
UGA Master1 Applied Maths

Jérôme Malick – Spring 2026

OR Complementary – a selection of exercises

Exercise 1 Support Functions. Let C be a subset of Rn; recall that the support function of C is

σC(x) = sup
y∈C

x⊤y for x ∈ Rn.

a) Show that σC : Rn→R ∪ {+∞} is convex.

b) Calculate the support function for the following subsets of Rn:

• C the Euclidean ball of radius 1 (draw a picture in R2);

• C = (R+)n the positive orthant;

• C = [a, b] the segment joining two points a and b in Rn.

c) Show: σC = σconvC . (In words: a support function doesn’t distinguish between C and its convex hull).

Exercise 2 (Google) PageRank. The problem of ranking webpages is of the utmost importance for
search engines. To this end, a popular approach is to represent webpages as a graph where the nodes
are the pages themselves and the edges are the links between them (if page i contains a links pointing
toward page j, there is a directed edge from node i to node j in the graph). Then, a page/node has a
high score if there are many links pointing toward it, especially coming from highly ranked pages. To
fix ideas, consider the graph below of N = 5 pages.
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5 of incidence matrix A =


0 1 1 0 1
0 0 0 1 1
1 0 0 1 0
0 0 1 0 1
0 1 0 0 0


We could choose the number of incoming links, as a score: node 1 would be ranked first with 3,

nodes 2, 3, 4 second with 2, 5 last with 1. The drawback of this scoring is that 2, 3, 4 have the same score
but are different in nature, as 3 is pointed by the most important page. To correct this phenomenon,
the Google founders proposed an (implicit) scoring, similar to the following.

The score xi of page i is equal to the sum over the pages j pointing toward i of the scores (xj)
divided by their number of outgoing links nj , that is,

xi = (1− α)
∑
j∈Pi

xj
nj

+
α

N

N∑
j=1

xj (1)

where α is a ”damping” parameter in (0, 1) and Pi is the set of nodes pointing toward i.

a) Let x ∈ RN be the vector of the pages scores. Write the score equation (1) as a linear equation
x = Rx with R defined from the incidence matrix A.

b) Show that R⊤e = e, i.e. R is column-stochastic (that is, its elements are non negative and its
columns sum to ones).

c) Deduce first from b that 1 is an eigenvalue of R. Deduce also from b that ∥|R|∥ = 1 for a matrix
norm, and then that the spectral radius is ρ(R) = 1.

d) Conclude with Perron-Frobenuis: the vector of score x, satisfying
∑

i xi = 1, exists and is unique.

e) For the graph above, compute the score vector and show that 3 is the most important page.
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Exercise 3 Pure Nash. What are the pure Nash equilibria of the two following games?

Player 2
A B C

a (3,1) (2,3) (10,8)
Player 1 b (4,5) (3,0) (6,4)

c (2,2) (5,4) (8,3)
d (7,6) (4,5) (5,4)

Player 2
A B C

a (3,1) (2,3) (10,2)
Player 1 b (4,5) (3,0) (6,4)

c (2,2) (5,4) (12,3)
d (5,6) (4,5) (9,7)

Exercise 4 Small parametric game. Consider this game depending on the parameter x ∈ R:

Player 2
A B

Player 1 A (0.5,0.5) (x, 1− x)
B (1− x, x) (0.5, 0.5)

a) What are the pure Nash equilibrium of this game, depending on x ?

b) Given (q, 1−q) a mixed strategy for Player 2, what is the expected payoff for Player 1 if he plays A?
Same question if Player 1 plays B.

c) Following the notation of the course, let a mixed Nash equilibrium
(
(p∗, 1 − p∗), (q∗, 1 − q∗)

)
(not

a pure one, so p∗ ̸∈ {0, 1}). Show that we have: 0.5q⋆ + (1 − q⋆)x − (1 − x)q⋆ − 0.5(1 − q⋆) = 0.
Explain briefly why this makes sense and why this property is called “indifference”.

d) What are the mixed Nash equilibrium of this game, depending on x ?

Exercise 5 Mixed Nash. Same as the previous exercise. Give the pure and mixed Nash equilibria
for the following game, depending on the parameter x ∈ R,

Player 2
A B

Player 1 A (0.5,0.5) (0,1)
B (1,0) (1−x

2 , 1−x
2 )

Exercise 6 Linear vs. non-linear duality. Consider the optimization problem (in R){
max φ(x) = x
x ⩽ 0, x ∈ {−2, 1}.

a) Write the dual problem associated to relaxing the contraint x ⩽ 0. Show that the duality gap is 2.

b) Solve the convexified problem (with x ∈ [−2, 1]). Show that the convexified optimal value is equal
to the optimal dual value.

c) Redo the two above questions with φ(x) = −x2. Do we get the same final equality?

