UGA MASTER1 APPLIED MATHS
JEROME MALICK — SPRING 2026

OR COMPLEMENTARY — A SELECTION OF EXERCISES

Exercise 1 — Support Functions. Let C be a subset of R"; recall that the support function of C is
oo(x) =sup z'y for x € R".
yeC

a) Show that o¢: R" - R U {400} is convex.

b) Calculate the support function for the following subsets of R™:

e C the Euclidean ball of radius 1 (draw a picture in R?);
e C' = (R™)" the positive orthant;

e C' = [a, b] the segment joining two points a and b in R".

c) Show: 0¢ = Gconv ¢+ (In words: a support function doesn’t distinguish between C' and its convex hull).

Exercise 2 — (Google) PageRank. The problem of ranking webpages is of the utmost importance for
search engines. To this end, a popular approach is to represent webpages as a graph where the nodes
are the pages themselves and the edges are the links between them (if page ¢ contains a links pointing
toward page j, there is a directed edge from node ¢ to node j in the graph). Then, a page/node has a
high score if there are many links pointing toward it, especially coming from highly ranked pages. To
fix ideas, consider the graph below of N = 5 pages.

R
ege’ of incidence matrix A =
(4

We could choose the number of incoming links, as a score: node 1 would be ranked first with 3,
nodes 2, 3,4 second with 2, 5 last with 1. The drawback of this scoring is that 2, 3, 4 have the same score
but are different in nature, as 3 is pointed by the most important page. To correct this phenomenon,
the Google founders proposed an (implicit) scoring, similar to the following.

The score z; of page i is equal to the sum over the pages j pointing toward i of the scores (x;)
divided by their number of outgoing links n;, that is,

T; = (1—0&)2% + Nzl‘j (1)

where « is a "damping” parameter in (0,1) and P; is the set of nodes pointing toward i.

oo~ OO
_ o o o
SO = O O =
OO = = O
O = O = =

a) Let € RY be the vector of the pages scores. Write the score equation (1) as a linear equation
x = Rx with R defined from the incidence matrix A.

b) Show that R'e = e, i.e. R is column-stochastic (that is, its elements are non negative and its
columns sum to ones).

c) Deduce first from b that 1 is an eigenvalue of R. Deduce also from b that [|R[| = 1 for a matrix
norm, and then that the spectral radius is p(R) = 1.

d) Conclude with Perron-Frobenuis: the vector of score x, satisfying >, z; = 1, exists and is unique.

e) For the graph above, compute the score vector and show that 3 is the most important page.



Exercise 3 — Pure Nash. What are the pure Nash equilibria of the two following games?

Player 2 Player 2
A B C A B C
a| (3,1) (2,3) (10,8) a| (3,1) (2,3) (10,2)
Player 1 b | (4,5) (3,0) (6,4) Player 1 b | (4,5) (3,0) (6,4)
cl (22 (54) (8,3) c|(22) (54) (12,3)
d| (7,6) (4,5) (54) d| (56) (4,5) (9,7

Exercise 4 — Small parametric game. Consider this game depending on the parameter x € R:

Player 2
A B
Player 1 A | (0.5,0.5) (z,1—2x)
B|(1—-=z2) (0.5 0.5)

a) What are the pure Nash equilibrium of this game, depending on z 7

b) Given (¢, 1—q) a mixed strategy for Player 2, what is the expected payoff for Player 1 if he plays A?
Same question if Player 1 plays B.

c) Following the notation of the course, let a mixed Nash equilibrium ((p*, 1—p*),(¢*1— q*)) (not
a pure one, so p* ¢ {0,1}). Show that we have: 0.5¢* + (1 — ¢*)z — (1 — x)¢* — 0.5(1 — ¢*) = 0.
Explain briefly why this makes sense and why this property is called “indifference”.

d) What are the mixed Nash equilibrium of this game, depending on z ?

