

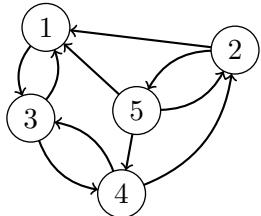
OR COMPLEMENTARY – A SELECTION OF EXERCISES

Exercise 1 – Support Functions. Let C be a subset of \mathbb{R}^n ; recall that the support function of C is

$$\sigma_C(x) = \sup_{y \in C} x^\top y \quad \text{for } x \in \mathbb{R}^n.$$

- a) Show that $\sigma_C: \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ is convex.
- b) Calculate the support function for the following subsets of \mathbb{R}^n :
 - C the Euclidean ball of radius 1 (draw a picture in \mathbb{R}^2);
 - $C = (\mathbb{R}^+)^n$ the positive orthant;
 - $C = [a, b]$ the segment joining two points a and b in \mathbb{R}^n .
- c) Show: $\sigma_C = \sigma_{\text{conv } C}$. (In words: a support function doesn't distinguish between C and its convex hull).

Exercise 2 – (Google) PageRank. The problem of ranking webpages is of the utmost importance for search engines. To this end, a popular approach is to represent webpages as a graph where the nodes are the pages themselves and the edges are the links between them (if page i contains a links pointing toward page j , there is a directed edge from node i to node j in the graph). Then, a page/node has a high score if there are many links pointing toward it, especially coming from highly ranked pages. To fix ideas, consider the graph below of $N = 5$ pages.



of incidence matrix $A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

We could choose the number of incoming links, as a score: node 1 would be ranked first with 3, nodes 2, 3, 4 second with 2, 5 last with 1. The drawback of this scoring is that 2, 3, 4 have the same score but are different in nature, as 3 is pointed by the most important page. To correct this phenomenon, the Google founders proposed an (implicit) scoring, similar to the following.

The score x_i of page i is equal to the sum over the pages j pointing toward i of the scores (x_j) divided by their number of outgoing links n_j , that is,

$$x_i = (1 - \alpha) \sum_{j \in \mathcal{P}_i} \frac{x_j}{n_j} + \frac{\alpha}{N} \sum_{j=1}^N x_j \quad (1)$$

where α is a "damping" parameter in $(0, 1)$ and \mathcal{P}_i is the set of nodes pointing toward i .

- a) Let $x \in \mathbb{R}^N$ be the vector of the pages scores. Write the score equation (1) as a linear equation $x = Rx$ with R defined from the incidence matrix A .
- b) Show that $R^\top e = e$, i.e. R is column-stochastic (that is, its elements are non negative and its columns sum to ones).
- c) Deduce first from b that 1 is an eigenvalue of R . Deduce also from b that $\|R\| = 1$ for a matrix norm, and then that the spectral radius is $\rho(R) = 1$.
- d) Conclude with Perron-Frobenius: the vector of score x , satisfying $\sum_i x_i = 1$, exists and is unique.
- e) For the graph above, compute the score vector and show that 3 is the most important page.

Exercise 3 – Pure Nash. What are the pure Nash equilibria of the two following games?

		Player 2					Player 2		
		A	B	C			A	B	C
Player 1	a	(3,1)	(2,3)	(10,8)	Player 1	a	(3,1)	(2,3)	(10,2)
	b	(4,5)	(3,0)	(6,4)		b	(4,5)	(3,0)	(6,4)
	c	(2,2)	(5,4)	(8,3)		c	(2,2)	(5,4)	(12,3)
	d	(7,6)	(4,5)	(5,4)		d	(5,6)	(4,5)	(9,7)

Exercise 4 – Small parametric game. Consider this game depending on the parameter $x \in \mathbb{R}$:

		Player 2	
		A	B
Player 1	A	(0.5,0.5)	$(x, 1-x)$
	B	$(1-x, x)$	(0.5, 0.5)

- a) What are the pure Nash equilibrium of this game, depending on x ?
- b) Given $(q, 1-q)$ a mixed strategy for Player 2, what is the expected payoff for Player 1 if he plays A? Same question if Player 1 plays B.
- c) Following the notation of the course, let a mixed Nash equilibrium $((p^*, 1-p^*), (q^*, 1-q^*))$ (not a pure one, so $p^* \notin \{0, 1\}$). Show that we have: $0.5q^* + (1-q^*)x - (1-x)q^* - 0.5(1-q^*) = 0$. Explain briefly why this makes sense and why this property is called “indifference”.
- d) What are the mixed Nash equilibrium of this game, depending on x ?

