>ai − yi |)

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25

Training Loss Distribution

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25
Test Loss Distribution

Ordinary Least Squares Superquantile RegressionHistogram of the regression errors for unseen data

DRO re-shapes histograms towards more fairness ,

4



DRO in action #1 : toy example

Least-square linear regression

Data : ξ1, ξ2, . . . , ξN with ξi = (ai , yi ) in two groups (majority vs. minority)

yi = x̄>ai + εi with εi ∼ βNmajor + (1− β)Nminor

Compute from data:

standard regression xERM vs. DRO regression xDRO (KL-regularized)

Generate new data ξ′1, . . . , ξ
′
M

Test the regression errors given by xERM vs xDRO (ri = |x>ai − yi |)

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25

Training Loss Distribution

0 25 50 75 100 125
0.00

0.05

0.10

0.15

0.20

0.25
Test Loss Distribution

Ordinary Least Squares Superquantile RegressionHistogram of the regression errors for unseen data

DRO re-shapes histograms towards more fairness ,
4



DRO in action #2 : federated learning with heterogeneous users

Federated Learning by Google = FedAvg

vs. DRO FedAvg

[Laguel, Pillutla, M., Harchaoui ’21]
Illustration:

Classification task by ConvNet

with EMNIST dataset
(1730 users, 179 images/users)

Histogram over users
of test misclassification error
(dashed lines: 10%/90% -percentiles)

•Regularised logistic loss 
•ConvNet

22

Numerical illustration

On the dataset EMNIST

1730 writers 179 images per device

[Caldas et al. 2019]

Models

Distribution of !nal misclassi!cation error

Conformity level 

Distribution of !nal misclassi!cation error for FedAvg

Distribution of !nal misclassi!cation error for

10th percentile for FedAvg 90th percentile

p = 0.5
<latexit sha1_base64="NcRyqU1q7HvM5CG6xRdiEyR/sWI=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFJKq6EUoevFYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtXHdb7Syura+sVnaKm/v7O7tVw4OmzrJFGU+TUSi2iHRTHDJfMONYO1UMRKHgrXC0d3Ubz0xpXkiH804ZUFMBpJHnBJjJT+9cZ3LXqXqOu4MeJl4BalCgUav8tXtJzSLmTRUEK07npuaICfKcCrYpNzNNEsJHZEB61gqScx0kM+OneBTq/RxlChb0uCZ+nsiJ7HW4zi0nTExQ73oTcX/vE5mousg5zLNDJN0vijKBDYJnn6O+1wxasTYEkIVt7diOiSKUGPzKdsQvMWXl0mz5njnTu3holq/LeIowTGcwBl4cAV1uIcG+ECBwzO8whuS6AW9o4956woqZo7gD9DnD61mjfA=</latexit>
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Research topic: extend the (W)DRO toolkit

DRO works well ,

Trade-off : modeling vs. computational tractability

Wasserstein-DRO is popular...

Good statistical/practical properties, e.g. [Kuhn et al. ’18]

...but has some limitations ! news results

We propose: Regularized WDRO [Azizian, Iutzeler, M. ’22]

Why regularizing ? it helps computationnally !

One of the main reasons of the popularity of OT in ML [Cuturi ’13]

On-going research...
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DRO with Wasserstein balls as ambiguity sets

Def: Wasserstein distance (given a cost function c)

W (P,Q) = min
πππ
{Eπππ[c(ξ, ξ′)] : πππ with marginals [πππ]1 = P and [πππ]2 = Q}

Demystification: in the discrete case

e.g. P = (p1, . . . , pN) and Q = (q1, . . . , qN) in the simplex
minπππ

∑N
i,j=1 ci,j πππi,j∑N

j=1 πππi,j = pi i = 1, . . . ,N∑N
i=1 πππi,j = qj j = 1, . . . ,N

πππi,j > 0 i , j = 1, . . . ,N

linear assignment !

