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Computing Bermudan options prices

▶ A discrete time (discounted) payoff process (Zk)0≤k≤N adapted to
(Fk)0≤k≤N . max0≤k≤N |Zk| ∈ Lp, p > 1.

▶ The time-Tk discounted value of the Bermudan option is given by

Uk = esssupτ∈Tk
E[Zτ |Fk]

where Tk is the set of all F− stopping times with values in
{k, k + 1, . . . ,N}.

▶ From the Snell enveloppe theory, we derive the standard dynamic
programming algorithm

(1)

{
UN = ZN

Uk = max (Zk,E[Uk+1|Fk])
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The dual formulation of the price (1)
▶ The option price represents the value of the hedge portfolio. This is

pointless if we do not know how to build the portfolio
▶ Dual representation (Rogers [2010, 2002], Haugh and Kogan [2004])

Un = inf
M∈Hp

E
[
max

n≤j≤N
{Zj − (Mj − Mn)}

∣∣∣∣Fn

]
(2)

where Hp is the set of F-martingales that are L2 integrable.
▶ From the Doob-Meyer decomposition

(3) Un = U0 + M⋆
n − A⋆

n ,

where M⋆ ∈ Hp vanishes at 0 and A⋆ is a predictable, nondecreasing
and Lp-integrable process.

▶ M⋆ solves (2) and Un = maxn≤j≤N{Zj − (M⋆
j − M⋆

n )} (almost surely
optimal martingales).
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The dual formulation as an hedging portfolio

▶ Let M ∈ Hp be a martingale such that M0 = 0 and
V0 = E[max0≤n≤N{Zn − Mn}] ≥ U0.

▶ V0 + Mn can be interpreted as the value at time n of a self-financing
portfolio

▶ We can prove that E[|Zτ⋆ − (V0 + Mτ⋆)|p]1/p ≤ 3E[|M⋆
N − MN |p]1/p.

▶ As noticed by Rogers, if M⋆ is tradable, it is a perfect hedge.
▶ The dual problem is convex and admits many solutions. See

Schoenmakers et al. [2013] for the characterization of almost surely
optimal martingales.

▶ How to approximate M⋆? ⇒ Find a new dual representation.
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The excess reward representation (1)

With ∆Mn = Mn − Mn−1,

max
0≤j≤N

{Zj − (Mj − M0)}

= ZN − (MN − M0) +

N−1∑
n=0

max
n≤j≤N

{Zj − Mj} − max
n+1≤j≤N

{Zj − Mj}

= ZN − (MN − M0) +

N−1∑
n=0

max
n≤j≤N

{Zj − (Mj − Mn)} − max
n+1≤j≤N

{Zj − (Mj − Mn)}

= ZN − (MN − M0) +

N−1∑
n=0

(
Zn +∆Mn+1 − max

n+1≤j≤N

{
Zj −

j∑
i=n+2

∆Mi

})
+

.
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The excess reward representation (2)

By taking expectation,

E
[
max

0≤j≤N
{Zj − (Mj − M0)}

]

= E[ZN ] +

N−1∑
n=0

E

(Zn +∆Mn+1 − max
n+1≤j≤N

{
Zj −

j∑
i=n+2

∆Mi

})
+

.
For M = M⋆, the red terms represents the values of having the right to
exercise the option at time n ∈ {0, . . . ,N − 1}.
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A sequence of optimization problems (1)

Introduce

Hp
n = {Y ∈ Lp(Ω) : Y is real valued, Fn − mesurable and E[Y|Fn−1] = 0}.

It is tempting to solve backward from n = N − 1 to n = 0

inf
∆Mn+1∈Hp

n+1

E

(Zn +∆Mn+1 − max
n+1≤j≤N

{
Zj −

j∑
i=n+2

∆Mi

})
+

 .