Exercise 5 – Mixed Nash. Same as the previous exercise. Give the pure and mixed Nash equilibria for the following game, depending on the parameter $x \in \mathbb{R}$,

		Player 2	
		A	B
Player 1	A	(0.5,0.5)	$(0,1)$
	B	(1,0)	$(\frac{1-x}{2}, \frac{1-x}{2})$

Exercise 6 – Linear vs. non-linear duality. Consider the optimization problem (in \mathbb{R})

$$\begin{cases} \max \varphi(x) = x \\ x \leq 0, x \in \{-2, 1\}. \end{cases}$$

- a) Write the dual problem associated to relaxing the constraint $x \leq 0$. Show that the duality gap is 2.
- b) Solve the convexified problem (with $x \in [-2, 1]$). Show that the convexified optimal value is equal to the optimal dual value.
- c) Redo the two above questions with $\varphi(x) = -x^2$. Do we get the same final equality?

Exercise 7 – Pricing for a mixed-integer problem. We consider the optimization problem in \mathbb{R}^2

$$F(d) := \begin{cases} \min 5p_1 + 10p_2 \\ p_1 + p_2 \geq d \\ p \in \{0, 3\} \times [0, 1] \end{cases} \quad (P_d)$$

- a) Find the optimal solution $p(d)$, depending on $d \in [0, 4]$. Draw the graph of F .
- b) Write the optimization problem as a max and introducing the Lagrangian

$$L_0(p; u) := -5p_1 - 10p_2 - u(-p_1 - p_2),$$

to dualize (P_0) . Compute the optimal solution p^u of maximizing the Lagrangian, depending on $u \geq 0$. Draw the graph of the associated dual function $\theta_0(u)$.

c) Form the dual of (P_d) , and express the dual function θ_d with the help of θ_0 . What is the minimum of θ_d for $d = 2$?

d) Observe graphically that the dual optimal solution is the slope of the convex enveloppe F .

Exercise 8 – Dualize other contraintes. With course notation, we consider

$$\left\{ \begin{array}{l} \max \varphi(x) \\ x \in X \\ c(x) \in B \end{array} \right.$$

where B is a subset of \mathbb{R}^n . We assume that we have an oracle solving $\theta(u) := \max_{x \in X} \varphi(x) - u^\top c(x)$.

a) Adding a slack variable, write the dual problem.

b) Apply the result to $B = \{0\}$, $B = \mathbb{R}_+^n$ and B the ℓ_2 -ball of radius ε .

Exercise 9 – Augmented Lagrangian relaxation. We start this exercice with studying the following simple optimization problem in \mathbb{R}^2

$$\left\{ \begin{array}{l} \max -x_1 - 2x_2 \\ x_1 + x_2 = 3 \\ x_1 \in [0, 2], x_2 \in \{0, 2\}. \end{array} \right. \quad (P)$$

a) By observing that (P) reduces to the trivial problem

$$\left\{ \begin{array}{l} \max -x_1 - 4 \\ x_1 = 1 \\ x_1 \in [0, 2], \end{array} \right.$$

give the optimal solution and the optimal value of (P) .

b) What is the optimal solution and the optimal value of the convexified problem ? (where the constraint $x_2 \in \{0, 2\}$ is replaced by $x_2 \in [0, 2]$).

c) Write the Lagrangian and the dual function θ associated to the dualization in (P) of the constraint $x_1 + x_2 - 3 = 0$.

d) Draw the graph of θ . Give the dual optimal solution, the dual optimal value, and the duality gap.

