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General Framework

Letu: x € RY — u(x) € RY, be a continuous function defined as an
expectation.

Assumeu is untractable. We can only accasap to a measurement error,
i.e. u(x) + e(x), wheres(x) is a random noise.

Hypothesis 1 (convexity)
I x € RY u(x*) = 0andvx € RY, x # x*, (x—Xx*) - u(x) > 0. }

Remark: if uis the gradient of a strictly convex function, thesatisfies
Hypothesis 1.

Problem: How to find the root ofu ?
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Asymptotic properties of Truncated S.A.

The General Framework
A standard stochastic algorithm

/U

A standard stochastic algorithm

We define forXy € RY

Xnt1 = Xn — ’Yn+lU(Xn) — Yn+10Mnt1.

o (6Mp)n measurement error, supposed to be a martingale increment.
@ m>0 mM\0 Y=o and > 42 < cc.

Theorem 1 (Robbins Monro)

Assume Hypothesis 1 and that

v, E[[[u(Xn) + 6Maya|* |Fa] < K(L+ [%]?)

then, the sequence (1) converges a.s*to x

1)
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Truncated stochastic algorithm

Truncated stochastic algorithmintuitive approach

@ Consider an increasing sequence of compact(qu)§ such that
Ur:o K = R4,
@ Prevent the algorithm from blowing up:
o DrawX,, s according to the Robbins-Monro dynamics.
o “Project” (or truncate) it on tdCo,,.

At each stepX, should remain in a given compact set. If such is not the
case, reset the algorithm and consider a larger compact set.

1[Chen and Zhu, 1986]
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Truncated stochastic algorithm
; ;

Truncated stochastic algorithm: mathematical approach

o Consider an increasing sequence of compact(sfe,bas

K =RY and Vj, Kj & int(Kjt1) .- )

(@:

0

o ForXp € Ko andog = 0, we defingX,),, and(oy),,

Xn+% = Xn — Ynr1U(Xn) = Ynr10Mny 1,
if Xn-‘,—% S /an Xn+1 = Xn-‘,—% and Ont1 = On, (3)
if Xn_,’_% %Ko-n Xn+1:X0 and O'n+1:0'n+1.
on counts the number of truncations up to time

o Fn=0X; kK< n).

; ;
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N

It is often more convenient to rewrite (3) as follows

Xnr1 = Xn = Mn2U(Xn) = ¥0+20Mni1 + YniaPnia 4)
——
Newton algorithm noise term truncation term

standard Robbins Monro algorithm

where

U(Xn) + 5Mn+1 + L(XO - Xn) if Xn+% ¢ ICo‘nv

In+1

Pra = 0 otherwise.

@ 0Mp is a martingale increment,
@ pn is the truncation term.
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a.s convergence of truncated algorithms

Theorem 2

Assume that
o there exists a unique™s.t. Ux*) = 0andV x # x*, u(x) - (x—x*) > 0.

@ Y = o0.
o Forall g > 0, the seriesy ", Yn+10Mny1lgx,—x | <qy CONVErges almost
surely.

Then, the sequen¢,),, converges a.s. to»and moreover the sequence
(on),, Is a.s. finite (i.e. for n large enough p= 0 a.s.).

v
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A.s convergence

a.s convergence of truncated algorithms

o P(os < o0) = 1. But, we don't know if the sequendge ), is
bounded.

o Assumeu(x) = E(U(x,Z)) with Z ar.v.. We can define
OMny1 = U(Xn, Zny1) — U(Xn)

n
Mn = Z YiOMiLg)x_y—x||<a}s
i=1

n
(Min = > APEOMIOM|F-1) L, <a)s

i=1

I{Mnl* < Z’Y. sup E(|U(x2)|?).

i=1  Ix=x*[I<a
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a.s convergence of truncated algorithms

Theorem 3

Assume that
o there exists a uniques.t. Ux*) = 0andV x # x*, u(x) - (x— x*) > 0.

@ Y m=ocandd 2 < oco.
o The function x— E(||U(X, Z)||2) is bounded on any compact sets.

