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General Framework

Let u: x ∈ Rd 7−→ u(x) ∈ Rd, be a continuous function defined as an
expectation.
Assumeu is untractable. We can only accessu up to a measurement error,
i.e. u(x) + ε(x), whereε(x) is a random noise.

Hypothesis 1 (convexity)

∃! x⋆ ∈ Rd, u(x⋆) = 0 and∀x ∈ Rd, x 6= x⋆, (x− x⋆) · u(x) > 0.

Remark: if u is the gradient of a strictly convex function, thenu satisfies
Hypothesis 1.

Problem: How to find the root ofu ?
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A standard stochastic algorithm

A standard stochastic algorithm

We define forX0 ∈ Rd

Xn+1 = Xn − γn+1u(Xn) − γn+1δMn+1. (1)

(δMn)n measurement error, supposed to be a martingale increment.

γn > 0, γn ց 0,
∑
γn = ∞ and

∑
γ2

n <∞.

Theorem 1 (Robbins Monro)

Assume Hypothesis 1 and that

∀n, E[‖u(Xn) + δMn+1‖2 |Fn] ≤ K(1 + ‖Xn‖2)

then, the sequence (1) converges a.s. to x⋆.
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Truncated stochastic algorithm

Truncated stochastic algorithm1: intuitive approach

Consider an increasing sequence of compact sets(Kj)j such that
⋃∞

j=0 Kj = Rd.

Prevent the algorithm from blowing up:
Draw Xn+ 1

2
according to the Robbins-Monro dynamics.

“Project” (or truncate) it on toKσn .

At each step,Xn should remain in a given compact set. If such is not the
case, reset the algorithm and consider a larger compact set.

1[Chen and Zhu, 1986]
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+ x⋆

Kσn

Kσn+1

+ Xn+X0
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2
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Truncated stochastic algorithm

Truncated stochastic algorithm: mathematical approach

Consider an increasing sequence of compact sets(Kj)j

∞⋃

j=0

Kj = Rd and ∀j, Kj  int(Kj+1) . (2)

ForX0 ∈ K0 andσ0 = 0, we define(Xn)n and(σn)n







Xn+ 1
2

= Xn − γn+1u(Xn) − γn+1δMn+1,

if Xn+ 1
2
∈ Kσn Xn+1 = Xn+ 1

2
and σn+1 = σn,

if Xn+ 1
2
/∈ Kσn Xn+1 = X0 and σn+1 = σn + 1.

(3)

σn counts the number of truncations up to timen.

Fn = σ(Xk; k ≤ n).
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Truncated stochastic algorithm

It is often more convenient to rewrite (3) as follows

Xn+1 = Xn − γn+1u(Xn)
︸ ︷︷ ︸

Newton algorithm

− γn+1δMn+1
︸ ︷︷ ︸

noise term
︸ ︷︷ ︸

standard Robbins Monro algorithm

+ γn+1pn+1
︸ ︷︷ ︸

truncation term

(4)

where

pn+1 =

{

u(Xn) + δMn+1 + 1
γn+1

(X0 − Xn) if Xn+ 1
2
/∈ Kσn,

0 otherwise.

δMn is a martingale increment,

pn is the truncation term.
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a.s convergence of truncated algorithms

Theorem 2

Assume that

there exists a unique x⋆ s.t. u(x⋆) = 0 and∀ x 6= x⋆, u(x) · (x− x⋆) > 0.
∑

n γn = ∞.

For all q > 0, the series
∑

n γn+1δMn+11{‖Xn−x⋆‖≤q} converges almost
surely.

Then, the sequence(Xn)n converges a.s. to x⋆ and moreover the sequence
(σn)n is a.s. finite (i.e. for n large enough pn = 0 a.s.).
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A.s convergence

a.s convergence of truncated algorithms
P(σ∞ <∞) = 1. But, we don’t know if the sequence(σn)n is
bounded.
Assumeu(x) = E(U(x,Z)) with Z a r.v.. We can define

δMn+1 = U(Xn,Zn+1) − u(Xn)

with (Zn)n
i.i.d.∼ Z.

Mn =

n∑

i=1

γiδMi1{‖Xi−1−x⋆‖≤q},

〈M〉n =

n∑

i=1

γ2
i E(δMiδM

′
i |Fi−1)1{‖Xi−1−x⋆‖≤q},

‖〈M〉n‖2 ≤
n∑

i=1

γ2
i sup
‖x−x⋆‖≤q

E(‖U(x,Z)‖2
).
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a.s convergence of truncated algorithms

Theorem 3

Assume that

there exists a unique x⋆ s.t. u(x⋆) = 0 and∀ x 6= x⋆, u(x) · (x− x⋆) > 0.
∑

n γn = ∞ and
∑

n γ
2
n <∞.

The function x7−→ E(‖U(x,Z)‖2
) is bounded on any compact sets.

