A pure dual approach for hedging Bermudan options

Aurélien Alfonsi, Ahmed Kebarier, Jérôme Lelong

Univ. Grenoble Alpes, LJK

Meeting on Quant Finance, Pisa May 7, 2024

Computing Bermudan options prices

- A discrete time (discounted) payoff process (Z_k)_{0≤k≤N} adapted to (F_k)_{0≤k≤N}. max_{0≤k≤N} |Z_k| ∈ L^p, p > 1.
- The time- T_k discounted value of the Bermudan option is given by

$$U_k = ext{esssup}_{\tau \in \mathcal{T}_k} \mathbb{E}[Z_{\tau} | \mathcal{F}_k]$$

where \mathcal{T}_k is the set of all \mathcal{F} - stopping times with values in $\{k, k+1, \ldots, N\}$.

From the Snell enveloppe theory, we derive the standard dynamic programming algorithm

(1)
$$\begin{cases} U_N = Z_N \\ U_k = \max\left(Z_k, \mathbb{E}[U_{k+1}|\mathcal{F}_k]\right) \end{cases}$$

The dual formulation of the price (1)

- The option price represents the value of the hedge portfolio. This is pointless if we do not know how to build the portfolio
- ▶ Dual representation (Rogers [2010, 2002], Haugh and Kogan [2004])

(2)
$$U_n = \inf_{M \in \mathbb{H}^p} \mathbb{E} \left[\max_{n \le j \le N} \{ Z_j - (M_j - M_n) \} \middle| \mathcal{F}_n \right]$$

where \mathbb{H}^p is the set of \mathcal{F} -martingales that are L^2 integrable.

From the Doob-Meyer decomposition

$$U_n = U_0 + M_n^\star - A_n^\star$$

where $M^* \in \mathbb{H}^p$ vanishes at 0 and A^* is a predictable, nondecreasing and L^p -integrable process.

▶ M^* solves (2) and $U_n = \max_{n \le j \le N} \{Z_j - (M_j^* - M_n^*)\}$ (almost surely optimal martingales).

The dual formulation as an hedging portfolio

- Let $M \in \mathbb{H}^p$ be a martingale such that $M_0 = 0$ and $V_0 = \mathbb{E}[\max_{0 \le n \le N} \{Z_n M_n\}] \ge U_0.$
- ► $V_0 + M_n$ can be interpreted as the value at time *n* of a self-financing portfolio
- We can prove that $\mathbb{E}[|Z_{\tau^{\star}} (V_0 + M_{\tau^{\star}})|^p]^{1/p} \le 3\mathbb{E}[|M_N^{\star} M_N|^p]^{1/p}.$
- As noticed by Rogers, if M^* is tradable, it is a perfect hedge.
- The dual problem is convex and admits many solutions. See Schoenmakers et al. [2013] for the characterization of almost surely optimal martingales.
- How to approximate M^* ? \Rightarrow Find a new dual representation.

The excess reward representation (1)

With
$$\Delta M_n = M_n - M_{n-1}$$
,

$$\max_{0 \le j \le N} \{Z_j - (M_j - M_0)\}$$

$$= Z_N - (M_N - M_0) + \sum_{n=0}^{N-1} \max_{n \le j \le N} \{Z_j - M_j\} - \max_{n+1 \le j \le N} \{Z_j - M_j\}$$

$$= Z_N - (M_N - M_0) + \sum_{n=0}^{N-1} \max_{n \le j \le N} \{Z_j - (M_j - M_n)\} - \max_{n+1 \le j \le N} \{Z_j - (M_j - M_n)\}$$

$$= Z_N - (M_N - M_0) + \sum_{n=0}^{N-1} \left(Z_n + \Delta M_{n+1} - \max_{n+1 \le j \le N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)_+.$$

The excess reward representation (2)

By taking expectation,

$$\mathbb{E}\left[\max_{0\leq j\leq N} \{Z_j - (M_j - M_0)\}\right]$$

= $\mathbb{E}[Z_N] + \sum_{n=0}^{N-1} \mathbb{E}\left[\left(Z_n + \Delta M_{n+1} - \max_{n+1\leq j\leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)_+\right].$

For $M = M^*$, the red terms represents the values of having the right to exercise the option at time $n \in \{0, ..., N-1\}$.