Then, the sequenc,),, converges a.s. toor any sequence of compact
sets satisfying (2) and moreover the sequepgg, is a.s. finite (i.e. for n
large enough p=0a.s.).
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A.s convergence

Averaging version

Assume that the step sequence is of the fogra-
For anyt > 0, we introduce

(n+l with1/2 < a < 1.

n+ I_t/’YnJ
Z X;. (5)
where
Theorem 4

Under the assumptions of Theorem 2, the sequ¥p(& converges a.s. to*
for any t> 0 and any sequence of compact sets satisfying (2).
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Convergence rate
I I

Why we cannot deduce a CLT for truncated S.A. from the
CLT for Standard S.A.

@ The number of truncations is a.s. finite but a priori not badd

Yw € A, P(A) = 1,3IN(w),¥Vn > N(w), pn(w) = 0.

@ Nisr.v. a.s. finite buhot bounded. Hence, one cannot use a time shift
argument.

@ Random time shifting does not preserve convergence irlaision.

; ;
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Convergence Rate |

We are interested in the convergence of the renormalisedétecentred
about their limit

Hypothesis 2

Hypothesis on function u

o There exists a functionyR® — RY*9 satisfying

limyx—o [[Y(X)|| = 0 and a symmetric definite positive matrix A such
that

u(x) = A(X — X*) + y(x = X*)(x — X*).
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Convergence rate

Convergence Rate I
Hypothesis 3
o There exist two real numbers> 0 andn > 0 such that
K = SUpE (||5Mn||2+p 1{||Xn71—X*||S77}) < 69
n
@ There exists a symmetric definite positive maitisuch that

E (MndM|Fa-1) L{jx0 roxt [l <n} —— -

n—oo

Hypothesis 4

There existg > 0such thatyn > 0 d(x*, 9KC,) > p.
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Convergence Rate Il

Theorem 5

For v, = (n+1)a with 1/2 < o < 1and under Hypotheses 1, 2, 3 and 4, trle
sequence\(t) converges in distribution to a normally distributed rando
variable with mear® and variance

~ 1

Vo latmat A2(e™M—1)V+ VA 2(e A1)
t

t2

where
o0
V= / e Ay e Aldu.
0

;
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Convergence rate

Remarks on the hypotheses

@ Hypothesis 3 is a local assumption.

o The local integrability of| 0Ma||*** can be replaced by a condition on
lU(x, Z)||*** for xin a neighbourhood of*. Some kind of Lindeberg’s
condition.

o convergence of the hook of the martingale.

@ Hypothesis 4 is a technical condition for the proof. In pi@stno
chance thax* is on the border of one th,.
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N

Scheme of the proof

We introduce

Xy — X*
An = )
n \/’%

An(t) can be rewritten

N[t/ )

ZAﬁ

An(t) = \/_

Sincey, =

= (n+1 with o < 1, \/Ai7n ~
Hence,

N[t/ )

:% ; Aini.

To prove Theorem 5, one needs to characterise the limitimgfa
(An, -+, At |t/ )- = Need of a functional result.
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A functional CLT for Chen’s algorithm |

For any integer& andn, we define

n+k—1
Sk= Y % Withs,o=0.

i=n

For each fixedh > 0, S, = (shk)k>0 defines a discretisation grid {0, co)
with decreasing step Sizg.«.

$,1 n,2 Sn,p

We defineAn(-) as the piecewise constant interpolatior{ Af, ), on the
grid S,. More precisely,

Ap(0) = An and Ap(t) = Apskif t € [Shk, Sokrt)- (6)

;
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A functional CLT for Chen’s algorithm |l
Xn(+) is defined similarly. We also introdud#,(.)

n+k
Wh(0) =0 and Wa(t) = > AidMi ift€ [k Skrn).  (7)
i=n+1

Theorem 6

Assume the Hypotheses of Theorem 5.

(An(+), Wh(+)) =B, (A,W) on any finite time interval

whereA is a stationary Ornstein Uhlenbeck process of initial lAi0, V)
and W a Wiener process®Y—measurable with covariance matrix.