Then, the sequence(Xn)n converges a.s. to x⋆ for any sequence of compact
sets satisfying (2) and moreover the sequence(σn)n is a.s. finite (i.e. for n
large enough pn = 0 a.s.).
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A.s convergence

Averaging version

Assume that the step sequence is of the formγn = γ
(n+1)α with 1/2< α < 1.

For anyt > 0, we introduce

X̂n(t) =
γn

t

n+⌊t/γn⌋∑

i=n

Xi . (5)

where

Theorem 4

Under the assumptions of Theorem 2, the sequenceX̂n(t) converges a.s. to x⋆

for any t> 0 and any sequence of compact sets satisfying (2).
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Why we cannot deduce a CLT for truncated S.A. from the
CLT for Standard S.A.

The number of truncations is a.s. finite but a priori not bounded.

∀ω ∈ A,P(A) = 1, ∃N(ω), ∀n> N(ω), pn(ω) = 0.

N is r.v. a.s. finite butnot bounded. Hence, one cannot use a time shift
argument.

Random time shifting does not preserve convergence in distribution.

Jérôme Lelong (INRIA) Thursday January 24th, 2008 15 / 40



The General Framework
Convergence results

Application to variance reduction

Asymptotic properties of Truncated S.A.

Convergence results

Convergence rate

Convergence Rate I

We are interested in the convergence of the renormalised iterates centred
about their limit

∆̂n(t) =
X̂n(t) − x⋆

√
γn

.

Hypothesis 2

Hypothesis on function u

There exists a function y: Rd → Rd×d satisfying
lim‖x‖→0 ‖y(x)‖ = 0 and a symmetric definite positive matrix A such
that

u(x) = A(x− x⋆) + y(x− x⋆)(x− x⋆).
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Convergence Rate II

Hypothesis 3

There exist two real numbersρ > 0 andη > 0 such that

κ = sup
n
E
(

‖δMn‖2+ρ 1{‖Xn−1−x⋆‖≤η}

)

<∞.

There exists a symmetric definite positive matrixΣ such that

E (δMnδM
′
n|Fn−1) 1{‖Xn−1−x⋆‖≤η}

P−−−→
n→∞

Σ.

Hypothesis 4

There existsµ > 0 such that∀n ≥ 0 d(x⋆, ∂Kn) > µ.
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Convergence Rate III

Theorem 5

For γn = γ
(n+1)α with 1/2< α < 1 and under Hypotheses 1, 2, 3 and 4, the

sequencê∆n(t) converges in distribution to a normally distributed random
variable with mean0 and variance

V̂ =
1
t
A−1ΣA−1 +

A−2(e−At − I)V + VA−2(e−At − I)
t2

where

V =

∫ ∞

0
e−AuΣe−Audu.
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Remarks on the hypotheses

Hypothesis 3 is a local assumption.

The local integrability of‖δMn‖
2+ρ can be replaced by a condition on

‖U(x, Z)‖2+ρ for x in a neighbourhood ofx⋆. Some kind of Lindeberg’s
condition.

convergence of the hook of the martingale.

Hypothesis 4 is a technical condition for the proof. In practice, no
chance thatx⋆ is on the border of one theKn.
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Convergence rate

Scheme of the proof
We introduce

∆n =
Xn − x⋆

√
γn

.

∆̂n(t) can be rewritten

∆̂n(t) =

√
γn

t

n+⌊t/γn⌋∑

i=n

∆i
√
γi .

Sinceγn = γ
(n+1)α with α < 1,

√
γiγn ∼ γi .

Hence,

∆̂n(t) =
1
t

n+⌊t/γn⌋∑

i=n

∆iγi .

To prove Theorem 5, one needs to characterise the limiting law of
(∆n, · · · ,∆n+⌊t/γn⌋). =⇒ Need of a functional result.
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A functional CLT for Chen’s algorithm I

For any integersk andn, we define

sn,k =

n+k−1∑

i=n

γi with sn,0 = 0.

For each fixedn> 0,Sn = (sn,k)k≥0 defines a discretisation grid of[0,∞)
with decreasing step sizeγn+k.

+ + + + + + +
0

sn,1 sn,2 sn,p

We define∆n(·) as the piecewise constant interpolation of(∆n+k)k on the
grid Sn. More precisely,

∆n(0) = ∆n and ∆n(t) = ∆n+k if t ∈ [sn,k, sn,k+1). (6)
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A functional CLT for Chen’s algorithm II
Xn(·) is defined similarly. We also introduceWn(.)

Wn(0) = 0 and Wn(t) =

n+k∑

i=n+1

√
γiδMi if t ∈ [sn,k, sn,k+1). (7)

Theorem 6

Assume the Hypotheses of Theorem 5.

