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Objectives

I introduce data assimilation as an optimization problem
I discuss the different forms of the objective functions
I discuss their properties w.r.t. optimization
I introduce the adjoint technique for the computation of the

gradient

Link with statistical methods: cf lectures by E. Cosme

Variational data assimilation algorithms, tangent and adjoint
codes: cf lectures by M. Nodet and A. Vidard
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Outline

Introduction: model problem

Definition and minimization of the cost function

The adjoint method
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Introduction: model problem

Model problem

Two different available measurements of a single quantity. Which
estimation of its true value ? −→ least squares approach

Example 2 obs y1 = 19◦C and y2 = 21◦C of the (unknown)
present temperature x .

I Let J(x) = 1
2
[
(x − y1)2 + (x − y2)2]

I Minx J(x) −→ x̂ =
y1 + y2

2 = 20◦C
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Introduction: model problem

Model problem
Observation operator If 6= units: y1 = 66.2◦F and y2 = 69.8◦F

I Let H(x) =
9
5x + 32

I Let J(x) =
1
2
[
(H(x)− y1)2 + (H(x)− y2)2]

I Minx J(x) −→ x̂ = 20◦C

Drawback # 1: if observation units are inhomogeneous
y1 = 66.2◦F and y2 = 21◦C

I J(x) =
1
2
[
(H(x)− y1)2 + (x − y2)2] −→ x̂ = 19.47◦C !!

Drawback # 2: if observation accuracies are inhomogeneous
If y1 is twice more accurate than y2, one should obtain x̂ =

2y1 + y2
3 = 19.67◦C

−→ J should be J(x) =
1
2

[(
x − y1

1/2

)2
+

(
x − y2

1

)2
]
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Introduction: model problem

Model problem

General form

Minimize J(x) =
1
2

[
(H1(x)− y1)2

σ2
1

+
(H2(x)− y2)2

σ2
2

]

If H1 = H2 = Id : J(x) =
1
2

(x − y1)2

σ2
1

+
1
2

(x − y2)2

σ2
2

which leads to x̂ =

1
σ2

1
y1 +

1
σ2

2
y2

1
σ2

1
+

1
σ2

2

(weighted average)

Remark: J”(x̂)︸ ︷︷ ︸
convexity

=
1
σ2

1
+

1
σ2

2
= [Var(x̂)]−1︸ ︷︷ ︸

accuracy
(cf BLUE)
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Introduction: model problem

Model problem

Alternative formulation: background + observation If one
considers that y1 is a prior (or background) estimate xb for x , and
y2 = y is an independent observation, then:

J(x) =
1
2

(x − xb)2

σ2
b︸ ︷︷ ︸

Jb

+
1
2

(x − y)2

σ2
o︸ ︷︷ ︸

Jo

and

x̂ =

1
σ2

b
xb +

1
σ2

o
y

1
σ2

b
+

1
σ2

o

= xb +
σ2

b
σ2

b + σ2
o︸ ︷︷ ︸

gain

(y − xb)︸ ︷︷ ︸
innovation
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Definition and minimization of the cost function
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Definition and minimization of the cost function Least squares problems
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

If x =


x1
x2
x3
x4

 and y =

(
an observation of x1+x2

2
an observation of x4

)

then H(x) = Hx with H =

 1
2

1
2 0 0

0 0 0 1
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Cost function: J(x) =
1
2 ‖H(x)− y‖2 with ‖.‖ to be chosen.
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Definition and minimization of the cost function Least squares problems

Reminder: norms and scalar products

u =

 u1
...

un

 ∈ IRn

� Euclidian norm: ‖u‖2 = uT u =
n∑

i=1
u2

i

Associated scalar product: (u, v) = uT v =
n∑

i=1
uivi

� Generalized norm: let M a symmetric positive definite matrix

M-norm: ‖u‖2
M = uT M u =

n∑
i=1

n∑
j=1

mij uiuj

Associated scalar product: (u, v)M = uT M v =
n∑

i=1

n∑
j=1

mij uivj
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

To be estimated: x =

 x1
...

xn

 ∈ IRn

Observations: y =

 y1
...

yp

 ∈ IRp

Observation operator: y ≡ H(x), with H : IRn −→ IRp

Cost function: J(x) =
1
2 ‖H(x)− y‖2 with ‖.‖ to be chosen.