Exercise 7 Pricing for a mixed-integer problem. We consider the optimization problem in R2

F (d) :=


min 5p1 + 10p2

p1 + p2 ⩾ d
p ∈ {0, 3} × [0, 1]

(Pd)

a) Find the optimal solution p(d), depending on d ∈ [0, 4]. Draw the graph of F .

b) Write the optimization problem as a max and introducing the Lagrangian

L0(p;u) := −5p1 − 10p2 − u(−p1 − p2) ,

to dualize (P0). Compute the optimal solution pu of maximizing the Lagrangian, depending on
u ⩾ 0. Draw the graph of the associated dual function θ0(u).
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c) Form the dual of (Pd), and express the dual function θd with the help of θ0. What is the minimum
of θd for d = 2?

d) Observe graphically that the dual optimal solution is the slope of the convex enveloppe of F .

Exercise 8 Dualize other contraintes. With course notation, we consider
max φ(x)
x ∈ X
c(x) ∈ B

where B is a subset of Rn. We assume that we have an oracle solving θ(u) := maxx∈X φ(x)−u⊤c(x).

a) Adding a slack variable, write the dual problem.

b) Apply the result to B = {0}, B = Rn
+ and B the ℓ2-ball of radius ε.

Exercise 9 Augmented Lagrangian relaxation. We start this exercice with studying the following
simple optimization problem in R2 

max −x1 − 2x2
x1 + x2 = 3
x1 ∈ [0, 2], x2 ∈ {0, 2}.

(P)

a) By observing that (P) reduces to the trivial problem
max −x1 − 4
x1 = 1
x1 ∈ [0, 2],

give the optimal solution and the optimal value of (P).

b) What is the optimal solution and the optimal value of the convexified problem ? (where the
constraint x2 ∈ {0, 2} is replaced by x2 ∈ [0, 2]).

c) Write the Lagrangian and the dual function θ associated to the dualization in (P) of the constraint
x1 + x2 − 3 = 0.

d) Draw the graph of θ. Give the dual optimal solution, the dual optimal value, and the duality gap.

Let’s now turn to the general framework of the course{
max φ(x)

c(x) = 0, x ∈ X.

For a parameter ρ > 0, we define the augmented Lagrangian function by

Lρ(x;u) := φ(x)− u⊤c(x)− ρ∥c(x)∥2

and the associated augmented dual function by

θρ(u) := max
x∈X

Lρ(x;u).

d) Show that θρ : Rn → R∪{+∞} is convex. Show that for any dual variable u and any primal feasible
variable x ∈ X such that c(x) = 0, we have θρ(u) ⩾ φ(x).

e) Fix ū and x(ū) ∈ X such that θρ(ū) = Lρ(x(ū); ū). Prove that, if c(x(ū)) = 0, then ū minimizes
θρ, x(ū) is a primal optimal solution, and that there is no duality gap.

Augmented Lagrangians have the following nice property. Contrary to standard Lagrangian duality,
augmented Lagrangian duality always zeroes the duality gap and recovers primal solutions (when ρ is
large enough). The aim of this exercise is to prove this property for (P) and ρ = 3.
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f) Write the augmented Lagrangian and the augmented dual function θ3 (that is, θρ for ρ = 3)
associated to the dualization of x1 + x2 − 3 = 0 in problem (P). Show that θ3 can be cast as

θ3(u) = max{θ30(u), θ32(u)}

with two concave functions that we denote by θ30 and θ32 (no need to develop them explicitly).

g) Show that θ3(−1) = −5.

h) Conclude that ū = −1 minimizes θ3 and that there is no duality gap.

i) Thus solving the augmented Lagrangian dual allows us to solve the primal problem! But there is no
free lunch: what is the big disadvantage of augmented Lagrangian (versus the usual Lagrangian)?

Exercise 10 Max-cut. Consider a undirect graph whose nodes are numbered from 1 to n and edges
have weights wij ∈ R. We are interested in the max-cut problem (separating nodes into two groups
such that the sum of the weights of the cut edges is maximum).

a) For each node, we associate: xi = 1 if we put i in the first group and xi = −1 in the second group.
Model the problem as a quadratic problem under the constraints xi

2 = 1.

b) Apply the Lagrangian duality mechanism to write the dual problem. [Hint: you will need to
introduce a constraint of the type X ∈ S+

n ].

c) Observe that the dual problem is indeed convex. Show that the problem is non-degenerate, i.e.
there exists u ∈ Rn such that W/4 + Diag(u) is positive definite

d) Using the result of Exercise 8 write the dual of the dual problem. How does this bi-dual relate
with the max-cut problem ?