Exercise 5 — Mixed Nash. Same as the previous exercise. Give the pure and mixed Nash equilibria
for the following game, depending on the parameter z € R,

Player 2
2
Player 1 A | (0.5,0.5) (0,1)
B| (1,0) (5515

Exercise 6 — Linear vs. non-linear duality. Consider the optimization problem (in R)

max p(x) ==z
x <0, ze{-21}

a) Write the dual problem associated to relaxing the contraint z < 0. Show that the duality gap is 2.

b) Solve the convexified problem (with = € [-2,1]). Show that the convexified optimal value is equal
to the optimal dual value.

c) Redo the two above questions with ¢(z) = —22. Do we get the same final equality?

Exercise 7 — Pricing for a mixed-integer problem. We consider the optimization problem in R?

min  5p; + 10ps
F(d) := pL+pe>d (Py)
p €{0,3} x [0, 1]

a) Find the optimal solution p(d), depending on d € [0,4]. Draw the graph of F.
b) Write the optimization problem as a max and introducing the Lagrangian
Lo(p;u) := —5p1 — 10p2 — u(—p1 — p2)

to dualize (FPy). Compute the optimal solution p* of maximizing the Lagrangian, depending on
u > 0. Draw the graph of the associated dual function g (u).
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c¢) Form the dual of (Py), and express the dual function §; with the help of 6. What is the minimum
of 84 for d = 27

d) Observe graphically that the dual optimal solution is the slope of the convex enveloppe of F.

Exercise 8 — Dualize other contraintes. With course notation, we consider

max ¢(x)
relX
c(x) e B

where B is a subset of R”. We assume that we have an oracle solving 0(u) := max,ec x ¢(z)—u'c(z).

a) Adding a slack variable, write the dual problem.
b) Apply the result to B = {0}, B = R’} and B the {3-ball of radius «.

Exercise 9 — Augmented Lagrangian relaxation. We start this exercice with studying the following
simple optimization problem in R?
max —T1 — 2.%2
1+ a9 =3 (P)
T € [0, 2}, T2 € {0,2}.

a) By observing that (P) reduces to the trivial problem

max -—x1—4
Ir = 1
Ty € [0’2]7

give the optimal solution and the optimal value of (P).

b) What is the optimal solution and the optimal value of the convexified problem ? (where the
constraint x5 € {0,2} is replaced by x2 € [0, 2]).

c) Write the Lagrangian and the dual function 6 associated to the dualization in (P) of the constraint
r1+x20—3=0.

d) Draw the graph of 6. Give the dual optimal solution, the dual optimal value, and the duality gap.

Let’s now turn to the general framework of the course

{ ™% cex

For a parameter p > 0, we define the augmented Lagrangian function by
LA (x5u) = p(x) — u' e(x) — plle(a)||?
and the associated augmented dual function by

0P (u) := LP(z;u).

(v) = max L (z; u)

d) Show that 67: R™ — RU{+o0} is convex. Show that for any dual variable u and any primal feasible
variable x € X such that ¢(z) = 0, we have 6°(u) > ¢(x).

e) Fix w and z(u) € X such that 6°(u) = L”(x(u);u). Prove that, if ¢(z(w)) = 0, then @ minimizes
0”7, x(u) is a primal optimal solution, and that there is no duality gap.

Augmented Lagrangians have the following nice property. Contrary to standard Lagrangian duality,
augmented Lagrangian duality always zeroes the duality gap and recovers primal solutions (when p is
large enough). The aim of this exercise is to prove this property for (P) and p = 3.



f) Write the augmented Lagrangian and the augmented dual function 63 (that is, 67 for p = 3)
associated to the dualization of 21 + 22 — 3 = 0 in problem (P). Show that 6 can be cast as
6% (u) = max{6g(u), 63 (u)}
with two concave functions that we denote by 63 and 63 (no need to develop them explicitly).
g) Show that 63(—1) = —5.
h) Conclude that @ = —1 minimizes #% and that there is no duality gap.

i) Thus solving the augmented Lagrangian dual allows us to solve the primal problem! But there is no
free lunch: what is the big disadvantage of augmented Lagrangian (versus the usual Lagrangian)?