(Intuitive) necessary (but not sufficient) condition for the existence
of a unique minimum:

p ≥ n
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Definition and minimization of the cost function Least squares problems

Formalism “background value + new observations”

Y =

(
xb
y

)
←− background
←− new obs

The cost function becomes:

J(x) =
1
2 ‖x− xb‖2

b︸ ︷︷ ︸
Jb

+
1
2 ‖H(x)− y‖2

o︸ ︷︷ ︸
Jo

= (x− xb)T B−1(x− xb) + (H(x)− y)T R−1(H(x)− y)

The necessary condition for the existence of a unique minimum
(p ≥ n) is automatically fulfilled.
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Definition and minimization of the cost function Least squares problems

If the problem is time dependent

I Observations are distributed in time: y = y(t).

I The observation cost function becomes:

Jo(x) =
1
2

N∑
i=0
‖Hi (x(ti ))− y(ti )‖2

o

I There is a model describing the evolution of x: dx
dt = M(x)

with x(t = 0) = x0. Then J is often no longer minimized
w.r.t. x, but w.r.t. x0 only, or to some other parameters.

Jo(x0) =
1
2

N∑
i=0
‖Hi (x(ti ))−y(ti )‖2

o =
1
2

N∑
i=0
‖Hi (M0→ti (x0))−y(ti )‖2

o
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Definition and minimization of the cost function Least squares problems

If the problem is time dependent

J(x0) =
1
2 ‖x0 − xb

0‖2
b︸ ︷︷ ︸

background term Jb

+
1
2

N∑
i=0
‖Hi (x(ti ))− y(ti )‖2

o︸ ︷︷ ︸
observation term Jo
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum ?

J(x0) = Jb(x0) +Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi (M0→ti (x0))−y(ti )‖2

o

I If H and M are linear then Jo is quadratic.

I However it generally does not have a unique minimum, since the
number of observations is generally less than the size of x0 (the
problem is underdetermined: p < n).

Example: let (x t
1 , x t

2) = (1, 1) and y = 1.1 an observa-
tion of 1

2 (x1 + x2).

Jo(x1, x2) =
1
2

(
x1 + x2

2
− 1.1

)2
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum ?

J(x0) = Jb(x0) +Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi (M0→ti (x0))−y(ti )‖2

o

I If H and M are linear then Jo is quadratic.
I However it generally does not have a unique minimum, since the

number of observations is generally less than the size of x0 (the
problem is underdetermined).

I Adding Jb makes the problem of minimizing J = Jo + Jb well posed.

Example: let (x t
1 , x t

2) = (1, 1) and y = 1.1 an observa-
tion of 1

2 (x1 + x2). Let (xb
1 , xb

2 ) = (0.9, 1.05)

J(x1, x2) =
1
2

(
x1 + x2

2
− 1.1

)2

︸ ︷︷ ︸
Jo

+
1
2
[
(x1 − 0.9)2 + (x2 − 1.05)2]︸ ︷︷ ︸

Jb

−→ (x∗1 , x∗2 ) = (0.94166..., 1.09166...)
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum ?

J(x0) = Jb(x0) +Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi (M0→ti (x0))−y(ti )‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

Example: the Lorenz system (1963)

dx
dt = α(y − x)

dy
dt = βx − y − xz

dz
dt = −γz + xy
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Definition and minimization of the cost function Least squares problems

http://www.chaos-math.org
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum ?
J(x0) = Jb(x0) +Jo(x0) =

1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi (M0→ti (x0))−y(ti )‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

Example: the Lorenz system (1963)

dx
dt = α(y − x)
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Jo(y0) =
1
2
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Definition and minimization of the cost function Least squares problems
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum ?

J(x0) = Jb(x0) +Jo(x0) =
1
2 ‖x0−xb‖2

b +
1
2

N∑
i=0
‖Hi (M0→ti (x0))−y(ti )‖2

o

I If H and/or M are nonlinear then Jo is no longer quadratic.