(∆n(·),Wn(·)) D×D
===⇒ (∆,W) on any finite time interval

where∆ is a stationary Ornstein Uhlenbeck process of initial lawN (0,V)
and W a Wiener processF∆,W−measurable with covariance matrixΣ.

scheme of the proof
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Presentation of the problem

Monte Carlo computation I
We consider a diffusionY on a probability space(Ω,A,P)

{
dYt = Ytrdt + σ(t,Yt)dWt,
S0 = x.

(8)

whereW is a standard Brownian motion andσ a deterministic volatility
function.
We want to compute

P = E
(
e−rT ψ(Yt, 0 ≤ t ≤ T)

)
.

Most of the time, there is no explicit solution of (8).
Let 0 = t0 < t1 < · · · < td = T be a time grid, and̂S the discretisation ofS
on the grid.P can be approximated by

P̂ = E
(

e−rT ψ(Ŷt1, . . . , Ŷtd)
)

. (9)
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Monte Carlo computation II

Using standard discretisation schemes, it is quite easy to see that
ψ(Ŷt1, . . . , Ŷtd) can be expressed in terms of the Brownian increments.
Equation (9) has an equivalent form

P̂ = E(φ(G)) (10)

whereG is ad−dimensional Gaussian vector with identity covariance
matrix.

Expectation in (10) will be computed using Monte Carlo simulations.
The challenge is to improve the convergence of the Monte Carlo
procedure.

We focus on Importance Sampling.
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The importance sampling based strategy

Importance Sampling I

An elementary change of variables in the expectation enables to change the
mean ofG to obtain

P̂ = E

(

φ(G + x) e−x·G−‖x‖2

2

)

(11)

for anyx ∈ Rd.

{Xx = φ(G + x) e−x·G− ‖x‖2

2 ; x ∈ Rd} is of constant expectation.

Find the parameterx⋆ that minimises Var(Xx).
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The importance sampling based strategy

Importance Sampling II

The varianceS2 is given by

S2(x) = E
(

φ(G + x)2 e−2x·G−‖x‖2
)

= E

(

φ(G)2 e−x·G+
‖x‖2

2

)

.

S2 is strictly convex and differentiable without any particular
assumptions onψ,

x⋆ is also defined as the unique root of∇S2

∇S2(x) = E

(

(x− G)φ(G)2 e−x·G+‖x‖2

2

)

= E(U(x,G)).
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Procedure

Procedure

UseXn defined by Equation (3) to approximatex⋆ with

U(x,G) = (x− G)φ(G)2 e−x·G+‖x‖2

2 .

Theorem 7

If there existsδ > 0 such thatE |φ(G)|4+δ <∞, the sequence Xn(t) defined
by (5) converges a.s. to x⋆ for any t> 0.

Corollary 8

Under the hypotheses of Theorem 7,(X̂n(t))n (the averaging version of Xn)
converges a.s. to x⋆ for any t> 0.

The convergence holds for any increasing sequence of compact sets(Kj)j .
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Procedure

Algorithm 1 (sequential algorithm).Let n be the number of samples used
for the Monte Carlo computation.

1. Draw a first set of samples following the law of G to compute an estimate
of x⋆, either by using(Xi)i≤n (see Equation (3)) or(X̂i)i≤n (see
Equation (5)). Denote the computed estimation byX̃.

2. Draw a second set of n samples following the law of G independent of the
first set to compute

Σn =
1
n

n∑

i=1

φ(Gi + X̃) e−X̃·Gi−
‖X̃‖2 T

2 .

Standard CLT for(Σn)n.
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Procedure

Algorithm 2 (adaptive algorithm).Let n be the number of samples used for
the Monte Carlo computation.
For each i in0, . . . ,n− 1, do

1. draw a sample Gi+1 according to the law of G and independent of
{Gj ; j ≤ i},

2. computeσi+1 defined by

Σi+1 =
i

i + 1
Σi +

1
i + 1

φ(Gi+1 + Xi) e−Xi·Gi+1−
‖Xi‖

2 T

2 ,

3. compute Xi+1 using Equation (3).

(Σn)n satisfies a CLT for martingale arrays.
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Atlas Option

Consider a basket of 16 stocks. At maturity time, remove the stocks with the
three best and the three worst performances. It pays off 105% of the average
of the remaining stocks.

basket size : 16
maturity time : 10
interest rate : 0.02
volatility : 0.2
step size : 1
Sample Number : 10000 (standard MC)

5000 (importance sampling)
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Figure:Approximation ofx⋆ with
averaging
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Figure:Approximation ofx⋆ without
averaging
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Figure:Evolution of the standard Monte
Carlo simulation

variance 0.240096
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Figure:Evolution of the Monte Carlo
simulation with importance sampling

variance 0.004460
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Basket Option

Basket Option
Payoff

(
N∑

i=1

λiS
i
T − K

)

+

.