» scheme of the proof

;
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Presentation of the problem

Monte Carlo computation |
We consider a diffusiolY on a probability spacé?, A, P)

dyy = Yrdt+ O'(t, Yt)dw, (8)
S = %
whereW is a standard Brownian motion aada deterministic volatility

function.
We want to compute

P=E(eTy(Y,0<t<T)).

Most of the time, there is no explicit solution of (8).

LetO=ty <ty <--- <ty =T beatimegrid, an&the discretisation 08
on the grid.P can be approximated by

P_E (e—rT (Y, ,m) . ©)
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Presentation of the problem

Monte Carlo computation Il

@ Using standard discretisation schemes, it is quite easyetdret
YNy, - .., Yy,) can be expressed in terms of the Brownian increments.
Equation (9) has an equivalent form

P=E(4(G)) (10)
whereG is ad—dimensional Gaussian vector with identity covariance
matrix.

o Expectation in (10) will be computed using Monte Carlo siatigins.
The challenge is to improve the convergence of the MonteoCarl
procedure.

@ We focus on Importance Sampling.
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The importance sampling based strategy

Importance Sampling |

An elementary change of variables in the expectation esdblehange the
mean ofG to obtain

P=E <¢(G +X) e—X'G—¥> (11)

for anyx € RY.

X 2 . .
o {Xx=¢(G+X) e %014 ;x € RY} is of constant expectation.
o Find the parametee* that minimises VaiXy).
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The importance sampling based strategy

Importance Sampling Il

The variances, is given by
S0~ £ (0(G +7e 2 1) — 5 (s(@pe e,

@ S is strictly convex and differentiable without any partiaul
assumptions o,

@ x* is also defined as the unique root@s;

VS(x) =E ((x - G)p(G)? e—X'G+%'2> =E(U(x,G)).
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Procedure
UseX, defined by Equation (3) to approximatewith

U(x,G) = (x - G)p(G)2e *C+ 4"

Theorem 7

If there existss > 0 such thafE |¢(G)|*" < o, the sequenceXt) defined
by (5) converges a.s. td for any t> 0.

v

Corollary 8

Under the hypotheses of Theoren{X,(t)), (the averaging version ofX
converges a.s. to>for any t> 0.

The convergence holds for any increasing sequence of cdrs@scK; )J..
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Procedure

Algorithm 1 (sequential algorithm).Let n be the number of samples used
for the Monte Carlo computation.

1. Draw a first set of samples following the law of Gto computestimate
of x*, either by usingX;)i<n (see Equation (3)) ofXi)i<n (see
Equation (5)). Denote the computed estimatiorkby

2. Draw a second set of n samples following the law of G indeparafeéhe
first set to compute

IIXII2

Z¢G.+x X-Gi—

Standard CLT fofX)n.
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Procedure

Algorithm 2 (adaptive algorithm).Let n be the number of samples used for
the Monte Carlo computation.
ForeachiinO,...,n—1,do

1. draw a sample ¢; according to the law of G and independent of
{G;i <i},
2. computeri; defined by

1 G [
3 +—¢(Gi+l+xi>e_x4'el+l_ 2,

e h L |

3. compute X1 using Equation (3).
(3n)n satisfies a CLT for martingale arrays.
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Numerical results

Atlas Option

Consider a basket of 16 stocks. At maturity time, remove theks with the
three best and the three worst performances. It pays offoldf3he average
of the remaining stocks.

basket size : 16
maturity time : 10
interest rate : 0.02
volatility : 0.2
step size : 1
Sample Number : 10000 (standard MC)
5000 (importance sampling)
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Figure: Approximation ofx* with
averaging

Figure: Approximation ofx* without
averaging
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Figure: Evolution of the standard Monte Figure: Evolution of the Monte Carlo
Carlo simulation simulation with importance sampling
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Basket Option
Payoff

().

option size 5

strike 200

initial value 50 40 60 30 55
maturity 1

volatility 0.2

interest rate  0.05
correlation 0.8

payoff coefficients 1 1 1 1 1

step size 0.01

Sample Number 5000
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Basket Option