Let's now turn to the general framework of the course

$$\left\{ \begin{array}{l} \max \varphi(x) \\ c(x) = 0, x \in X. \end{array} \right.$$

For a parameter $\rho > 0$, we define the augmented Lagrangian function by

$$L^\rho(x; u) := \varphi(x) - u^\top c(x) - \rho \|c(x)\|^2$$

and the associated augmented dual function by

$$\theta^\rho(u) := \max_{x \in X} L^\rho(x; u).$$

d) Show that $\theta^\rho: \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ is convex. Show that for any dual variable u and any primal feasible variable $x \in X$ such that $c(x) = 0$, we have $\theta^\rho(u) \geq \varphi(x)$.

e) Fix \bar{u} and $x(\bar{u}) \in X$ such that $\theta^\rho(\bar{u}) = L^\rho(x(\bar{u}); \bar{u})$. Prove that, if $c(x(\bar{u})) = 0$, then \bar{u} minimizes θ^ρ , $x(\bar{u})$ is a primal optimal solution, and that there is no duality gap.

Augmented Lagrangians have the following nice property. Contrary to *standard* Lagrangian duality, *augmented* Lagrangian duality always zeroes the duality gap and recovers primal solutions (when ρ is large enough). The aim of this exercise is to prove this property for (P) and $\rho = 3$.

f) Write the augmented Lagrangian and the augmented dual function θ^3 (that is, θ^ρ for $\rho = 3$) associated to the dualization of $x_1 + x_2 - 3 = 0$ in problem (P). Show that θ^3 can be cast as

$$\theta^3(u) = \max\{\theta_0^3(u), \theta_2^3(u)\}$$

with two concave functions that we denote by θ_0^3 and θ_2^3 (no need to develop them explicitly).

g) Show that $\theta^3(-1) = -5$.

h) Conclude that $\bar{u} = -1$ minimizes θ^3 and that there is no duality gap.

i) Thus solving the augmented Lagrangian dual allows us to solve the primal problem! But there is no free lunch: what is the big disadvantage of augmented Lagrangian (versus the usual Lagrangian)?

Exercise 10 – Max-cut. Consider a undirect graph whose nodes are numbered from 1 to n and edges have weights $w_{ij} \in \mathbb{R}$. We are interested in the max-cut problem (separating nodes into two groups such that the sum of the weights of the cut edges is maximum).

a) For each node, we associate: $x_i = 1$ if we put i in the first group and $x_i = -1$ in the second group. Model the problem as a quadratic problem under the constraints $x_i^2 = 1$.

b) Apply the Lagrangian duality mechanism to write the dual problem. [Hint: you will need to introduce a constraint of the type $X \in \mathcal{S}_n^+$].

c) Observe that the dual problem is indeed convex. Show that the problem is non-degenerate, *i.e.* there exists $u \in \mathbb{R}^n$ such that $W/4 + \text{Diag}(u)$ is positive definite

d) Using the result of **Exercise 8** write the dual of the dual problem. How does this bi-dual relate with the max-cut problem ?

Exercise 11 – ℓ_∞ -fitting as an LP. Assume we have m observations $(a_i, b_i) \in \mathbb{R}^n \times \mathbb{R}$, stored as a vector $b \in \mathbb{R}^m$ and a matrix $A \in \mathbb{R}^{n \times m}$ (with the a_i^\top 's as lines). We would like to compute $x \in \mathbb{R}^n$ such that $Ax - b$ is as small as possible for the ℓ_∞ -norm; that is, to solve

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_\infty$$

where $\|u\|_\infty = \max\{|u_i|, i = 1, \dots, m\}$ for $u \in \mathbb{R}^m$.

a) Show that this convex optimization problem can be cast as a linear optimization problem.

b) Explicit vectors and matrices (c, G, h) to write this linear problem as the following form

$$\begin{cases} \min_u c^\top u \\ Gu \leq h \end{cases}$$

so that we could solve the problem by using an off-the-shelf LP solver.

c) Assume moreover that the entries of A and b are all positive. Consider now the same problem but in logarithmic scale and with $x \geq 0$

$$\min_{x \in (\mathbb{R}_+)^n} \max_{i=1, \dots, n} |\log(a_i^\top x) - \log(b_i)|.$$

This problem can no longer be written as a linear problem, but as a conic optimisation problem. [Hint: positive semidefinite 2×2 -matrices come into play...].

