
Université de Grenoble
Laboratoire Jean Kuntzmann
Applied Mathematics and Computer
Science Department

Categorical semantics for

programming languages

• Program / Category

Type X

Function Y f(X x);

Arguments Z f(X x, Y y)

Substitution f(g(x))

Object X

Morphism f : X ���� Y

Product f : X ×××× Y ���� Z

Composition f ◦◦◦◦ g

• Effects
– Non-termination
– Modification of the state
– …

In particular the order of evaluation of arguments has
consequences when there are side-effects: f × g

Substitution f(g(x)) Composition f ◦◦◦◦ g

Related work

• Strong Monads [Moggi 1989]

• Freyd categories [Power, Robinson 1997]

• Haskell’s Arrows [Hughes 2000]• Haskell’s Arrows [Hughes 2000]

• Evaluation logic [Moggi 1995]

� Quite similar frameworks: [Heunen, Jacobs 2006], [Atkey 2008]

☺ Cartesian effect categories: more precise

Contents

• Effect categories
– Pure morphism
– Effect of a morphism, same effect relation ≈

– Consistency relations complements same effect
– Examples: errors, partiality, state

• Cartesian effect categories
– Semi-pure product
– Sequential product

• Comparisons
– Evaluation logic
– Haskell’s Arrows
– Freyd categories, strong monads

⋊⋉

Effects

• What is an effect ?

– Pure morphisms are effect-free u : X ~~> Y

– If v is pure then f and v◦◦◦◦f have the same effect

• Effect of a morphism f : X � Y • Effect of a morphism f : X � Y

– everything but the “result”

ε(f) = ()Y◦◦◦◦f : X ���� 1

void effect (Y (*f)(X), X x) { Y y = f(x); }

• Same effect equivalence relation ≈≈≈≈

Consistency

• We need also a relation stating roughly that

– results are the same,

– but effects might be different

• We define several relations • We define several relations

– “minimal” requirements or “common” properties

– Some extensions

• An Effect Category has

– Same-effect and Consistency relations

– Such that consistency is complementary to the same-effect:

Consistencies

• A consistency relation f v
– Pure reflexivity: ∀ v pure : X~~>Y, v v

– Compatibility with composition:

• f g if there exists v pure s.t. f v g

• Extended consistency between non pure morphisms
� Extension:
� Substitution:

� There exists a smallest extended consistency

Error

• Pure morphisms do not raise errors

• f ≈ g iff
– f and g raise the same errors for the same arguments

• f v iff
– f coincides with v on Df

• f g iff
– f and g coincides on Df ∩ Dg

• f g iff
– f and g coincides on Df ⊆ Dg and on Dg

Partial functions

• Pure morphisms are total functions

• Effect is the domain of definition as in [Curien, Obtulowitz 89]

• f ≈ g iff • f ≈ g iff

– f and g have the same domain of definition, ()Y◦f = ()Y’◦g

• f v iff f � v

• f g iff f � g

• Complementarity of ≈ and : as axiom

State

• Pure morphisms do not modify the state S
– We denote σX : S×X → S and πX : S×X → X the projections

• f ≈ g iff σY ◦ f = σY’ ◦ g

– f and g modify the state in the same manner– f and g modify the state in the same manner

• f v iff πY ◦ f = v ◦ πX

– The “result” of f is always v (or that of v)

• f g iff πY ◦ f = πY ◦ g

– f and g “always have the same result”

• is an equivalence relation and and are identical

Contents

• Effect categories
– Pure morphism
– Effect of a morphism, same effect relation ≈

– Consistency relations complements same effect
– Examples: errors, partiality, state

• Cartesian effect categories
– Semi-pure product
– Sequential product

• Related Work
– Evaluation logic
– Haskell’s Arrows
– Freyd categories, strong monads

⋊⋉

Binary product property

• p, q, r, s, t are projections

• The binary product defines a functor × : C2 → C s.t.
for all v1 and v2, the morphism v1×v2 is the unique

morphism that satisfies the binary product property:

Semi-pure product

• (C ⊆ K,) is an effect category

• A left semi-pure product ⋉⋉⋉⋉ extends × and satisfies

the semi-pure product property:

• Complementarity: ε(v1⋉⋉⋉⋉f2) = ε(f2◦◦◦◦p2) = ε(q1◦◦◦◦(v1⋉⋉⋉⋉f2))

Sequential product

• (C ⊆ K,) is an effect category

• A left sequential product is composed from semi-
pure products as follows:

Sequential product properties

• States that two graph homomorphisms and satisfy:

�

�

Theorems and proofs

in a Cartesian effect category

• The sequential products satisfy the sequential
product property

• Every pure morphism is central
– v ⋉ f = v ⋊ f

�

�

– v ⋉ f = v ⋊ f

• Non ambiguity
– v ⋉ f = v × f

– g f = g ⋉ f

• (id ⋉ g) ◦ (id ⋉ f) = id ⋉ (g ◦ f)

• (k ⋉ g) ◦ (f1 f2) = (k ◦ f1) (g ◦ f2)

• Associativity, swap, etc.

Error, Partiality, State

• Error

• Partiality• Partiality

• State

• Effect categories
– Pure morphism
– Effect of a morphism, same effect relation ≈

– Consistency relations complements same effect
– Examples: errors, partiality, state

Contents

• Cartesian effect categories
– Semi-pure product
– Sequential product

• Comparisons
– Evaluation logic
– Haskell’s Arrows
– Freyd categories, strong monads

⋊⋉

Evaluation logic, Haskell’s Arrows

• Evaluation logic

• Cartesian effect categories give rise to an Arrow

Freyd categories, strong monad

• Cartesian effect categories are Freyd categories

• Strong monads

– The strength t can be expressed as a left Kleisli product

•]tY1,Y2[= idY1 ⋉Kl]idMY2[

– C0 Cartesian category with strong monad (M,t) and a
consistency is a weak Cartesian effect category

if and only if

the strength is consistent with the identity

Conclusion

• A formalization of computational effects

– Consistency with effect category

– Semi-pure and sequential products with Cartesian effect
category

– Universal property of semi-pure products:– Universal property of semi-pure products:

• Powerful tool for definitions and proofs
• Cartesian effect categories are Freyd categories
• Conditions for strong monads to be CEC

– Many kind of effects (error, partiality, state, …) � a CEC

• Clarify evaluation logic / Cartesian effect categories ?

• Combining effects ?