A sequence of optimization problems (1)

Introduce

 $\mathcal{H}_n^p = \{ Y \in \mathbb{L}^p(\Omega) : Y \text{ is real valued}, \mathcal{F}_n - \text{mesurable and } \mathbb{E}[Y|\mathcal{F}_{n-1}] = 0 \}.$

It is tempting to solve backward from n = N - 1 to n = 0

$$\inf_{\Delta M_{n+1}\in\mathcal{H}_{n+1}^{p}} \mathbb{E}\left[\left(Z_{n} + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_{j} - \sum_{i=n+2}^{j} \Delta M_{i}\right\}\right)_{+}\right]$$

However, the non strict convexity of the positive part raises some issues in the back propagation of the minimisation problems.

A sequence of optimization problems (2)

Theorem

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a convex function such that $|\varphi(x)| \leq C(1+|x|^p)$. Then,

$$\mathbb{E}[Z_N] + \sum_{n=0}^{N-1} \mathbb{E}\left[\varphi\left(Z_n + \Delta M_{n+1} - \max_{n+1 \le j \le N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)\right]$$

$$\geq \mathbb{E}[Z_N] + \sum_{n=0}^{N-1} \mathbb{E}\left[\varphi\left(Z_n + \Delta M_{n+1}^{\star} - \max_{n+1 \le j \le N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i^{\star}\right\}\right)\right],$$

and M^* is a solution of the following problems for $n = N - 1, \ldots, 0$

(4)
$$\inf_{\Delta M_{n+1} \in \mathcal{H}_{n+1}^p} \mathbb{E}\left[\varphi\left(Z_n + \Delta M_{n+1} - \max_{n+1 \le j \le N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)\right].$$

When φ is strictly convex, M^* is the unique solution of (4).

Our theoretical algorithm

• Take
$$p = 2, \phi(x) = x^2$$

- Some a finite dimensional linear subspace *H^{pr}_n* of *H²_n*.
- So For n = N 1 to n = 0, use an optimisation algorithm to minimise

$$\inf_{\Delta M_{n+1} \in \mathcal{H}_{n+1}^{pr}} \mathbb{E}\left[\left(Z_n + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{ Z_j - \sum_{i=n+2}^j \Delta M_i \right\} \right)^2 \right].$$

 ΔM_{n+1} solves a classical least square problem.

Two approximations are needed:

- Use a finite dimensional subspace of \mathcal{H}_n^{pr}
- **2** Approximate \mathbb{E} by Monte-Carlo.

Finite dimensional subspace approximation

We assume that the subspaces \mathcal{H}_n , $1 \le n \le N$, are spanned by $L \in \mathbb{N}^*$ martingale increments $\Delta X_{n,\ell} \in \mathcal{H}_n^2$, $1 \le \ell \le L$:

$$\mathcal{H}_n^{pr} = \left\{ \alpha \cdot \Delta X_n : \alpha \in \mathbb{R}^L \right\}.$$

The minimisation problem becomes

$$\inf_{\alpha \in \mathbb{R}^{L}} \mathbb{E}\left[\left(Z_{n} + \alpha \cdot \Delta X_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_{j} - \sum_{i=n+2}^{j} \Delta M_{i}\right\}\right)^{2}\right]$$

Monte Carlo approximation

Let Q > 0. For $1 \le q \le Q$, $(Z_n^q)_{1 \le n \le N}$ and $(\Delta X_n^q)_{1 \le n \le N}$ be independent sample paths of the underlying process Z and martingale increments ΔX . Solve backward in time, the sequence of optimisation problems

$$\inf_{\alpha \in \mathbb{R}^L} \frac{1}{Q} \sum_{q=1}^{Q} \left(Z_n^q + \alpha \cdot \Delta X_{n+1}^q - \max_{n+1 \le j \le N} \left\{ Z_j^q - \sum_{i=n+2}^j \alpha_i^Q \cdot \Delta X_i^q \right\} \right)^2$$

Since the problem is strictly convex, it has a unique solution α_{n+1}^Q given by

$$\left(\sum_{q=1}^{Q} \Delta X_{n+1}^q (\Delta X_{n+1}^q)^T\right) \alpha_{n+1}^Q = \sum_{q=1}^{Q} \max_{n+1 \le j \le N} \left\{ Z_j^q - \sum_{i=n+2}^j \alpha_i^Q \cdot \Delta X_i^q \right\} \Delta X_{n+1}^q.$$

Convergence results

Proposition

Assume that for $1 \le n \le N$, the matrix $\mathbb{E}[\Delta X_n \Delta X_n^T]$ is invertible. Then,

For all
$$n \in \{1, \ldots, N\}$$
, $\alpha_n^Q \to \alpha_n$ when $Q \to \infty$ a.s.