Exercise 12 – Dantzig Selector. We consider a regression model $y = A\theta + \xi$ where the noise is Gaussian $\xi \sim \mathcal{N}(0, \sigma I_m)$. The observations are $A \in \mathbb{R}^{m \times n}$ and $y \in \mathbb{R}^m$; $\theta \in \mathbb{R}^n$ is the unknown parameter we wish to estimate. In the over-parameterized case (*i.e.*, when the size n of θ is large compared to m , the size of y), the "Dantzig selector" consists in solving the optimization problem

$$\min_{\theta \in \mathbb{R}^n} \|\theta\|_1, \quad \text{subject to } \|A^\top(A\theta - y)\|_\infty \leq \kappa\sigma$$

where $\kappa > 0$ is a hyperparameter.

a) Let $e(\theta) = 1/2\|A\theta - y\|_2^2$ be the quadratic error of the model. Observe that $\nabla e(\theta) = A^\top(A\theta - y)$.

b) By introducing additional variables, reformulate this problem as a linear problem.

c) Construct the vectors and matrices (c, G, h) to write this linear problem in canonical form (to be able to solve it later using an available solver)

$$\min_x c^\top x \quad \text{subject to } Gx \leq h$$

Exercise 13 – Proof of Von Neumann in the case of matrix games. Let $e \in \mathbb{R}^n$ be the vector of all ones $e = [1, \dots, 1]^\top$ and $\Delta = \{x \in (\mathbb{R}_+)^n, e^\top x = 1\}$ the simplex in \mathbb{R}^n . We consider a zero-sum matrix game with two players (P1 and P2) and a payoff matrix $A \in \mathbb{R}^{n \times n}$. Each player makes a choice between n actions, randomly and independently, following their own mixed strategies (x for P1 and y for P2). The goal of P1 is to have the expected payoff $g(x, y) = x^\top A y$ as large as possible while the goal of P2 is to have it as low as possible ($g_1 = g$ and $g_2 = -g$).

a) Recall what is a the mixed strategy. What is the interest of considering mixed strategies rather than pure strategies ? Recall what is the payoff matrix in the case of rock-paper-scissor.

b) Show that the min-max problem can be written as the following linear problem

$$\max_{x \in \Delta} \min_{y \in \Delta} x^\top A y \iff \begin{cases} \max_{t,x} t \\ x \geq 0, e^\top x = 1 \\ A^\top x \geq t e \end{cases}$$

c) Apply Lagrangian duality to the above linear problem by dualizing two constraints: the constraint $e^\top x - 1 = 0$ with a first dual variable $\tau \in \mathbb{R}$, as well as the constraint $t e - A^\top x \leq 0$ with a second dual variable $u \in (\mathbb{R}_+)^n$. [Keep the constraint $x \geq 0$; no need to dualize it.]

d) Show that the optimal values of the two following optimization problems are the same:

$$\begin{cases} \max_{t,x} t \\ x \geq 0, e^\top x = 1 \\ A^\top x \geq t e \end{cases} = \begin{cases} \min_{\tau,u} \tau \\ u \geq 0, e^\top u = 1 \\ A u \leq \tau e \end{cases}$$

e) Show that this gives a proof of the Von Neumann theorem in the framework of this exercice.

Exercise 14 – Lagrangian decomposition for cutting-stock. The problem consists in minimizing the number of stock pieces of width L , used to meet demands n_1, \dots, n_I , for items $i = 1, \dots, I$, to be cut at their width l_1, \dots, l_I . We assume that every l_j is smaller than L and that there are enough stock pieces, say m , available for a feasible cutting. We denote by $n \in \mathbb{R}^I$ (respectively $l \in \mathbb{R}^I$) the vector of entries n_i (resp. l_i) for all i . In the example drawn here: we have $m = 500$ pieces of width $L = 100$ where to cut $I = 4$ types of items; the demand consists in different numbers of items n_i with different lengths $l_i \leq 100$ for the $I = 4$ types of items.