However, the non strict convexity of the positive part raises some issues in
the back propagation of the minimisation problems.
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A sequence of optimization problems (2)
Theorem
Let φ : R → R be a convex function such that |φ(x)| ≤ C(1 + |x|p). Then,

E[ZN ] +

N−1∑
n=0

E

[
φ

(
Zn +∆Mn+1 − max

n+1≤j≤N

{
Zj −

j∑
i=n+2

∆Mi

})]

≥ E[ZN ] +

N−1∑
n=0

E

[
φ

(
Zn +∆M⋆

n+1 − max
n+1≤j≤N

{
Zj −

j∑
i=n+2

∆M⋆
i

})]
,

and M⋆ is a solution of the following problems for n = N − 1, . . . , 0

(4) inf
∆Mn+1∈Hp

n+1

E

[
φ

(
Zn +∆Mn+1 − max

n+1≤j≤N

{
Zj −

j∑
i=n+2

∆Mi

})]
.

When φ is strictly convex, M⋆ is the unique solution of (4).
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Our theoretical algorithm

1 Take p = 2, ϕ(x) = x2

2 For each n ∈ {1, . . . ,N}, choose a finite dimensional linear subspace
Hpr

n of H2
n.

3 For n = N − 1 to n = 0, use an optimisation algorithm to minimise

inf
∆Mn+1∈Hpr

n+1

E

(Zn +∆Mn+1 − max
n+1≤j≤N

{
Zj −

j∑
i=n+2

∆Mi

})2 .

∆Mn+1 solves a classical least square problem.

Two approximations are needed:
1 Use a finite dimensional subspace of Hpr

n

2 Approximate E by Monte-Carlo.
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Finite dimensional subspace approximation

We assume that the subspaces Hn, 1 ≤ n ≤ N, are spanned by L ∈ N∗

martingale increments ∆Xn,ℓ ∈ H2
n, 1 ≤ ℓ ≤ L:

Hpr
n =

{
α ·∆Xn : α ∈ RL} .

The minimisation problem becomes

inf
α∈RL

E

(Zn + α ·∆Xn+1 − max
n+1≤j≤N

{
Zj −

j∑
i=n+2

∆Mi

})2 .
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Monte Carlo approximation

Let Q > 0. For 1 ≤ q ≤ Q, (Zq
n)1≤n≤N and (∆Xq

n)1≤n≤N be independent
sample paths of the underlying process Z and martingale increments ∆X.
Solve backward in time, the sequence of optimisation problems

inf
α∈RL

1
Q

Q∑
q=1

(
Zq

n + α ·∆Xq
n+1 − max

n+1≤j≤N

{
Zq

j −
j∑

i=n+2

αQ
i ·∆Xq

i

})2

.

Since the problem is strictly convex, it has a unique solution αQ
n+1 given by

 Q∑
q=1

∆Xq
n+1(∆Xq

n+1)
T

αQ
n+1 =

Q∑
q=1

max
n+1≤j≤N

{
Zq

j −
j∑

i=n+2

αQ
i ·∆Xq

i

}
∆Xq

n+1.
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Convergence results

Proposition

Assume that for 1 ≤ n ≤ N, the matrix E[∆Xn∆XT
n ] is invertible. Then,

▶ For all n ∈ {1, . . . ,N}, αQ
n → αn when Q → ∞ a.s.

▶ UQ
0 = 1

Q

∑Q
q=1 max0≤j≤N

{
Zq

j −
∑j

i=1 α
Q
i ·∆Xq

i

}
→

E
[
max0≤j≤N

{
Zj −

∑j
i=1 αi ·∆Xi

}]
a.s.

If we assume moreover that ∆Xi and Zi have finite moments of order 4, then(√
Q(αQ

n − αn)
)

Q≥1 and(√
Q
(

UQ
0 − E

[
max0≤j≤N

{
Zj −

∑j
i=1 αi ·∆Xi

}]))
Q≥1

are tight.
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The financial framework (1)

▶ A market with d assets (Sk
t , t ≥ 0), k ∈ {1, . . . , d} and (Gt, t ≥ 0) their

usual filtration.
▶ For simplicity the interest rate r is deterministic
▶ Assume that the discounted assets (S̃k

t , t ≥ 0) with S̃k
t = e−rtSk

t are
square integrable Gt-martingales.