option size 5
strike 200
initial value 50 40 60 30 55
maturity 1
volatility 0.2
interest rate 0.05
correlation 0.8
payoff coefficients 1 1 1 1 1

step size 0.01

Sample Number 5000
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Figure:Approximation ofx⋆ with
averaging
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Figure:Approximation ofx⋆ without
averaging
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Figure:Standard Monte Carlo
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Figure:Importance Sampling coupled
with MC
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Figure: Importance Sampling + Monte
Carlo (not coupled)
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Figure:Averaging Importance Sampling
with MC

The variance is divided by 10 compared with standard Monte Carlo.
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Robustness of averaging algorithms

We consider the previous example and compare the convergence of the
averaging and non-averaging version of the truncated algorithm for a fixed
number of iterations. We extract the first component of the drift.
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Figure:Robustness of the averaging
algorithm
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averaging algorithm
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Limiting distribution

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

20

40

60

80

100

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

20

40

60

80

100

Figure:density of the averaging estimate
of x⋆ for the Atlas option
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Donsker for Martingale increments
Tightness

Random Time shifting

Asymptotic properties of Truncated S.A.

major steps of the proof

∆n is tight inR. Tightness

Use a localisation technique to prove that(supt∈[0,T] ‖∆n(t)‖)n is tight.

Prove a Donsker Theorem for martingales increment.Theorem

∆n(·) satisfies Aldous’ criteria. Tightness inD

(Wn(·),∆n(·))n is tight inD× D and converges in law to(W,∆) where
W is a Wiener process with respect to the smallestσ−algebra that
measures(W(·),∆(·)) with covariance matrixΣ and∆ is the stationary
solution of

d∆(t) = −Q∆(t)dt− dW(t).
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Donsker for Martingale increments

Donsker’s Theorem for martingales increments

Theorem 9

Let (Mn(t))n be a sequence of martingales. Assume that

(Mn(·))n is tight inD and satisfies aC−tightness criteria.

(Mn(t))n is a uniformly square integrable family for each t.

〈Mn〉t
P−→
n

t

Then, Mn(·)
D[0,T]
===⇒

n
B.M.

Wn(t) satisfies Theorem 9.
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Asymptotic properties of Truncated S.A.

Tightness

Tightness in R

Tightness inR

A sequence of real valued r.v.Yn is said to be tight if

∀ε > 0, ∃K, P(|Yn| < K) > 1− ε ∀n> 0.

If such a condition holds, then from any subsequence one can extract a
further subsequence which converges in distribution.

Conversely, any weak converging sequence is tight.

See [Billingsley, 1968] for details on convergence of probability
measures.
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Tightness

Tightness in Skorokhod’s space

Tightness in Skorokhod’s space

Aldous’ criteria:∀ η > 0, ∀ε > 0, ∃0< δ < 1 such that

lim sup
n

sup

{

P (‖Xn(τ) − Xn(S)‖ ≥ η) ;
Sandτ s.t. in [0, 1],
S≤ τ ≤ (S+ δ) ∧ 1

}

≤ ε.

if (Xn(·)) satisfies Aldous’ criteria and(‖Xn(t)‖∞)n is tight inR, then
Xn(·) is tight inD[0, 1].

Kolmogorov’s criteria (C− tightness)∃α > 0, β > 0, ∀(t, s) ∈ [0, 1]2

E(‖Xn(t) − Xn(s)‖α
) ≤ κ |t − s|1+β

.

if (Xn(·)) satisfies Kolmogorov’s criteria and(‖Xn(t)‖∞)n is tight inR,
then(Xn(·)) is tightD[0, 1] and any converging subsequence converges
in distribution to a continuous process.

Jérôme Lelong (INRIA) Thursday January 24th, 2008 4 / 5



Donsker for Martingale increments
Tightness

Random Time shifting

Asymptotic properties of Truncated S.A.

Random Time shifting

Random Time shifting
Let τ andτ ′ be 2 independent r.v. on{0, 1} with parameter 1/2.
We set

Xn := (−1)n(τ − τ ′).

τ − τ ′ is symmetric. Hence,Xn is constant in law.

E(eiuXn+τ ) = E(eiu(−1)n+τ (τ−τ ′)),

=
1
2

(

E(eiu(−1)n+τ τ ) + E(eiu(−1)n+τ (τ−1))
)

,

=
1
4

(

1 + eiu(−1)n+11 + eiu(−1)n(−1) + 1
)

,

=
1
2

(

1 + eiu(−1)n+1
)

.

Hence,(Xn+τ )n does not converge in distribution.
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Random Time shifting

Billingsley, P. (1968).
Convergence of Probability Measures.
Wiley, New York.

Chen, H. and Zhu, Y. (1986).
Stochastic Approximation Procedure with randomly varying
truncations.
Scientia Sinica Series.
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