$m = 500$			
$L = 100$	<input type="text"/>		
$l_1 = 45$	<input type="text"/>	$n_1 = 97$	
$l_2 = 36$	<input type="text"/>	$n_2 = 610$	
$l_3 = 31$	<input type="text"/>	$n_3 = 395$	
$l_4 = 14$	<input type="text"/>	$n_4 = 211$	

A possible formulation for the cutting-stock problem is the following integer linear problem:

$$(P) \quad \begin{cases} \min_{y,z} \sum_{k=1}^m y^k \\ \sum_{k=1}^m z_i^k \geq n_i \quad \text{for all } i = 1, \dots, I \\ \sum_{i=1}^I z_i^k l_i \leq L y_k \quad \text{for all } k = 1, \dots, m \\ y^k \in \{0,1\}, z_i^k \in \mathbb{N} \quad \text{for all } i = 1, \dots, I, k = 1, \dots, m \end{cases}$$

- a)** Explain the modelling as (P) : what is the role of the variables ? and the meaning of the objective and the constraints ?
- b)** Let us dualize the I demand-covering constraints $\sum_{k=1}^m z_i^k \geq n_i$. Re-write the above problem as a max with the course's notation: introduce φ , c and X .
- c)** For a dual variable $u \in (\mathbb{R}_+)^I$, define the Lagrangian function and show that it is decomposable with respect to k .
- d)** Observe then that the associated dual function, denoted by θ , can be written as the juxtaposition of m identical max problems, that is,

$$\theta(u) = -n^\top u + \sum_{k=1}^m v(u) = -n^\top u + m v(u)$$

where $v(u)$ is the optimal solution of a max problem to be specified.

- e)** Show moreover that $v(u)$ can be explicitly written as:

$$v(u) = \begin{cases} 0 & \text{if } u^\top z(u) \leq 1 \\ u^\top z(u) - 1 & \text{otherwise} \end{cases}$$

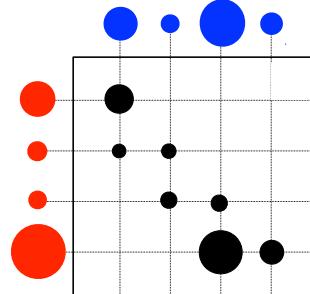
where $z(u)$ is the optimal solution of the following integer knapsack problem, parameterized by u

$$\begin{cases} \min u^\top z \\ l^\top z \leq L, z \in \mathbb{N}^I. \end{cases}$$

- f)** Discuss the complexity and the practical difficulty of computing $\theta(u)$, compared to solving (P). Explain what would be an "oracle" for θ providing a linearization of the (convex) function θ .
- g)** What does the dual optimal value correspond to, in the problem (P) ? How does it compare with the continuous relaxation consisting in relaxing all the integrality constraints of (P) (i.e. $y^k \in [0,1]$, $z_i^k \in [0, M]$ with M an upper bound).

Exercise 15 – Optimal Transport. Let $a \in \mathbb{R}_+^n$ and $b \in \mathbb{R}_+^m$ be two positive vectors such that $\sum_{i=1}^n a_i = 1$ $\sum_{j=1}^m b_j = 1$ (thus representing discrete probability densities). In the figure, the discrete We want to perform optimal transport from a to b : we need to find a matrix $P = (P_{ij}) \in \mathbb{R}_+^{n \times m}$ that represents how each a_i is distributed towards the b_j given associated costs $C_{ij} \geq 0$. This problem is formulated as

$$W(a, b) = \begin{cases} \min \sum_{i=1}^n \sum_{j=1}^m C_{ij} P_{ij} \\ \sum_{j=1}^m P_{ij} = a_i, \quad \text{for all } i = 1, \dots, n \\ \sum_{i=1}^n P_{ij} = b_j, \quad \text{for all } j = 1, \dots, m \\ P_{ij} \geq 0 \quad \text{for all } i = 1, \dots, n \text{ and } j = 1, \dots, m \end{cases}$$



distribution $a \in \mathbb{R}^4$ is in red and $b \in \mathbb{R}^4$ in blue. We have $n = m = 4$ with $a_4 \geq a_1 \geq a_2 \geq a_3$ and $b_3 \geq b_1 \geq b_4 \geq b_2$. The black dots represent the non-zero coefficients of P .

