Sequential computation
and
Cartesian Effect Categories

Jean-Guillaume Dumas
Dominique Duval
Jean-Claude Reynaud

Applied Mathematics and Computer m— and Information Security
Science Department Qj/ www.shannoninstitute.ie

Universite de Grenoble Claude Shannon Institute
Laboratoire Jean Kuntzmann e Discrete Mathematics, Coding, Cryptography




Categorical semantics for

programming languages

Program /
Type X
Function Y f(X x);
Arguments |Zf(Xx, YY)
Substitution | f(g(x))
Effects

— Non-termination
— Modification of the state

Category

Object X

Morphism f: X>Y
Product f: XxY¥Y>2Z
Composition |fog

consequences when there are side-effects: f x g

A In particular the order of evaluation of arguments has




Related work

Strong Monads
Freyd categories
Haskell's Arrows

Evaluation logic

[Moggi 1989]

[Power, Robinson 1997]

[Hughes 2000]

[Moggi 1995]

= Quite similar frameworks: [Heunen, Jacobs 2006], [Atkey 2008]

© Cartesian effect categories: more precise



Contents

o Effect categories
— Pure morphism
— Effect of a morphism, same effect relation ~
— Consistency relations <« € complements same effect
— Examples: errors, partiality, state

o (Cartesian effect categories
— Semi-pure product X X
— Sequential product >4 K

e Comparisons
— Evaluation logic
— Haskell’s Arrows
— Freyd categories, strong monads



Effects

e What is an effect ?

— Pure morphisms are effect-free u : X ~~>Y
— If v is pure then f and vof have the same effect

e Effect of a morphismf: X->Y
— everything but the “result”

E(f) = Oyof : X> 1
void effect (Y (*F)(X), XXx) { Yy =1f(x); }

e Same effect equivalence relation =~



Consistency

e We need also a relation < stating roughly that
— results are the same,
— but effects might be different

o We define several relations
— “minimal” requirements or “common” properties
— Some extensions

e An Effect Category has
— Same-effect and Consistency relations
— Such that consistency is complementary to the same-effect:



Consistencies

e A consistency relation f < v
— Pure reflexivity: V v pure : X~~>Y, v<] v
— Compatibility with composition: wWov
XLyt log = X VvV Z
A v

V V
1

o f g if there exists v pures.t. f<|v| > g

gof

o Extended consistency between non pure morphisms

%+ Extension: f<dv = f 4w
+ Substitution: g4g == gof4gof

& There exists a smallest extended consi?tencv
wo

X—Y ¥ 7 «— X v Z
\/

N

g got



Error

Pure morphisms do not raise errors

~ g iff

— f and g raise the same errors for the same arguments
f<lv iff

— f coincides with v on Dk
f<I[> g iff

— fand g coincides on D¢ N D,
fdg iff

— fand g coincides on D¢ C D, and on D_g



Partial functions

Pure morphisms are total functions
Effect is the domain of definition as in scurien, obtuiowitz 897

frg  f

— f and g have the same domain of definition, ()yof = ()y.cg
f<v iff f<v
fg iff f<g

Complementarity of ~ and <]: as axiom



State

Pure morphisms do not modify the state S
— We denote oy : SxX — S and 1 : SxX — X the projections

e frg Iff oyof=0y0g
— f and g modify the state in the same manner

o f<]v iff mof=vory

— The “result” of f is always v (or that of v)

e fg iff myof=T,0g

— fand g “always have the same result”

 « is an equivalence relation and <« P> and « are identical



Contents

o Effect categories
— Pure morphism
— Effect of a morphism, same effect relation ~
— Consistency relations < 4 complements same effect
— Examples: errors, partiality, state

o (Cartesian effect categories
— Semi-pure product X X
— Sequential product >4 K

e Related Work
— Evaluation logic
— Haskell’s Arrows
— Freyd categories, strong monads



Binary product property

e p,Q, 1S, tare projections

e The binary product defines a functor x : C2 — C s.t.
for all v, and v,, the morphism v, xv, is the unique
morphism that satisfies the binary product property:

X1 e -Y7
J:, A
p1! = gtn
q1 0 (v1 X v2) = w1 0Py ? w1 X Vo :
X1 x Xp 152y Y,
g2 © (v1 X v2) = vp 0o 4 5
p2: = /g2