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

�

�

� �

�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

Wasserstein-DRO (WDRO) objective for given P and ρ{
maxQ EQ[f (ξ)]

W (P,Q) 6 ρ
⇔

maxQ,πππ EQ[f (ξ)]
[πππ]1 = P, [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ′)] 6 ρ

⇔

maxπππ E[πππ]2
[f (ξ)]

[πππ]1 = P
Eπππ[c(ξ, ξ′)] 6 ρ

7
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c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

�

�

� �

�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

Wasserstein-DRO (WDRO) objective for given P and ρ{
maxQ EQ[f (ξ)]
W (P,Q) 6 ρ

⇔

maxQ,πππ EQ[f (ξ)]
[πππ]1 = P, [πππ]2 = Q
minπππ Eπππ[c(ξ, ξ′)] 6 ρ

⇔

maxπππ E[πππ]2
[f (ξ)]

[πππ]1 = P
Eπππ[c(ξ, ξ′)] 6 ρ
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DRO with Wasserstein balls as ambiguity sets

Def: Wasserstein distance (given a cost function c)
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WDRO : duality

Primal WDRO  maxπππ E[πππ]2
[f (ξ)]

−R(πππ)

[πππ]1 = P
Eπππ[c(ξ, ξ′)] 6 ρ ← λ > 0

Dual WDRO

min
λ>0

min
ϕ

λρ+ EP[ maxξ′ f (ξ′)− λc(ξ, ξ′) ]

− ϕ(ξ, ξ′) ] + (R + λS)∗(ϕ)

Quite abstract... but more concrete expressions when specialized

e.g. with R(π) = εKL(π|π0) and S(π) = δKL(π|π0) for a given π0

min
λ>0

λρ+ (ε+ λδ)EP log
(
Eξ′∼π0(·|ξ)e

f (ξ′)−λc(ξ,ξ′)
ε+λδ

)
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WDRO : duality

Primal WDRO regularized (with two convex functions R, S) maxπππ E[πππ]2
[f (ξ)]−R(πππ)

[πππ]1 = P
Eπππ[c(ξ, ξ′)]+S(πππ) 6 ρ ← λ > 0

Dual WDRO when regularized
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WDRO: approximation result

Dual WDRO:
(P) min

λ>0
λρ+ EP[ maxξ′ f (ξ′)− λc(ξ, ξ′) ]

Dual WDRO regularized by R(π) = εKL(π|π0) and S(π) = δKL(π|π0)

(Pε,δ) min
λ>0

λρ+ (ε+ λδ)EP log
(
Eξ′∼π0(·|ξ)e

f (ξ′)−λc(ξ,ξ′)
ε+λδ

)
Theorem ([Azizian, Iutzeler, M. ’22])

Under mild assumptions (non-degeneracy, lipschitz, c =‖ · ‖p , special form of π0),
if the support of P is contained in a compact convex set Ξ ⊂ Rd , then

0 6 val(P)− val(Pε,δ) 6 C d (ε+ λδ) log
1

ε+ λδ

where λ = 2 supΞ |f |
ρ−Eπ0

c an explicit dual bound.

We control the error... Next step: solve (Pε,δ) efficiently, another story...
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Conclusion

Main take-aways

DRO is a rich field + promising approach in ML

Our work : extend the toolkit of DRO

Proposal : use regularized WDRO !

general duality, approximation results, worst-case distribution...

On-going work on regularized WDRO

Towards scalable algorithms...

Statistical guarantees ?

Applications ? (fairness?)

thanks !!
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Yassine Laguel, Jérôme Malick, and Zaid Harchaoui

Optimization for Superquantile-based Supervised Learning
30th Workshop on Machine Learning for Signal Processing, 2020

Krishna Pillutla, Yassine Laguel, Jérôme Malick, and Zaid Harchaoui

Federated Learning with Heterogeneous Data: A Superquantile Optimization Approach
Submitted to Machine Learning Research, 2021

Azizian Waiss, Franck Iutzeler, and Jérôme Malick
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SFL comparison w. state-of-the-art

From [Laguel, Pillutla, M., Harchaoui ’21]
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Misclassi!cation error (in %) on test devices for EMNIST.

90th Percentile
Linear ConvNet Linear ConvNet

FedAvg
FedProx
q-FFL
AFL

Average
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Regularized WDRO

From [Azizian, Iutzeler, M. ’22]

Recall : KL (Kullback-Lieber divergence)

KL(µ|ν) =

{∫
log dµ

dν dµ if µ,ν > 0 and µ� ν

+∞ otherwise

In the discrete case: P = (p1, . . . , pN) and Q = (q1, . . . , qN)

KL(P|Q) =
N∑
i=1

pi log
pi
qi

Explicit reference measure

π0(dξ, dξ′) ∝ P(dξ) Iξ′∈Ξe
− ‖ξ−ξ

′‖p

2p−1σ dξ′

Worst-case distribution

P∗ = (...) supported on the whole space

vs. WDRO where the worst-case is finitely supported...
(WDRO hedges against wrong set of distributions ?)
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