- a)** Consider now the dualization of all constraints on rows ($a_i - \sum_{j=1}^m P_{ij} = 0$ for all i) and columns ($b_j - \sum_{i=1}^n P_{ij} = 0$ for all j). Put the problem in the form given in the course, introduce the associated Lagrangian, and define the dual function. We will denote the dual variables $\lambda^a = (\lambda_i^a)_{i=1, \dots, n} \in \mathbb{R}^n$ and $\lambda^b = (\lambda_j^b)_{j=1, \dots, m} \in \mathbb{R}^m$.

b) Show that there is no duality gap. Deduce that

$$W(a, b) = \begin{cases} \max \quad a^\top \lambda^a + b^\top \lambda^b \\ \lambda_i^a + \lambda_j^b \leq C_{ij}, \quad \text{for all } i = 1, \dots, n \text{ and } j = 1, \dots, m \end{cases}$$

Exercise 16 – Optimal Transport and Wasserstein Distance. With the notation of the previous exercice, consider the case where $n = m$ and C defines a distance on $\{1, \dots, n\}$, that is: $C_{i,j} = C_{j,i} \geq 0$ for all i, j ; $C_{i,j} = 0$ if and only if $i = j$; $C_{ij} \leq C_{ik} + C_{kj}$ for all i, j, k (triangle inequality). Denote $\Sigma_n = \{a \in \mathbb{R}_+^n : \sum_{i=1}^n a_i = 1\}$ the simplex of \mathbb{R}^n .

- a)** Observe that W is positive and symmetric on Σ_n . Show also that $W(a, b) = 0 \iff a = b$.
- b)** Fix $a, b, c \in \Sigma_n$; take P and Q optimal transport plans for $W(a, b)$ and $W(b, c)$ respectively. If $b_i > 0$ for all i , show that the matrix $S = P \text{diag}(1/b_1, \dots, 1/b_n)Q$ satisfies $Se = a$ and $S^\top e = b$ where $e = (1, \dots, 1)^\top$ is the vector of all ones.
- c)** Deduce that we have $W(a, c) \leq W(a, b) + W(b, c)$, for all $a, b, c \in \Sigma_n$.
- d)** Conclude that W is a distance on Σ_n ; it is called the Wasserstein distance.

Exercise 17 – Entropy-regularized Optimal Transport. Let's come back to the optimal transport problem, to which we will add entropic regularization:

$$H(P) = \sum_{i=1}^n \sum_{j=1}^m P_{ij}(\log(P_{ij}) - 1) \quad (\text{where log is the natural logarithm}).$$

We therefore consider the problem, with $\varepsilon > 0$,

$$(P) \quad \min_{P \in \mathcal{U}(a, b)} \quad \sum_{i=1}^n \sum_{j=1}^m C_{ij} P_{ij} + \varepsilon H(P)$$

where $\mathcal{U}(a, b)$ is the set of transport plans from $a \in \mathbb{R}_+^n$ to $b \in \mathbb{R}_+^m$ (with $\sum_{i=1}^n a_i = 1$ et $\sum_{j=1}^m b_j = 1$).

- a)** Let $\varphi: \mathbb{R}_+ \rightarrow \mathbb{R}$ be a function defined and continuous on \mathbb{R}_+

$$\varphi(t) = \begin{cases} t \log(t) & \text{if } t > 0 \\ 0 & \text{if } t = 0. \end{cases}$$

Show that φ is strictly convex on \mathbb{R}_+^* .