{ v '.
X 2 B t 2



Semi-pure product

e (CCK,<])is an effect category

e A left semi-pure product x extends x and satisfies
the semi-pure product property:

X1 i ~Y
P1 v §q1
q1 0 (v1 X f2) <wvyopy ? w15 fo ?
X]_ X X2 Y]_ X YQ
g2 0 (v1 X f2) = faopo ; :
P! = a2
:
X5 f2 Yo

e Complementarity: e(v,xf,) = &(f,op,) = £(qyo(v,xF,))



Sequential product

e (CCK,<])is an effect category

o A left sequential product /< is composed from semi-
pure products as follows:

f1X fo = (idy; X f2) o (f1 ¥ idx,)




Sequential product properties

e States that two graph homomorphisms-~ and ¢- satisfy:
qgro(f1 ™ f2) A fropy
g2 0 (f1 ™ f2) = faorpo(f1 ~idx,)
qgro(f1 ™~ f2) = frosy0(idx, ~ f1)
g0 (f1 ™~ f2) 4 foopo

X .
% Xl X XQ Yl X YQ
= S !
o L 72 P2 A ™
5




Theorems and proofs
in a Cartesian effect category

The sequential products M) satisfy the sequential
product property «a .

Every pure morphism is central
- v f=vXxf

Non ambiguity
- vxf=vxf
- gkf=gxf

(idx g)o(id x f) =id x (g of)
(kx g)o(fyxf)=(kof)x(gof,)

Associativity, swap, etc.



Error, Partiality, State

e Error
([f1]l(z1), [f2](x2)) if [f1](xz1) € Y1 and [f2](z2) € Y5
(fix f2)(z1,22) =< [f2](x2) if [f1](z1) € Y1 and [f2](zp) € E
[f1](z1) if [f1](z1) € E
o Partiality

Dy f) = DpyxDy, and  (f1 % f2)(z1,22) = ([f1](z1), [f2](22))

e State

V1 € Xq1,Veo € Xo,Vs e S

[f1 X f2](s, z1,22) = (s2,¥1,Y2)
where [fl](saxl) — <Slayl> and [f2](513372) — <327y2>



Contents

o Effect categories
— Pure morphism
— Effect of a morphism, same effect relation ~
— Consistency relations <« € complements same effect
— Examples: errors, partiality, state

o (Cartesian effect categories
— Semi-pure product X X
— Sequential product >4 K

e Comparisons
— Evaluation logic
— Haskell’s Arrows
— Freyd categories, strong monads



Evaluation logic, Haskell’s Arrows

e Evaluation logic

Monad Results Consistency
MY cla f<v
Y+ FE ¢ = a (thus, c is total) ceY = c=a
(Y xS)° |3dseS,3 €S, c(s) =(a,s) |VseS,Is' €S, c(s) = (a,s)
L(Y) a€c Jk €N, c = (a)¥
Piin(Y) a€c c={a}lorec=1

o (artesian effect categories give rise to an Arrow

f— fxid

Cartesian effect categories | Arrows

K(X,Y) A(X,Y)

C(X,Y) CK(X,Y) arr : C(X,Y) — A(X,Y)
f—=(g—gof) > A(X,Y) — A(Y, Z2) — A(X, Z)

first : A(X,Y) — A(X x Z,Y x Z)




Freyd categories, strong monad

e Cartesian effect categories are Freyd categories

e Strong monads
— The strength t can be expressed as a left Kleisli product

° ]tYl,YZ[ = idy; Xy Jiduyal

— C, Cartesian category with strong monad (M,t) and a
consistency is a weak Cartesian effect category

if and only if
the strength is consistent with the identity



Conclusion

o A formalization of computational effects
— Consistency with effect category

— Semi-pure and sequential products with Cartesian effect
category

— Universal property of semi-pure products:
» Powerful tool for definitions and proofs
» Cartesian effect categories are Freyd categories
» Conditions for strong monads to be CEC
— Many kind of effects (error, partiality, state, ...) > a CEC

e Clarify evaluation logic / Cartesian effect categories ?
e Combining effects ?