▶ Consider a time horizon T > 0 and a Bermudan option with regular
exercising dates

Ti =
iT
N
, i = 0, . . . ,N.
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The financial framework (2)

As perfect hedging is hung up to a martingale representation theorem, we
further split each interval [Ti,Ti+1] for 0 ≤ i ≤ N − 1 into N̄ regular
sub-intervals, and we set

(5) ti,j = Ti +
j
N̄

T
N
, for 0 ≤ j ≤ N̄.

Consider a family of functions up : Rd → R for p ∈ {1, . . . , P̄} and a family
of discounted assets (Ak)1≤k≤d̄. Then, we define the following elementary
martingale increments:

(6) Xp,k
ti,j

− Xp,k
ti,j−1 = up

i,j−1(Sti,j−1)(Ak
ti,j

−Ak
ti,j−1

),

for 1 ≤ p ≤ P̄ and 1 ≤ k ≤ d̄. Thus, L = N̄ × P̄ × d̄ is the number of
martingale increments between two exercising dates that span Hpr

i .
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The financial framework (3)

Decompose the martingale increments ∆Mi+1, 0 ≤ i ≤ N − 1 as follows

∆Mi+1 =

N̄∑
j=1

∑
p,k

αp,k
i,j (X

p,k
ti,j

− Xp,k
ti,j−1).(7)

There are L = N̄ × P̄ × d̄ coefficients to estimate
Between two exercising dates, the option is European and using the
martingale property we can easily show that the coefficients on every
sub-intervals can be computed independently.

The use of subticks induces a linear computational cost: instead of solving a
linear system of size L = N̄ × P̄ × d̄, we solve N̄ linear systems of size
P̄ × d̄.
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Numerical experiments

UQ
0 =

1
Q

Q∑
q=1

max
0≤j≤N

{
Zq

j −
j∑

i=1

αQ
i ·∆Xq

i

}
.

Because of overfitting, UQ
0 can significantly underestimate

E
[
max0≤j≤N

{
Zj −

∑j
i=1 αi ·∆Xi

}]
when Q is not sufficiently large,

compared to the number of parameters to estimate.

ÛQ
0 =

1
Q

Q∑
q=1

max
0≤j≤N

{
Ẑq

j −
j∑

i=1

αQ
i ·∆X̂q

i

}
,

where (Ẑq,∆X̂q)1≤q≤Q is independent from the sample (Zq,∆Xq)1≤q≤Q

used to compute αQ.

ÛQ
0 has a nonnegative biais. The difference ÛQ

0 − UQ
0 is a measure of the

accuracy.
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Comparison with Rogers’ approach

Rogers directly solves

U0 = inf
M∈H2

E
[
max

0≤j≤N
{Zj − (Mj − M0)}

]
with Mj = λ ∂

∂Stj
P̃(tj, Stj), for λ ∈ R.

Rogers uses the continuous time European hedge.
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The 1-dimensional put option

Consider a 1-dimensional put options in the Black Scholes models

Q N̄ P Vanilla UQ
0 ÛQ

0

50000 1 1 True 9.91 9.91
100000 1 50 True 9.89 9.91
100000 1 50 False 10.32 10.33
100000 5 50 False 9.99 10.08
100000 10 100 False 9.82 10.19
500000 10 100 False 9.95 10.02

2000000 10 50 False 9.98 9.98
2000000 20 50 False 9.94 9.96

Table: Prices for a put option using a basis of P local functions with
K = S0 = 100, T = 0.5, r = 0.06, σ = 0.4 and N = 10 exercising dates.
LS price with a polynomial approximation of order 6: 9.90.