Exercise 11 ℓ∞-fitting as an LP. Assume we have m observations (ai, bi) ∈ Rn × R, stored as a
vector b ∈ Rm and a matrix A ∈ Rn×m (with the ai

⊤’s as lines). We would like to compute x ∈ Rn

such that Ax− b is as small as possible for the ℓ∞-norm; that is, to solve

min
x∈Rn

∥Ax− b∥∞

where ∥u∥∞ = max{|ui| , i = 1, . . . ,m} for u ∈ Rm.

a) Show that this convex optimization problem can be cast as a linear optimization problem.

b) Explicit vectors and matrices (c,G, h) to write this linear problem as the following form{
minu c⊤u
Gu ⩽ h

so that we could solve the problem by using an off-the-shelf LP solver.

c) Assume moreover that the entries of A and b are all positive. Consider now the same problem but
in logarithmic scale and with x ⩾ 0

min
x∈(R+)n

max
i=1,...,n

| log(ai⊤x)− log(bi)|.

This problem can no longer be written as a linear problem, but as a conic optimisation problem.
[Hint: positive semidefinite 2× 2-matrices come into play...].

Exercise 12 Dantzig Selector. We consider a regression model y = Aθ + ξ where the noise
is Gaussian ξ ∼ N (0, σIm). The observations are A ∈ Rm×n and y ∈ Rm; θ ∈ Rn is the unknown
parameter we wish to estimate. In the over-parameterized case (i.e., when the size n of θ is large
compared to m, the size of y), the ”Dantzig selector” consists in solving the optimization problem

min
θ∈Rn

∥θ∥1, subject to ∥A⊤(Aθ − y)∥∞ ⩽ κσ

where κ > 0 is a hyperparameter.
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a) Let e(θ) = 1/2∥Aθ − y∥22 be the quadratic error of the model. Observe that ∇e(θ) = A⊤(Aθ − y).

b) By introducing additional variables, reformulate this problem as a linear problem.

c) Construct the vectors and matrices (c,G, h) to write this linear problem in canonical form (to be
able to solve it later using an available solver)

min
x

c⊤x subject to Gx ⩽ h

Exercise 13 Proof of Von Neumann in the case of matrix games. Let e ∈ Rn be the vector of
all ones e = [1, . . . , 1]⊤ and ∆ = {x ∈ (R+)

n, e⊤x = 1} the simplex in Rn. We consider a zero-sum
matrix game with two players (P1 and P2) and a payoff matrix A ∈ Rn×n. Each player makes a choice
between n actions, randomly and independently, following their own mixed strategies (x for P1 and y
for P2). The goal of P1 is to have the expected payoff g(x, y) = x⊤Ay as large as possible while the
goal of P2 is to have it as low as possible (g1 = g and g2 = −g).

a) Recall what is a the mixed strategy. What is the interest of considering mixed strategies rather
than pure strategies ? Recall what is the payoff matrix in the case of rock-paper-scissor.

b) Show that the min-max problem can be written as the following linear problem

max
x∈∆

min
y∈∆

x⊤Ay ⇐⇒


maxt,x t
x ⩾ 0, e⊤x = 1
A⊤x ⩾ te

c) Apply Lagrangian duality to the above linear problem by dualizing two contraints: the constraint
e⊤x− 1 = 0 with a first dual variable τ ∈ R, as well as the constraint te− A⊤x ⩽ 0 with a second
dual variable u ∈ (R+)

n. [Keep the constraint x ⩾ 0; no need to dualize it.]

d) Show that the optimal values of the two following optimization problems are the same:
maxt,x t
x ⩾ 0, e⊤x = 1
A⊤x ⩾ te

=


minτ,u τ
u ⩾ 0, e⊤u = 1
Au ⩽ τe

e) Show that this gives a proof of the Von Neumann theorem in the framework of this exercice.