Figure: Approximation ofx* with Figure: Approximation ofx* without
averaging averaging
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Figure:Importance Sampling coupled

Figure: Standard Monte Carlo With MC
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Basket Option
:
Figure: Importance Sampling + Monte Figure: Averaging Importance Sampling
Carlo (not coupled) with MC

The variance is divided by 10 compared with standard MontéoCa
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Basket Option

Robustness of averaging algorithms

We consider the previous example and compare the convergéiite
averaging and non-averaging version of the truncated ithgofor a fixed
number of iterations. We extract the first component of thi. dr

— gamma=00:
— gamma=0 1
—— gamma=05
L L L I

4e3 8e3 1263 1603 2063 2403 1ed 2e4 3e4 4e4

Figure: Robustness of the averaging Figure: (Non) robustness of the non
algorithm averaging algorithm
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Basket Option

Limiting distribution
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Figure: density of the averaging estimate  Figure: density of the non-averaging
of x* for the Atlas option estimate oik* for the Atlas option
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Tightness
Random Time shifting

major steps of the proof

Ay is tight inR.
Use a localisation technique to prove thstine o 1 [ An(t)[)n is tight.

©

Prove a Donsker Theorem for martingales increm@EED
An(-) satisfies Aldous’ criteria =D

(Wh(-), An())n is tightinD x D and converges in law tON, A) where
W is a Wiener process with respect to the smallesalgebra that
measure$W(-), A(-)) with covariance matrix andA is the stationary
solution of

©

dA() = —QA(t)dt— dW(t).
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/U

Donsker’s Theorem for martingales increments

Theorem 9

Let (Mn(t)), be a sequence of martingales. Assume that
(Mn(+)), is tight inD and satisfies & —tightness criteria.

~

o (Ma(1),,
o (My(t))n is a uniformly square integrable family for each t.
° (Mo —t

Then, M(-) == BM.

Wi (t) satisfies Theorem 9.
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Tightness inR

@ A sequence of real valued r.V; is said to be tight if

Ve >0, 3K, P(|Yn]<K)>1-¢ V¥n>0.

@ If such a condition holds, then from any subsequence onexteaceéa
further subsequence which converges in distribution.

o Conversely, any weak converging sequence is tight.

@ See [Billingsley, 1968] for details on convergence of piuiliy
measures.
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Tightness in Skorokhod'’s space

@ Aldous’ criteria:Vn >0, Ve >0, 30< < 1suchthat

lim supsup{[F’(HXn(r) —Xn(S)|| = n); Sandr s.t.in[0, 1], } <e.
n

S<T<(S+0)AL

@ if (Xq(+)) satisfies Aldous’ criteria an@|Xs(t)]| .. ), is tightinR, then
Xn(+) is tight inD[0, 1].
@ Kolmogorov's criteria ¢ — tightnessa > 0,3 > 0, V(t,s) € [0, 1]?

E([|Xa(t) = Xa(8)]|”) < r[t— 87

if (Xn(-)) satisfies Kolmogorov’s criteria andXa(t)| ), is tightinR,
then(Xy(+)) is tightD[0, 1] and any converging subsequence converges
in distribution to a continuous process.
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Random Time shifting

N

Random Time shifting

Let 7 andr’ be 2 independent r.v. of0, 1} with parameter 12.
We set
Xn:= (=) — 7).

7 — 7' is symmetric. HenceX, is constant in law.
E(eXr) = R« (=)™ (r—7 ),
E(eiu —1)””7) + E(eiu(—l)”“(r—l))) ,

(
(1 4 UYL U () 1) :
(

NI BMRERDNIE

Ly ),

Hence,(Xn+-)n does not converge in distribution.
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/i

Billingsley, P. (1968).
Convergence of Probability Measures
Wiley, New York.

Chen, H. and Zhu, Y. (1986).
Stochastic Approximation Procedure with randomly varying
truncations
Scientia Sinica Series.
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