I Adding Jb makes it “more quadratic” (Jb is a regularization term),
but J = Jo + Jb may however have several (local) minima.
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Definition and minimization of the cost function Least squares problems

A fundamental remark before going into minimization
aspects

Once J is defined (i.e. once all the ingredients are chosen: control
variables, norms, observations. . . ), the problem is entirely defined.
Hence its solution.

The “physical” (i.e. the most important) part of
data assimilation lies in the definition of J .

The rest of the job, i.e. minimizing J , is “only” technical work.
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Definition and minimization of the cost function Linear (time independent) problems

Outline
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Definition and minimization of the cost function Linear (time independent) problems

Reminder: norms and scalar products

u =

 u1
...

un

 ∈ IRn

� Euclidian norm: ‖u‖2 = uT u =
n∑

i=1
u2

i

Associated scalar product: (u, v) = uT v =
n∑

i=1
uivi

� Generalized norm: let M a symmetric positive definite matrix

M-norm: ‖u‖2
M = uT M u =

n∑
i=1

n∑
j=1

mij uiuj

Associated scalar product: (u, v)M = uT M v =
n∑

i=1

n∑
j=1

mij uivj
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Definition and minimization of the cost function Linear (time independent) problems

Reminder: norms and scalar products
u : Ω ⊂ IRn −→ IR

x −→ u(x)
u ∈ L2(Ω)

� Euclidian (or L2) norm: ‖u‖2 =

∫
Ω

u2(x) dx

Associated scalar product: (u, v) =

∫
Ω

u(x) v(x) dx
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Definition and minimization of the cost function Linear (time independent) problems

Reminder: derivatives and gradients

f : E −→ IR (E being of finite or infinite dimension)

� Directional (or Gâteaux) derivative of f at point x ∈ E in direction
d ∈ E :

∂f
∂d (x) = f̂ [x ](d) = lim

α→0

f (x + αd)− f (x)

α

Example: partial derivatives
∂f
∂xi

are directional derivatives in the direction of

the members of the canonical basis (d = ei )
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Definition and minimization of the cost function Linear (time independent) problems

Reminder: derivatives and gradients

f : E −→ IR (E being of finite or infinite dimension)

� Gradient (or Fréchet derivative): E being an Hilbert space, f is
Fréchet differentiable at point x ∈ E iff

∃p ∈ E such that f (x + h) = f (x) + (p, h) + o(‖h‖) ∀h ∈ E

p is the derivative or gradient of f at point x , denoted f ′(x) or
∇f (x).

� h→ (p(x), h) is a linear function, called differential function or
tangent linear function or Jacobian of f at point x

� Important (obvious) relationship: ∂f
∂d (x) = (∇f (x), d)
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Definition and minimization of the cost function Linear (time independent) problems

Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse
Let M a p × n matrix, with rank n, and b ∈ IRp. (hence p ≥ n)

Let J(x) = ‖Mx− b‖2 = (Mx− b)T (Mx− b).

J is minimum for x̂ = M+b , where M+ = (MT M)−1MT

(generalized, or Moore-Penrose, inverse).

Corollary: with a generalized norm
Let N a p × p symmetric definite positive matrix.

Let J1(x) = ‖Mx− b‖2
N = (Mx− b)T N (Mx− b).

J1 is minimum for x̂ = (MT NM)−1MT N b.
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Definition and minimization of the cost function Linear (time independent) problems

Link with data assimilation

This gives the solution to the problem

min
x∈IRn

Jo(x) =
1
2 ‖Hx− y‖2

o

in the case of a linear observation operator H.

Jo(x) =
1
2 (Hx−y)T R−1(Hx−y) −→ x̂ = (HT R−1H)−1HT R−1 y
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Definition and minimization of the cost function Linear (time independent) problems

Link with data assimilation
Similarly:
J(x) = Jb(x) + Jo(x)

=
1
2 ‖x− xb‖2

b +
1
2 ‖H(x)− y‖2

o

=
1
2 (x− xb)T B−1(x− xb) +

1
2 (Hx− y)T R−1(Hx− y)