Exercise 10 — Max-cut. Consider a undirect graph whose nodes are numbered from 1 to n and edges

have weights w;; € R. We are interested in the max-cut problem (separating nodes into two groups

such that the sum of the weights of the cut edges is maximum).

a) For each node, we associate: x; = 1 if we put ¢ in the first group and z; = —1 in the second group.
Model the problem as a quadratic problem under the constraints x;2 = 1.

b) Apply the Lagrangian duality mechanism to write the dual problem. [Hint: you will need to
introduce a constraint of the type X € S;/].

c) Observe that the dual problem is indeed convex. Show that the problem is non-degenerate, i.e.
there exists v € R™ such that W/4 + Diag(u) is positive definite

d) Using the result of Exercise 8 write the dual of the dual problem. How does this bi-dual relate
with the max-cut problem 7

Exercise 11 — /. -fitting as an LP. Assume we have m observations (a;,b;) € R™ x R, stored as a
vector b € R™ and a matrix A € R (with the a;'’s as lines). We would like to compute x € R™
such that Az — b is as small as possible for the ¢,,-norm; that is, to solve

in ||[Az — b
min [ Az — bl

where [|u||oc = max{|u;|, i =1,...,m} for u € R™.

a) Show that this convex optimization problem can be cast as a linear optimization problem.

b) Explicit vectors and matrices (¢, G, h) to write this linear problem as the following form

min, ¢ u
Gu<h

so that we could solve the problem by using an off-the-shelf LP solver.

c) Assume moreover that the entries of A and b are all positive. Consider now the same problem but
in logarithmic scale and with = > 0

min  max |log(a; ) — log(b;)].
CCE(R+)" i=1,...,n

This problem can no longer be written as a linear problem, but as a conic optimisation problem.
[Hint: positive semidefinite 2 x 2-matrices come into play...].

Exercise 12 — Dantzig Selector. We consider a regression model y = Af + & where the noise
is Gaussian & ~ N(0,01,,). The observations are A € R™*"™ and y € R™; § € R" is the unknown
parameter we wish to estimate. In the over-parameterized case (i.e., when the size n of 6 is large
compared to m, the size of y), the "Dantzig selector” consists in solving the optimization problem

;n}%gn 10]]1, subject to [|AT (A0 — )| < Ko
e n

where k > 0 is a hyperparameter.



a) Let e(#) = 1/2|| A0 — y||2 be the quadratic error of the model. Observe that Ve() = A" (A6 — y).
b) By introducing additional variables, reformulate this problem as a linear problem.

c) Construct the vectors and matrices (¢, G, h) to write this linear problem in canonical form (to be
able to solve it later using an available solver)

min ¢’z  subject to Gz < h
€T

Exercise 13 — Proof of Von Neumann in the case of matrix games. Let ¢ € R” be the vector of
all ones e = [1,...,1]" and A = {z € (R;)", e’z = 1} the simplex in R". We consider a zero-sum
matrix game with two players (P1 and P2) and a payoff matrix A € R™*". Each player makes a choice
between n actions, randomly and independently, following their own mixed strategies (x for P1 and y
for P2). The goal of P1 is to have the expected payoff g(z,y) = T Ay as large as possible while the
goal of P2 is to have it as low as possible (g1 = g and g2 = —g).

a) Recall what is a the mixed strategy. What is the interest of considering mixed strategies rather
than pure strategies 7 Recall what is the payoff matrix in the case of rock-paper-scissor.

b) Show that the min-max problem can be written as the following linear problem

maxs, ¢
maxminz' Ay < >0, ez=1
weA yeh Atz >te
=

c) Apply Lagrangian duality to the above linear problem by dualizing two contraints: the constraint
e v —1 =0 with a first dual variable 7 € R, as well as the constraint te — A"z < 0 with a second

dual variable u € (Ry)™. [Keep the constraint x > 0; no need to dualize it.]

d) Show that the optimal values of the two following optimization problems are the same:

maxy, U min;, T
x}O,eszl = u}O,eTuzl
ATz > te Au < e

e) Show that this gives a proof of the Von Neumann theorem in the framework of this exercice.