J. Lelong (Univ. Grenoble Alpes, LJK) May 7, 2024 18 / 24



Introduction Main results and algorithm Numerical experiments

The 1-dimensional put option
Empirical distribution of

(
ÛQ

0 +
∑τ̂⋆

i=1 α
Q
i ·∆X̂q

i − Ẑq
τ̂⋆

)
1≤q≤Q

6 4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

(a) N̄ = 5, P = 50, Q = 105.
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(b) N̄ = 10, P = 50, Q = 2 × 106.

Figure: P&L histograms of the hedging strategy for the Bermudan Put
option for the stock only strategy.
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The 1-dimensional put option

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure: N̄ = 1, P = 50, Q = 105.

Figure: P&L histograms of the hedging strategy for the Bermudan Put
option for the strategy using extra European options.
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A butterfly option

Ψ(S) = 2
(

K1 + K2

2
− S
)

+

− (K1 − S)+ − (K2 − S)+ .

Using the European butterfly to hedge the Bermudan options gives a price
way too high: 6.49 vs 5.65 (Longstaff Schwartz price)

Q N̄ P Vanilla PQ P̂Q

50000 1 50 False 6.54 6.54
50000 1 50 True 6.25 6.28

100000 10 50 False 5.97 6.00
100000 10 50 True 5.79 5.87
500000 20 50 False 5.86 5.87
500000 20 50 True 5.71 5.74

Table: Prices for a butterfly option with parameters using a basis of P local
functions. The Longstaff-Schwartz algorithm with order 5 polynomials gives
a price of 5.65.
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The butterfly option
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Figure: P&L histograms of the hedging strategy for the Bermudan Butterfly
option obtained with N̄ = 20, P = 50, Q = 5 × 105 for the stock only
strategy (left) and the strategy using extra European options (right).
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A basket option on 3 assets

Q N̄ P Vanilla UQ
0 ÛQ

0

2000000 1 10 False 4.35 4.37
2000000 1 10 True 4.20 4.25
5000000 5 10 False 4.15 4.19
5000000 5 10 True 4.08 4.16
10000000 10 10 False 4.12 4.16
10000000 10 10 True 4.07 4.15

Table: Prices for a basket put option in dimension d = 3 using a basis of
local functions with K = S0 = 100, T = 1, r = 0.05, σi = 0.2, ρ = 0.3 and
10 exercising dates. The Longstaff Schwartz algorithm with a polynomial
approximation of order 3 gives 4.03.
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Conclusion

The key ingredients:
▶ The reward excess representation: a new dual formula.
▶ Strictly convexifying the optimisation problem: an algorithm to

approximate M⋆.
▶ The use of sub-intervals and European options in the Bermudan

portfolio.
We can compute a practical hedging strategy and its cost.

J. Lelong (Univ. Grenoble Alpes, LJK) May 7, 2024 24 / 24



References

Bibliography

Martin B. Haugh and Leonid Kogan. Pricing American options: a duality approach. Oper. Res.,
52(2):258–270, 2004. ISSN 0030-364X,1526-5463. doi: 10.1287/opre.1030.0070. URL
https://doi.org/10.1287/opre.1030.0070.

L. C. G. Rogers. Monte Carlo valuation of American options. Math. Finance, 12(3):271–286,
2002.

L. C. G. Rogers. Dual valuation and hedging of Bermudan options. SIAM J. Financial Math., 1:
604–608, 2010.

J. Schoenmakers, J. Zhang, and J. Huang. Optimal dual martingales, their analysis, and
application to new algorithms for Bermudan products. SIAM Journal on Financial
Mathematics, 4(1):86–116, 2013.

J. Lelong (Univ. Grenoble Alpes, LJK) May 7, 2024 1 / 1

https://doi.org/10.1287/opre.1030.0070

	Introduction
	Main results and algorithm
	Numerical experiments
	Appendix
	References