= (Mx− b)T N (Mx− b) = ‖Mx− b‖2
N

with M =

(
In
H

)
b =

(
xb
y

)
N =

(
B−1 0
0 R−1

)

which leads to

x̂ = xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸
gain matrix

(y−Hxb)︸ ︷︷ ︸
innovation vector

Remark: The gain matrix also reads BHT (HBHT + R)−1

(Sherman-Morrison-Woodbury formula)
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Definition and minimization of the cost function Linear (time independent) problems

Link with data assimilation

Remark

Hess(J)︸ ︷︷ ︸
convexity

= B−1 + HT R−1H = [Cov(x̂)]−1︸ ︷︷ ︸
accuracy

(cf BLUE)

E. Blayo - Variational approach to data assimilation



Definition and minimization of the cost function Linear (time independent) problems

Remark

Given the size of n and p, it is generally impossible to handle
explicitly H, B and R. So the direct computation of the gain
matrix is impossible.

� even in the linear case (for which we have an explicit expression
for x̂), the computation of x̂ is performed using an optimization
algorithm.
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The adjoint method

Outline

Introduction: model problem

Definition and minimization of the cost function

The adjoint method
Rationale
A simple example
A more complex (but still linear) example
Control of the initial condition
The adjoint method as a constrained minimization
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The adjoint method Rationale
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The adjoint method Rationale

Descent methods

Descent methods for minimizing the cost function require the knowledge
of (an estimate of) its gradient.

xk+1 = xk + αk dk

with dk =



−∇J(xk) gradient method
− [Hess(J)(xk)]−1∇J(xk) Newton method
−Bk ∇J(xk) quasi-Newton methods (BFGS, . . . )
−∇J(xk) + ‖∇J(xk )‖2

‖∇J(xk−1)‖2 dk−1 conjugate gradient
... ...
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The adjoint method Rationale

The computation of ∇J(xk) may be difficult if the dependency of J with
regard to the control variable x is not direct.

Example:
I u(x) solution of an ODE
I K a coefficient of this ODE
I uobs(x) an observation of u(x)

I J(K ) =
1
2 ‖u(x)− uobs(x)‖2

Ĵ [K ](k) = (∇J(K ), k) =< û, u − uobs >

with û =
∂u
∂k (K ) = lim

α→0

uK+αk − uK
α
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The adjoint method Rationale

It is often difficult (or even impossible) to obtain the gradient through
the computation of growth rates.

Example:{ dx(t))

dt = M(x(t)) t ∈ [0,T ]

x(t = 0) = u
with u =

 u1
...

uN


J(u) =

1
2

∫ T

0
‖x(t)− xobs(t)‖2 −→ requires one model run

∇J(u) =


∂J
∂u1

(u)

...
∂J
∂uN

(u)

 '
 [J(u + α e1)− J(u)] /α

...
[J(u + α eN)− J(u)] /α


−→ N + 1 model runs
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The adjoint method Rationale

In most actual applications, N = [u] is large (or even very large: e.g.
N = O(108 − 109) in meteorology) −→ this method cannot be used.

Alternatively, the adjoint method provides a very efficient way to
compute ∇J .

On the contrary, do not forget that, if the size of the
control variable is very small (< 10 − 20), ∇J can be
easily estimated by the computation of growth rates.
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The adjoint method Rationale

Reminder: adjoint operator
� General definition:

Let X and Y two prehilbertian spaces (i.e. vector spaces with scalar
products).
Let A : X −→ Y an operator.
The adjoint operator A∗ : Y −→ X is defined by:

∀x ∈ X ,∀y ∈ Y, < Ax , y >Y=< x ,A∗y >X

In the case where X and Y are Hilbert spaces and A is linear, then
A∗ always exists (and is unique).

� Adjoint operator in finite dimension:
A : IRn −→ IRm a linear operator (i.e. a matrix). Then its adjoint
operator A∗ (w.r. to Euclidian norms) is AT .
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The adjoint method A simple example
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The adjoint method A simple example

The continuous case

The assimilation problem

I

{
−u′′(x) + c(x) u′(x) = f (x) x ∈]0, 1[
u(0) = u(1) = 0 f ∈ L2(]0, 1[)

I c(x) is unknown
I uobs(x) an observation of u(x)

I Cost function: J(c) =
1
2

∫ 1

0

(
u(x)− uobs(x)