Exercise 14 — Lagrangian decomposition for cutting-stock. = The problem consists in minimizing
the number of stock pieces of width L, used to meet demands nq,...,ny, for items ¢ =1,...,1, to be
cut at their width [1,...,l;. We assume that every [; is smaller than L and that there are enough
stock pieces, say m, available for a feasible cutting. We denote by n € R’ (respectively I € RT) the
vector of entries n; (resp. ;) for all i. In the example drawn here: we have m = 500 pieces of width
L = 100 where to cut I = 4 types of items; the demand consists in different numbers of items n; with
different lengths I; < 100 for the I = 4 types of items.

m = 500

L=100 |
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A possible formulation for the cutting-stock problem is the following integer linear problem:

miny > 300, yF
(P) 2?112527% foralli=1,...,1
Zi[zlzfligLyk forall k=1,...,m

y* € {0,1}, 2FeN  foralli=1,....1, k=1,....m
a) Explain the modelling as (P) : what is the role of the variables ? and the meaning of the objective
and the constraints ?

b) Let us dualize the I demand-covering constraints > ;- 2% > n;. Re-write the above problem as a
max with the course’s notation: introduce ¢, ¢ and X.

c) For a dual variable u € (Ry)!, define the Lagrangian function and show that it is decomposable
with respect to k.

d) Observe then that the associated dual function, denoted by 6, can be written as the juxtaposition
of m identical max problems, that is,

O(u) = —n'u+ Z v(u) = —n"u+ mo(u)
k=1

where v(u) is the optimal solution of a max problem to be specified.

e) Show moreover that v(u) can be explicitly written as:

o(u) = 0 if u' z(u) <1
~ | u'z(u) =1 otherwise

where z(u) is the optimal solution of the following integer knapsack problem, parameterized by u

min  u' 2
I"2< L, e N

f) Discuss the complexity and the practical difficulty of computing 6(u), compared to solving (P).
Explain what would be an ”oracle” for # providing a linearization of the (convex) function 6.

g) What does the dual optimal value correspond to, in the problem (P) ? How does it compare with the
continuous relaxation consisting in relaxing all the integrity constraints of (P) (i.e. y* € [0,1], 2F €
[0, M] with M an upper bound).

Exercise 15 — Optimal Transport. Let a € R} and b € R be two positive vectors such that
" a;=1>""b; =1 (thus representing discrete probability densities). In the figure, the discrete
=1 =17

We want to perform optimal transport from a to b: we need

to find a matrix P = (P;;) € R}™ that represents how each [ I ‘ ®
a; is distributed towards the b; given associated costs C; = 0.
This problem is formulated as . o
: o @
min Y, Z;nzl Cij Py ¢
W(a,b) = Z;n:l;PZ-j:ai, foralli=1,...,n o L
St Pj=bj, forallj=1,...,m ' ..
Pj; >0 foralli=1,...,nand j=1,...,m

distribution ¢ € R* is in red and b € R* in blue. We have n = m = 4 with a4 > a1 > a2 > a4 and

bs = by = by > ba. The black dots represent the non-zero coefficients of P.

a) Consider now the dualization of all constraints on rows (a; — »_7"; P;; = 0 for all i) and columns
(bj = >, Pij = 0 for all j). Put the problem in the form given in the course, introduce the
associated Lagrangian, and define the dual function. We will denote the dual variables A\* =
(A)i=1,...,n € R" and \ = (\%j)j =1,...,m € R™.
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b) Show that there is no duality gap. Deduce that

W(a,b) = max a' A%+ b \P
@ %)= M4+ <Cy, foralli=1,...,nandj=1,...,m

Exercise 16 — Optimal Transport and Wasserstein Distance. With the notation of the previous

exercice, consider the case where n = m and C defines a distance on {1,...,n}, thatis: C; ; =Cj; >0

for all 4,j; C;; = 0 if and only if i = j; Ci; < Cj, + Cy; for all 4, j, k (triangle inequality). Denote

