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we do not want machine-learned systems
to fail when used in real-word
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E.g. in federated learning

Google, hospital consortium...

What about non-conforming users ?

Many issues !
(service quality ? fairness issues ?...)

more later...



Data-driven set-up

o Training data:  &1,...,&y ~ P (unknown)

e.g. in supervised learning: & = (a;, y;) feature, label

@ Train model: x the parameter/decision, f(x,-) the loss

e.g. least-square regression: f(x,(a,y)) = (x"a— y)?

o Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)

1N
min ; f(x,&)

@ Prediction with x for slightly different data & 7
(generalisation, data shifts, adversarial examples,...)

Take variation into account when optimizing/learning !
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Data-driven set-up

Training data:  &p,...,&y ~ P (unknown)

e.g. in supervised learning: & = (a;, y;) feature, label

Train model: x the parameter/decision, f(x,-) the loss

e.g. least-square regression: f(x,(a,y)) = (x"a— y)?

Compute x via empirical risk minimization (a.k.a SAA)

(minimize the average loss on training data)
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Prediction with x for slightly different data £ ?
(generalisation, data shifts, adversarial examples,...)

Take variation into account when optimizing/learning !

(Distributionally) robust optimization

(optimize expected loss for a the worst case in a set of perturbation)

min max Eq[f(x,&)]

X



Modeling issues

E.g. ambiguity/incertainty set U: min max Eg[f(x,¢)]

N
. 1
oU:{]P’N} : meN;f(x,f,-)
o U={Q:supp(Q) C U}: min rEneagf f(x,€)
o U defined by moments e.g. [Delage, Ye, '10]

o U = {Q : d(Q, ]/P;N) < p} for various distances or divergences
E.g. KL-div., xo-div., max-mean-discrepancy... e.g. [Namkoong, Duchi '17]

o U= {Q : W((@,@N) < p} Wasserstein distance (in this talk)
Good statistical /practical properties... e.g. [Kuhn et al. '18]



DRO in action #1 : toy example

Least-square linear regression

Data : &1,&,...,&y  with & = (a;, ;) in two groups (majority vs. minority)
yi = X" aj +¢&; with g; ~ BA/M2Or 4 (1 — g)N/miner
Compute from data:

ERM

standard regression x vs. DRO regression xPRO (

KL-regularized)
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Least-square linear regression

Data : &1,&,...,&y  with & = (a;, ;) in two groups (majority vs. minority)
yi = X" aj +¢&; with g; ~ BA/M2Or 4 (1 — g)N/miner
Compute from data:
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Histogram of the regression errors for unseen data
DRO re-shapes histograms towards more fairness (2)



DRO in action #2 : federated learning with heterogeneous users
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Federated Learning by Google = FedAvg



DRO in action #2 : federated learning with heterogeneous users

Federated Learning by Google = FedAvg vs. DRO FedAvg

Illustration:

Classification task by ConvNet

with EMNIST dataset
(1730 users, 179 images/users)

Histogram over users
of test misclassification error
(dashed lines: 10%/90% -percentiles)

[Laguel, Pillutla, M., Harchaoui '21]
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Research topic: extend the (W)DRO toolkit

e DRO works well (2

Trade-off : modeling vs. computational tractability

Wasserstein-DRO is popular...
Good statistical /practical properties, e.g. [Kuhn et al. '18]

@ ...but has some limitations | news results

@ We propose: Regularized WDRO [Azizian, lutzeler, M. '22]

Why regularizing ? it helps computationnally !
One of the main reasons of the popularity of OT in ML [Cuturi '13]

@ On-going research...
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Def: Wasserstein distance (given a cost function c)

W(P,Q) = mJn{IE,.-[c({,f')] . with marginals [r]; = Pand [r], = Q}
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WDRO : duality

Primal WDRO
maXg IE:[7r]2 [f(f)]
[7l']1 =P
Exlc(€ &) <p < A>0
Dual WDRO

&n;g Ap 4 Ep[maxe £(£') — Ae(&,¢)]