If we assume moreover that ΔX_i and Z_i have finite moments of order 4, then $\left(\sqrt{Q}(\alpha_n^Q - \alpha_n)\right)_{Q \ge 1}$ and $\left(\sqrt{Q}\left(U_0^Q - \mathbb{E}\left[\max_{0 \le j \le N}\left\{Z_j - \sum_{i=1}^j \alpha_i \cdot \Delta X_i\right\}\right]\right)\right)_{Q \ge 1}$ are tight.

The financial framework (1)

- A market with d assets $(S_t^k, t \ge 0), k \in \{1, \dots, d\}$ and $(\mathcal{G}_t, t \ge 0)$ their usual filtration.
- For simplicity the interest rate *r* is deterministic
- Assume that the discounted assets $(\tilde{S}_t^k, t \ge 0)$ with $\tilde{S}_t^k = e^{-rt} S_t^k$ are square integrable \mathcal{G}_t -martingales.
- Consider a time horizon T > 0 and a Bermudan option with regular exercising dates

$$T_i=rac{iT}{N},\ i=0,\ldots,N.$$

The financial framework (2)

As perfect hedging is hung up to a martingale representation theorem, we further split each interval $[T_i, T_{i+1}]$ for $0 \le i \le N - 1$ into \overline{N} regular sub-intervals, and we set

(5)
$$t_{i,j} = T_i + \frac{j}{\bar{N}} \frac{T}{N}, \text{ for } 0 \le j \le \bar{N}.$$

Consider a family of functions $u_p : \mathbb{R}^d \to \mathbb{R}$ for $p \in \{1, \dots, \overline{P}\}$ and a family of discounted assets $(\mathcal{A}^k)_{1 \le k \le \overline{d}}$. Then, we define the following elementary martingale increments:

(6)
$$X_{t_{i,j}}^{p,k} - X_{t_{i,j-1}}^{p,k} = u_{i,j-1}^p (S_{t_{i,j-1}}) (\mathcal{A}_{t_{i,j}}^k - \mathcal{A}_{t_{i,j-1}}^k),$$

for $1 \le p \le \overline{P}$ and $1 \le k \le \overline{d}$. Thus, $L = \overline{N} \times \overline{P} \times \overline{d}$ is the number of martingale increments between two exercising dates that span \mathcal{H}_i^{pr} .

The financial framework (3)

Decompose the martingale increments ΔM_{i+1} , $0 \le i \le N - 1$ as follows

(7)
$$\Delta M_{i+1} = \sum_{j=1}^{\bar{N}} \sum_{p,k} \alpha_{i,j}^{p,k} (X_{t_{i,j}}^{p,k} - X_{t_{i,j-1}}^{p,k}).$$

There are $L = \overline{N} \times \overline{P} \times \overline{d}$ coefficients to estimate Between two exercising dates, the option is European and using the martingale property we can easily show that the coefficients on every sub-intervals can be computed independently.

The use of subticks induces a linear computational cost: instead of solving a linear system of size $L = \overline{N} \times \overline{P} \times \overline{d}$, we solve \overline{N} linear systems of size $\overline{P} \times \overline{d}$.

Main results and algorithm 0000000

Numerical experiments

$$U_0^{\mathcal{Q}} = \frac{1}{\mathcal{Q}} \sum_{q=1}^{\mathcal{Q}} \max_{0 \le j \le N} \left\{ Z_j^q - \sum_{i=1}^j \alpha_i^{\mathcal{Q}} \cdot \Delta X_i^q \right\}.$$

Because of overfitting, U_0^Q can significantly underestimate $\mathbb{E}\left[\max_{0 \le j \le N} \left\{Z_j - \sum_{i=1}^j \alpha_i \cdot \Delta X_i\right\}\right]$ when Q is not sufficiently large, compared to the number of parameters to estimate.

$$\hat{U}_0^Q = \frac{1}{Q} \sum_{q=1}^Q \max_{0 \le j \le N} \left\{ \hat{Z}_j^q - \sum_{i=1}^j \alpha_i^Q \cdot \Delta \hat{X}_i^q \right\},\,$$

where $(\hat{Z}^q, \Delta \hat{X}^q)_{1 \le q \le Q}$ is independent from the sample $(Z^q, \Delta X^q)_{1 \le q \le Q}$ used to compute α^Q .

 \hat{U}_0^Q has a nonnegative biais. The difference $\hat{U}_0^Q - U_0^Q$ is a measure of the accuracy.

Comparison with Rogers' approach

Rogers directly solves

$$U_0 = \inf_{M \in \mathbb{H}^2} \mathbb{E} \left[\max_{0 \leq j \leq N} \{ Z_j - (M_j - M_0) \}
ight]$$

with $M_j = \lambda \frac{\partial}{\partial S_{t_j}} \tilde{P}(t_j, S_{t_j})$, for $\lambda \in \mathbb{R}$.