Yo ={a R} : 3" a; =1} the simplex of R".

a) Observe that W is positive and symetric on ¥,,. Show also that W(a,b) =0 <= a =0b.

b) Fix a,b,c € X,; take P and @ optimal transport plans for W (a,b) and W (b, c) respectively. If
b; > 0 for all i, show that the matrix S = P diag(1/b1,...,1/b,)Q satisfies Se = a and STe = b
where e = (1,..., 1)T is the vector of all ones.

c) Deduce that we have W(a,c) < W(a,b) + W(b,c), for all a,b,c € %,

d) Conclude that W is a distance on X,; it is called the Wasserstein distance.

Exercise 17 — Entropy-regularized Optimal Transport. Let’s come back to the optimal transport
problem, to which we will add entropic regularization:
n m
H(P) = Z Z P;j(log(P;j) — 1) (where log is the natural logarithm).
i=1 j=1

We therefore consider the problem, with ¢ > 0,

Pel(a,b) P

where U(a, ) is the set of transport plans from a € R} to b € R (with > a; = 1et 370 b = 1).
a) Let ¢: Ry — R be a function defined and continuous on R

- tlog(t) ift>0
50(’5)_{ 0 ift=0.

Show that ¢ is strictly convex on R7 .

b) Show that ¢ is in fact strictly convex on all of Ry. [Hint: we can observe that, for 0 < a < 1 and
t > 0, we have log(at) < log(t).]

c) Deduce that the function H: R}*™ — R is continuous and strictly convex. Show that there exists
a unique solution to (P). Let’s denote it P-.

d) By introducing the matrix K = (K;;) € R"*"™ defined by K;; = exp(—Cj;/¢) for all (i, j), rearrange
the objective to show! that [Hint: use the fact that the sum of Pj; is constant.]

n m
P. = argmin Z ZR-j log(Pi;/ Kij).
Let’s now return to the initial problem (P) and study a dual approach to compute P.. We will dualize
all equality constraints of U(a, b), but not the positivity constraints. The function ¢, : Ry — R defined
for a € R by
| etlog(t)+at ift>0
palt) = { 0 itt=0

will appear in the developments.

LCultural note: this means that P. can be interpreted as the projection, in the sense of Kullback-Leibler divergence,
of K (called Gibbs kernel) onto U(a,b).



e) Reformulate (P) in the form given in class (changing the sign to have a max). Define the Lagrangian
and the dual function #. We will denote the dual variables A* € R™ and A’ € R™.

f) Show that
by _ Tyb
(A, \°) = — b)\zz Iggglogo% P;j)
=1 j=1
for some «;; € R that you will specify.
g) Calculate the minimum on Ry of the function ¢,.
h) Deduce that
n m
0N, A") = —aTX* = bTAPe ) > “exp ((—Cyj + A + AD) Je)
i=1 j=1
Compare with the dual of the non-regularized problem (¢ = 0) seen in class. Interpret the impact

of regularization on the dual.

i) Deduce that 6 is differentiable and give the expressions for a)\aﬂ()\“ AP) for all i, as well as

a/\be()\“ Ab) for all 5.

j) Show that the unique solution optimizing the Lagrangian, for fixed (A%, \b), is
(Pray)ij = exp ((=Cij + A} + A5)/e)  for all (4, 7).

Rewrite the partial derivatives of 6 at (A%, A’) in terms of Pya y.
k) Write the dual problem. What do you propose for solving it numerically?

I) Assuming we have the dual solutions (A%, A\); show that Psa 5» s feasible. Deduce that there is no
duality gap and that P. = Psa 3.

m) Deduce the classical expression of P., with the matrix K from question e:
P. = diag(exp(\?/¢)) K diag(exp(A\’/e)).

Notation: for a vector A, we denote by diag(exp()\)) the diagonal matrix with coefficients exp(\;)
on the diagonal.