WDRO : duality

Primal WDRO regularized (with two convex functions R, S)

maxy  Epup [F(€)] ~ R(n)
[7T]1 =P
Erlc(&EN+S5(m)<p < AZ0
Dual WDRO when regularized

min min Ap + Ep[max¢ (&) = Ac(§,€) — (&, &) ]+ (R+AS).()



WDRO : duality

Primal WDRO regularized (with two convex functions R, S)

{ e g (O] R(m)
Edc(6, €N+ Sm <p A0

Dual WDRO when regularized

min min Ap + Ep[maxe £(€') = Ac(§,€') = @&, )]+ (R+AS).(¢)
Quite abstract... but more concrete expressions when specialized
e.g. with R(m) = e KL(7|mg) and S(7) = é KL(w|mo) for a given mg

min Ap+ (e + A6)Ep log (EglNﬂo(.‘f)e B2y )



WDRO: approximation result

Dual WDRO:
(P) minAp+Ex[maxe F(€) = Ae(&,€)]

Dual WDRO regularized by R(7) = & KL(w|mo) and S(7) = 6 KL(7|mo)

. (&)= Ac(€,¢))
(Ps5) T;B Ap + (e + A6)Ep log (Egrwﬂo(.‘g)e X )

Theorem ([Azizian, lutzeler, M. '22])

Under mild assumptions (non-degeneracy, lipschitz, c=|| - ||P, special form of m),
if the support of IP is contained in a compact convex set = C RY, then

0 < val(P)—val(P.5) < Cd(c+ M) log

£+ A6

where X = 257”]%5 I an explicit dual bound.
p—Enyc

We control the error... Next step: solve (F. 5) efficiently, another story...



Conclusion
Main take-aways
@ DRO is a rich field + promising approach in ML
@ Our work : extend the toolkit of DRO

@ Proposal : use regularized WDRO !

general duality, approximation results, worst-case distribution...

On-going work on regularized WDRO
@ Towards scalable algorithms...
o Statistical guarantees 7

@ Applications ? (fairness?)
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Main take-aways
@ DRO is a rich field + promising approach in ML
@ Our work : extend the toolkit of DRO

@ Proposal : use regularized WDRO !

general duality, approximation results, worst-case distribution...

On-going work on regularized WDRO
@ Towards scalable algorithms...
o Statistical guarantees 7

@ Applications ? (fairness?)

thanks !!
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SFL comparison w. state-of-the-art

From [Laguel, Pillutla, M., Harchaoui '21]

A-FL p=05

E FedAvg

prox FedProx
I-1Z(¢>1) gFFL
max AFL

90t Percentile

Linear

46.48 £ 0.38

49.66 & 0.67
49.15 £ 0.74
49.90 £ 0.58
51.62 £0.28

ConvNet,
23.69 £0.94

28.46 £ 1.07
27.01 £ 1.86
28.02 £ 0.80
45.08 £1.00

Average
Linear ConvNet,
35.02 £ 0.20 15.49 + 0.30
34.38 £+ 0.38 16.64 £ 0.50
33.82+0.30 16.02 £ 0.54
34.34 +0.33 16.59 £ 0.30
39.33 £0.27 33.01 £0.37



Regularized WDRO
From [Azizian, lutzeler, M. '22]

@ Recall : KL (Kullback-Lieber divergence)

0and p < v

400 otherwise

KL(ulv) = {flogd du if uv >

In the discrete case: P = (p1,...,pn) and Q =

(qla"'an)

]P)|Q ZP: |Og*

@ Explicit reference measure

le—¢"1P

mo(dg, d¢’) oc P(d€) Iereze™ 210 de

@ Worst-case distribution

P* = (...) supported on the whole space

vs. WDRO where the worst-case is finitely su

pported...

(WDRO hedges against wrong set of distributions ?)