Exercise 14 Lagrangian decomposition for cutting-stock. The problem consists in minimizing
the number of stock pieces of width L, used to meet demands n1, . . . , nI , for items i = 1, . . . , I, to be
cut at their width l1, . . . , lI . We assume that every lj is smaller than L and that there are enough
stock pieces, say m, available for a feasible cutting. We denote by n ∈ RI (respectively l ∈ RI) the
vector of entries ni (resp. li) for all i. In the example drawn here: we have m = 500 pieces of width
L = 100 where to cut I = 4 types of items; the demand consists in different numbers of items ni with
different lengths li ⩽ 100 for the I = 4 types of items.Exemple

L = 100

l1 = 45

l2 = 36

l3 = 31

l4 = 14

n1 = 97

n2 = 610

n3 = 395

n4 = 211

m = 500

Christian Artigues (LAAS-CNRS) Décomposition pour la PLNE 6 mai 2014 29 / 1
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A possible formulation for the cutting-stock problem is the following integer linear problem:

(P)


miny,z

∑m
k=1 y

k∑m
k=1 z

k
i ⩾ ni for all i = 1, . . . , I∑I

i=1 z
k
i li ⩽ Lyk for all k = 1, . . . ,m

yk ∈ {0, 1}, zki ∈ N for all i = 1, . . . , I , k = 1, . . . ,m

a) Explain the modelling as (P) : what is the role of the variables ? and the meaning of the objective
and the constraints ?

b) Let us dualize the I demand-covering constraints
∑m

k=1 z
k
i ⩾ ni. Re-write the above problem as a

max with the course’s notation: introduce φ, c and X.

c) For a dual variable u ∈ (R+)
I , define the Lagrangian function and show that it is decomposable

with respect to k.

d) Observe then that the associated dual function, denoted by θ, can be written as the juxtaposition
of m identical max problems, that is,

θ(u) = −n⊤u+
m∑
k=1

v(u) = −n⊤u+mv(u)

where v(u) is the optimal solution of a max problem to be specified.

e) Show moreover that v(u) can be explicitly written as:

v(u) =

{
0 if u⊤z(u) ⩽ 1

u⊤z(u)− 1 otherwise

where z(u) is the optimal solution of the following integer knapsack problem, parameterized by u{
min u⊤z

l⊤z ⩽ L, z ∈ NI .

f) Discuss the complexity and the practical difficulty of computing θ(u), compared to solving (P).
Explain what would be an ”oracle” for θ providing a linearization of the (convex) function θ.

g) What does the dual optimal value correspond to, in the problem (P) ? How does it compare with the
continuous relaxation consisting in relaxing all the integrity constraints of (P) (i.e. yk ∈ [0, 1], zki ∈
[0,M ] with M an upper bound).

Exercise 15 Optimal Transport. Let a ∈ Rn
+ and b ∈ Rm

+ be two positive vectors such that∑n
i=1 ai = 1

∑m
j=1 bj = 1 (thus representing discrete probability densities). In the figure, the discrete

We want to perform optimal transport from a to b: we need
to find a matrix P = (Pij) ∈ Rn×m

+ that represents how each
ai is distributed towards the bj given associated costs Cij ⩾ 0.
This problem is formulated as

W (a, b) =


min

∑n
i=1

∑m
j=1CijPij∑m

j=1;Pij = ai, for all i = 1, . . . , n∑n
i=1;Pij = bj , for all j = 1, . . . ,m

Pij ⩾ 0 for all i = 1, . . . , n and j = 1, . . . ,m

18 Theoretical Foundations

torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X◊Y
c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X ,Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark 2.2), fi ‘æ s

cdfi is a continuous function for this topology and the con-
straint set is nonempty (for instance, – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

�

�
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�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measures with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The positive entries Ti,j are
displayed as black disks at position (i, j) with radius proportional to Ti,j .
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Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Lévy and Schwindt [2018].

distribution a ∈ R4 is in red and b ∈ R4 in blue. We have n = m = 4 with a4 ⩾ a1 ⩾ a2 ⩾ a4 and
b3 ⩾ b1 ⩾ b4 ⩾ b2. The black dots represent the non-zero coefficients of P .

a) Consider now the dualization of all constraints on rows (ai −
∑m

j=1 Pij = 0 for all i) and columns
(bj −

∑n
i=1 Pij = 0 for all j). Put the problem in the form given in the course, introduce the

associated Lagrangian, and define the dual function. We will denote the dual variables λa =
(λa

i )i = 1, . . . , n ∈ Rn and λb = (λbj)j = 1, . . . ,m ∈ Rm.
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b) Show that there is no duality gap. Deduce that

W (a, b) =

{
max a⊤λa + b⊤λb

λa
i + λb

j ⩽ Cij , for all i = 1, . . . , n and j = 1, . . . ,m

Exercise 16 Optimal Transport and Wasserstein Distance. With the notation of the previous
exercice, consider the case where n = m and C defines a distance on {1, . . . , n}, that is: Ci,j = Cj,i ⩾ 0
for all i, j; Ci,j = 0 if and only if i = j; Cij ⩽ Cik + Ckj for all i, j, k (triangle inequality). Denote
Σn = {a ∈ Rn