Rogers uses the continuous time European hedge.

The 1-dimensional put option

Consider a 1-dimensional put options in the Black Scholes models

Q	\bar{N}	Р	Vanilla	U_0^Q	\hat{U}_0^Q
50000	1	1	True	9.91	9.91
100000	1	50	True	9.89	9.91
100000	1	50	False	10.32	10.33
100000	5	50	False	9.99	10.08
100000	10	100	False	9.82	10.19
500000	10	100	False	9.95	10.02
2000000	10	50	False	9.98	9.98
2000000	20	50	False	9.94	9.96

Table: Prices for a put option using a basis of *P* local functions with $K = S_0 = 100, T = 0.5, r = 0.06, \sigma = 0.4$ and N = 10 exercising dates. LS price with a polynomial approximation of order 6: 9.90.

The 1-dimensional put option

Empirical distribution of $\left(\hat{U}_{0}^{Q} + \sum_{i=1}^{\hat{\tau}^{\star}} \alpha_{i}^{Q} \cdot \Delta \hat{X}_{i}^{q} - \hat{Z}_{\hat{\tau}^{\star}}^{q}\right)_{1 \le q \le Q}$

Figure: P&L histograms of the hedging strategy for the Bermudan Put option for the stock only strategy.

The 1-dimensional put option

Figure: $\bar{N} = 1, P = 50, Q = 10^5$.

Figure: P&L histograms of the hedging strategy for the Bermudan Put option for the strategy using extra European options.

Main results and algorithm

A butterfly option

$$\Psi(S) = 2\left(\frac{K_1 + K_2}{2} - S\right)_+ - (K_1 - S)_+ - (K_2 - S)_+.$$

Using the European butterfly to hedge the Bermudan options gives a price way too high: 6.49 vs 5.65 (Longstaff Schwartz price)

Q	\bar{N}	Р	Vanilla	P^Q	\hat{P}^Q
50000	1	50	False	6.54	6.54
50000	1	50	True	6.25	6.28
100000	10	50	False	5.97	6.00
100000	10	50	True	5.79	5.87
500000	20	50	False	5.86	5.87
500000	20	50	True	5.71	5.74

Table: Prices for a butterfly option with parameters using a basis of P local functions. The Longstaff-Schwartz algorithm with order 5 polynomials gives a price of 5.65.

Main results and algorithm 0000000

The butterfly option

Figure: P&L histograms of the hedging strategy for the Bermudan Butterfly option obtained with $\bar{N} = 20$, P = 50, $Q = 5 \times 10^5$ for the stock only strategy (left) and the strategy using extra European options (right).

A basket option on 3 assets

Q	\bar{N}	Р	Vanilla	U_0^Q	\hat{U}^Q_0
2000000	1	10	False	4.35	4.37
2000000	1	10	True	4.20	4.25
5000000	5	10	False	4.15	4.19
5000000	5	10	True	4.08	4.16
10000000	10	10	False	4.12	4.16
1000000	10	10	True	4.07	4.15

Table: Prices for a basket put option in dimension d = 3 using a basis of local functions with $K = S_0 = 100$, T = 1, r = 0.05, $\sigma^i = 0.2$, $\rho = 0.3$ and 10 exercising dates. The Longstaff Schwartz algorithm with a polynomial approximation of order 3 gives 4.03.

Conclusion

The key ingredients:

- ▶ The reward excess representation: a new dual formula.
- Strictly convexifying the optimisation problem: an algorithm to approximate M^{*}.
- The use of sub-intervals and European options in the Bermudan portfolio.

We can compute a practical hedging strategy and its cost.

Bibliography

- Martin B. Haugh and Leonid Kogan. Pricing American options: a duality approach. *Oper. Res.*, 52(2):258–270, 2004. ISSN 0030-364X,1526-5463. doi: 10.1287/opre.1030.0070. URL https://doi.org/10.1287/opre.1030.0070.
- L. C. G. Rogers. Monte Carlo valuation of American options. *Math. Finance*, 12(3):271–286, 2002.
- L. C. G. Rogers. Dual valuation and hedging of Bermudan options. *SIAM J. Financial Math.*, 1: 604–608, 2010.
- J. Schoenmakers, J. Zhang, and J. Huang. Optimal dual martingales, their analysis, and application to new algorithms for Bermudan products. *SIAM Journal on Financial Mathematics*, 4(1):86–116, 2013.