)2 dx

∇J → Gâteaux-derivative: Ĵ[c](δc) =< ∇J(c), δc >
Ĵ[c](δc) =

∫ 1

0
û(x)

(
u(x)− uobs(x)

)
dx with û = lim

α→0

uc+αδc − uc

α

What is the equation satisfied by û ?
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The adjoint method A simple example

{
−û′′(x) + c(x) û′(x) = −δc(x) u′(x) x ∈]0, 1[ tangent
û(0) = û(1) = 0 linear model

Going back to Ĵ: scalar product of the TLM with a variable p

−
∫ 1

0
û′′p +

∫ 1

0
c û′p = −

∫ 1

0
δc u′p

Integration by parts:∫ 1

0
û (−p′′ − (c p)′) = û′(1)p(1)− û′(0)p(0) −

∫ 1

0
δc u′p

{
−p′′(x)− (c(x) p(x))′ = u(x)− uobs(x) x ∈]0, 1[ adjoint
p(0) = p(1) = 0 model

Then ∇J(c(x)) = −u′(x) p(x)
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∫ 1

0
δc u′p

{
−p′′(x)− (c(x) p(x))′ = u(x)− uobs(x) x ∈]0, 1[ adjoint
p(0) = p(1) = 0 model

Then ∇J(c(x)) = −u′(x) p(x)

E. Blayo - Variational approach to data assimilation



The adjoint method A simple example

{
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û (−p′′ − (c p)′) = û′(1)p(1)− û′(0)p(0) −
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The adjoint method A simple example
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The adjoint method A simple example

Remark
Formally, we just made

(TLM(û), p) = (û,TLM∗(p))

We indeed computed the adjoint of the tangent linear model.

Actual calculations
I Solve for the direct model{

−u”(x) + c(x) u′(x) = f (x) x ∈]0, 1[
u(0) = u(1) = 0

I Then solve for the adjoint model{
−p”(x)− (c(x) p(x))′ = u(x)− uobs(x) x ∈]0, 1[
p(0) = p(1) = 0

I Hence the gradient: ∇J(c(x)) = −u′(x) p(x)
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The adjoint method A simple example

The discrete case

Model{
−u′′(x) + c(x) u′(x) = f (x) x ∈]0, 1[
u(0) = u(1) = 0

−→
{
−

ui+1 − 2ui + ui−1
h2 + ci

ui+1 − ui
h

= fi i = 1 . . .N
u0 = uN+1 = 0

Cost function
J(c) =

1
2

∫ 1

0

(
u(x)− uobs(x)

)2
dx −→

1
2

N∑
i=1

(
ui − uobs

i

)2

Gâteaux derivative:
Ĵ[c](δc) =

∫ 1

0
û(x)

(
u(x)− uobs(x)

)
dx −→

N∑
i=1

ûi
(

ui − uobs
i

)
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The adjoint method A simple example

Tangent linear model{
−û′′(x) + c(x) û′(x) = −δc(x) u′(x) x ∈]0, 1[
û(0) = û(1) = 0{

−
ûi+1 − 2ûi + ûi−1

h2 + ci
ûi+1 − ûi

h
= −δci

ui+1 − ui
h

i = 1 . . .N
û0 = ûN+1 = 0

Adjoint model{
−p′′(x)− (c(x) p(x))′ = u(x)− uobs(x) x ∈]0, 1[
p(0) = p(1) = 0

{
−

pi+1 − 2pi + pi−1
h2 −

ci pi − ci−1pi−1
h

= ui − uobs
i i = 1 . . .N

p0 = pN+1 = 0

Gradient

∇J(c(x)) = −u′(x) p(x) −→


...

−pi
ui+1 − ui

h
...
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The adjoint method A simple example

Remark: with matrix notations
What we do when determining the adjoint model is simply transposing
the matrix which defines the tangent linear model

(MÛ,P) = (Û,MT P)

In the preceding example:

MÛ = F with M =



2α− β1 −α + β1 0 · · · 0

−α 2α− β2 −α + β2

...

0
. . .