+ :
∑n

i=1 ai = 1} the simplex of Rn.

a) Observe that W is positive and symetric on Σn. Show also that W (a, b) = 0 ⇐⇒ a = b.

b) Fix a, b, c ∈ Σn; take P and Q optimal transport plans for W (a, b) and W (b, c) respectively. If
bi > 0 for all i, show that the matrix S = P diag(1/b1, . . . , 1/bn)Q satisfies Se = a and S⊤e = b
where e = (1, . . . , 1)⊤ is the vector of all ones.

c) Deduce that we have W (a, c) ⩽ W (a, b) +W (b, c), for all a, b, c ∈ Σn.

d) Conclude that W is a distance on Σn; it is called the Wasserstein distance.

Exercise 17 Entropy-regularized Optimal Transport. Let’s come back to the optimal transport
problem, to which we will add entropic regularization:

H(P ) =

n∑
i=1

m∑
j=1

Pij(log(Pij)− 1) (where log is the natural logarithm).

We therefore consider the problem, with ε > 0,

(P) min
P∈U(a,b)

n∑
i=1

m∑
j=1

CijPij + ε H(P )

where U(a, b) is the set of transport plans from a ∈ Rn
+ to b ∈ Rm

+ (with
∑n

i=1 ai = 1 et
∑m

j=1 bj = 1).

a) Let φ : R+→R be a function defined and continuous on R+

φ(t) =

{
t log(t) if t > 0

0 if t = 0.

Show that φ is strictly convex on R∗
+.

b) Show that φ is in fact strictly convex on all of R+. [Hint: we can observe that, for 0 < α < 1 and
t > 0, we have log(αt) < log(t).]

c) Deduce that the function H : Rn×m
+ →R is continuous and strictly convex. Show that there exists

a unique solution to (P). Let’s denote it Pε.

d) By introducing the matrix K = (Kij) ∈ Rn×m defined by Kij = exp(−Cij/ε) for all (i, j), rearrange
the objective to show1 that [Hint: use the fact that the sum of Pij is constant.]

Pε = argmin
P∈U(a,b)

n∑
i=1

m∑
j=1

Pij log(Pij/Kij).

Let’s now return to the initial problem (P) and study a dual approach to compute Pε. We will dualize
all equality constraints of U(a, b), but not the positivity constraints. The function φα : R+→R defined
for α ∈ R by

φα(t) =

{
ε t log(t) + α t if t > 0

0 if t = 0

will appear in the developments.

1Cultural note: this means that Pε can be interpreted as the projection, in the sense of Kullback-Leibler divergence,
of K (called Gibbs kernel) onto U(a, b).
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e) Reformulate (P) in the form given in class (changing the sign to have a max). Define the Lagrangian
and the dual function θ. We will denote the dual variables λa ∈ Rn and λb ∈ Rm.

f) Show that

θ(λa, λb) = −a⊤λa − b⊤λb
n∑

i=1

m∑
j=1

min
Pij⩾0

φαij (Pij)

for some αij ∈ R that you will specify.

g) Calculate the minimum on R+ of the function φα.

h) Deduce that

θ(λa, λb) = −a⊤λa − b⊤λbε
n∑

i=1

m∑
j=1

exp
(
(−Cij + λa

i + λb
j)/ε

)
Compare with the dual of the non-regularized problem (ε = 0) seen in class. Interpret the impact
of regularization on the dual.

i) Deduce that θ is differentiable and give the expressions for ∂
∂λa

i
θ(λa, λb) for all i, as well as

∂
∂λb

j

θ(λa, λb) for all j.

j) Show that the unique solution optimizing the Lagrangian, for fixed (λa, λb), is

(Pλa,λb)ij = exp
(
(−Cij + λa

i + λb
j)/ε

)
for all (i, j).

Rewrite the partial derivatives of θ at (λa, λb) in terms of Pλa,λb .

k) Write the dual problem. What do you propose for solving it numerically?

l) Assuming we have the dual solutions (λ̄a, λ̄b); show that Pλ̄a,λ̄b is feasible. Deduce that there is no
duality gap and that Pε = Pλ̄a,λ̄b .

m) Deduce the classical expression of Pε, with the matrix K from question e:

Pε = diag(exp(λ̄a/ε))K diag(exp(λ̄b/ε)).

Notation: for a vector λ, we denote by diag(exp(λ)) the diagonal matrix with coefficients exp(λi)
on the diagonal.
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