- b)** Show that φ is in fact strictly convex on all of \mathbb{R}_+ . [Hint: we can observe that, for $0 < \alpha < 1$ and $t > 0$, we have $\log(\alpha t) < \log(t)$.]
- c)** Deduce that the function $H: \mathbb{R}_+^{n \times m} \rightarrow \mathbb{R}$ is continuous and strictly convex. Show that there exists a unique solution to (P). Let's denote it P_ε .
- d)** By introducing the matrix $K = (K_{ij}) \in \mathbb{R}^{n \times m}$ defined by $K_{ij} = \exp(-C_{ij}/\varepsilon)$ for all (i, j) , rearrange the objective to show¹ that [Hint: use the fact that the sum of P_{ij} is constant.]

$$P_\varepsilon = \operatorname{argmin}_{P \in \mathcal{U}(a, b)} \quad \sum_{i=1}^n \sum_{j=1}^m P_{ij} \log(P_{ij}/K_{ij}).$$

Let's now return to the initial problem (P) and study a dual approach to compute P_ε . We will dualize all equality constraints of $\mathcal{U}(a, b)$, but not the positivity constraints. The function $\varphi_\alpha: \mathbb{R}_+ \rightarrow \mathbb{R}$ defined for $\alpha \in \mathbb{R}$ by

$$\varphi_\alpha(t) = \begin{cases} \varepsilon t \log(t) + \alpha t & \text{if } t > 0 \\ 0 & \text{if } t = 0 \end{cases}$$

will appear in the developments.

¹Cultural note: this means that P_ε can be interpreted as the projection, in the sense of Kullback-Leibler divergence, of K (called Gibbs kernel) onto $\mathcal{U}(a, b)$.

e) Reformulate (P) in the form given in class (changing the sign to have a max). Define the Lagrangian and the dual function θ . We will denote the dual variables $\lambda^a \in \mathbb{R}^n$ and $\lambda^b \in \mathbb{R}^m$.

f) Show that

$$\theta(\lambda^a, \lambda^b) = -a^\top \lambda^a - b^\top \lambda^b \sum_{i=1}^n \sum_{j=1}^m \min_{P_{ij} \geq 0} \varphi_{\alpha_{ij}}(P_{ij})$$

for some $\alpha_{ij} \in \mathbb{R}$ that you will specify.

g) Calculate the minimum on \mathbb{R}_+ of the function φ_α .

h) Deduce that

$$\theta(\lambda^a, \lambda^b) = -a^\top \lambda^a - b^\top \lambda^b \varepsilon \sum_{i=1}^n \sum_{j=1}^m \exp((-C_{ij} + \lambda_i^a + \lambda_j^b)/\varepsilon)$$

Compare with the dual of the non-regularized problem ($\varepsilon = 0$) seen in class. Interpret the impact of regularization on the dual.

i) Deduce that θ is differentiable and give the expressions for $\frac{\partial}{\partial \lambda_i^a} \theta(\lambda^a, \lambda^b)$ for all i , as well as $\frac{\partial}{\partial \lambda_j^b} \theta(\lambda^a, \lambda^b)$ for all j .

j) Show that the unique solution optimizing the Lagrangian, for fixed (λ^a, λ^b) , is

$$(P_{\lambda^a, \lambda^b})_{ij} = \exp((-C_{ij} + \lambda_i^a + \lambda_j^b)/\varepsilon) \quad \text{for all } (i, j).$$

Rewrite the partial derivatives of θ at (λ^a, λ^b) in terms of P_{λ^a, λ^b} .

k) Write the dual problem. What do you propose for solving it numerically?

l) Assuming we have the dual solutions $(\bar{\lambda}^a, \bar{\lambda}^b)$; show that $P_{\bar{\lambda}^a, \bar{\lambda}^b}$ is feasible. Deduce that there is no duality gap and that $P_\varepsilon = P_{\bar{\lambda}^a, \bar{\lambda}^b}$.

m) Deduce the classical expression of P_ε , with the matrix K from question e:

$$P_\varepsilon = \text{diag}(\exp(\bar{\lambda}^a/\varepsilon)) K \text{diag}(\exp(\bar{\lambda}^b/\varepsilon)).$$

Notation: for a vector λ , we denote by $\text{diag}(\exp(\lambda))$ the diagonal matrix with coefficients $\exp(\lambda_i)$ on the diagonal.