. . .
. . . 0

... −α 2α− βN−1 −α + βN−1
0 · · · 0 −α 2α− βN


α = 1/h2, βi = ci/h

But M is generally not explicitly built in actual complex models...
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The adjoint method A more complex (but still linear) example
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The adjoint method A more complex (but still linear) example

Control of the coefficient of a 1-D diffusion equation


∂u
∂t −

∂

∂x

(
K (x)

∂u
∂x

)
= f (x , t) x ∈]0, L[, t ∈]0,T [

u(0, t) = u(L, t) = 0 t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I K (x) is unknown
I uobs(x , t) an available observation of u(x , t)

Minimize J(K (x)) =
1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt
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The adjoint method A more complex (but still linear) example

Gâteaux derivative

Ĵ[K ](k) =

∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

Tangent linear model
∂û
∂t −

∂

∂x

(
K (x)

∂û
∂x

)
=

∂

∂x

(
k(x)

∂u
∂x

)
x ∈]0, L[, t ∈]0,T [

û(0, t) = û(L, t) = 0 t ∈ [0,T ]
û(x , 0) = 0 x ∈ [0, L]

Adjoint model
∂p
∂t +

∂

∂x

(
K (x)

∂p
∂x

)
= u − uobs x ∈]0, L[, t ∈]0,T [

p(0, t) = p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration
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∂û
∂t −

∂

∂x

(
K (x)

∂û
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The adjoint method A more complex (but still linear) example

Gâteaux derivative of J

Ĵ[K ](k) =

∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

=

∫ T

0

∫ L

0
k(x)

∂u
∂x

∂p
∂x dx dt

Gradient of J

∇J =

∫ T

0

∂u
∂x (., t)

∂p
∂x (., t) dt function of x
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The adjoint method A more complex (but still linear) example

Discrete version:

same as for the preceding ODE, but with
N∑

n=0

I∑
i=1

un
i

Matrix interpretation: M is much more complex than previously !!
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The adjoint method Control of the initial condition
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The adjoint method
Rationale
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Control of the initial condition
The adjoint method as a constrained minimization
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The adjoint method Control of the initial condition

General formal derivation

I Model
{ dX (x , t)

dt = M(X (x , t)) (x , t) ∈ Ω× [0,T ]

X (x , 0) = U(x)

I Observations Y with observation operator H: H(X ) ≡ Y

I Cost function J(U) =
1
2

∫ T

0
‖H(X )− Y ‖2

Gâteaux derivative of J

Ĵ[U](u) =

∫ T

0
< X̂ ,H∗(HX − Y ) > with X̂ = lim

α→0

XU+αu − XU
α

where H∗ is the adjoint of H, the tangent linear operator of H.

E. Blayo - Variational approach to data assimilation



The adjoint method Control of the initial condition

General formal derivation

I Model
{ dX (x , t)

dt = M(X (x , t)) (x , t) ∈ Ω× [0,T ]

X (x , 0) = U(x)

I Observations Y with observation operator H: H(X ) ≡ Y

I Cost function J(U) =
1
2

∫ T

0
‖H(X )− Y ‖2

Gâteaux derivative of J
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The adjoint method Control of the initial condition

Tangent linear model dX̂ (x , t)

dt = M(X̂ ) (x , t) ∈ Ω× [0,T ]

X̂ (x , 0) = u(x)

where M is the tangent linear operator of M.

Adjoint model{ dP(x , t)

dt + M∗(P) = H∗(HX − Y ) (x , t) ∈ Ω× [0,T ]

P(x ,T ) = 0 backward integration

Gradient
∇J(U) = −P(., 0) function of x
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The adjoint method Control of the initial condition

Example: the Burgers’ equation

The assimilation problem
∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 = f x ∈]0, L[, t ∈ [0,T ]

u(0, t) = ψ1(t) t ∈ [0,T ]
u(L, t) = ψ2(t) t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I u0(x) is unknown
I uobs(x , t) an observation of u(x , t)

I Cost function: J(u0) =
1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt
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The adjoint method Control of the initial condition

Gâteaux derivative

Ĵ[u0](h0) =

∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

Tangent linear model
∂û
∂t +

∂(uû)

∂x − ν ∂
2û
∂x2 = 0 x ∈]0, L[, t ∈ [0,T ]

û(0, t) = 0 t ∈ [0,T ]
û(L, t) = 0 t ∈ [0,T ]
û(x , 0) = h0(x) x ∈ [0, L]

Adjoint model
∂p
∂t + u ∂p

∂x +ν
∂2p
∂x2 =

(
u − uobs) x ∈]0, L[, t ∈ [0,T ]

p(0, t) = 0 t ∈ [0,T ]
p(L, t) = 0 t ∈ [0,T ]
p(x ,T ) = 0 x ∈ [0, L] final condition !! → backward integration
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û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

Tangent linear model
∂û
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The adjoint method Control of the initial condition

Gâteaux derivative of J

Ĵ[u0](h0) =

∫ T

0

∫ L

0
û(x , t)

(
u(x , t)− uobs(x , t)

)
dx dt

= −
∫ L

0
h0(x)p(x , 0) dx

Gradient of J
∇J = −p(., 0) function of x
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The adjoint method The adjoint method as a constrained minimization

Outline
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The adjoint method
Rationale
A simple example
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The adjoint method The adjoint method as a constrained minimization

Minimization with equality constraints

Optimization problem
I J : IRn → IR differentiable
I K = {x ∈ IRn such that h1(x) = . . . = hp(x) = 0}, where the

functions hi : IRn → IR are continuously differentiable.

Find the solution of the constrained minimization problem min
x∈K

J(x)

Theorem
If x∗ ∈ K is a local minimum of J in K , and if the vectors ∇hi (x∗)
(i = 1, . . . , p) are linearly independent,
then there exists λ∗ = (λ∗1 , . . . , λ

∗
p) ∈ IRp such that

∇J(x∗) +

p∑
i=1

λ∗i ∇hi (x∗) = 0
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The adjoint method The adjoint method as a constrained minimization

Let L(x;λ) = J(x) +

p∑
i=1

λihi (x)

I λi ’s: Lagrange multipliers associated to the constraints.
I L: Lagrangian function associated to J .

Then minimizing J in K is equivalent to solving ∇L = 0 in IRn × IRp,

since

 ∇xL = ∇J +

p∑
i=1

λi∇hi

∇λiL = hi i = 1, . . . , p

This is a saddle point problem.
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The adjoint method The adjoint method as a constrained minimization

The adjoint method as a constrained minimization

The adjoint method can be interpreted as a minimization of J(x) under
the constraint that the model equations must be satisfied.

From this point of view, the adjoint variable corresponds to a Lagrange
multiplier.
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The adjoint method The adjoint method as a constrained minimization

Example: control of the initial condition of the Burgers’
equation

I Model:
∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 = f x ∈]0, L[, t ∈ [0,T ]

u(0, t) = ψ1(t) t ∈ [0,T ]
u(L, t) = ψ2(t) t ∈ [0,T ]
u(x , 0) = u0(x) x ∈ [0, L]

I Full observation field uobs(x , t)

I Cost function: J(u0) =
1
2

∫ T

0

∫ L

0

(
u(x , t)− uobs(x , t)

)2 dx dt

We will consider here that J is a function of u0 and u, and will minimize
J(u0, u) under the constraint of the model equations.
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The adjoint method The adjoint method as a constrained minimization
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The adjoint method The adjoint method as a constrained minimization

Lagrangian function

L(u0, u; p) = J(u0, u)︸ ︷︷ ︸
data ass cost function

+

∫ T

0

∫ L

0

(
∂u
∂t

+ u
∂u
∂x
− ν

∂2u
∂x2 − f

)
p︸ ︷︷ ︸

model

Remark: no additional term (i.e. no Lagrange multipliers) for the initial condition nor
for the boundary conditions: their values are fixed.

By integration by parts, L can also be written:

L(u0, u; p) = J(u0, u) +

∫ T

0

∫ L

0

(
−u

∂p
∂t
−

1
2

u2 ∂p
∂x
− νu

∂2p
∂x2 − fp

)
+

∫ L

0
[u(.,T )p(.,T )− u0 p(., 0)] +

∫ T

0

[
1
2
ψ2

2 p(L, .)−
1
2
ψ2

1 p(0, .)
]

−ν
∫ T

0

[
∂u
∂x

(L, .)p(L, .)−
∂u
∂x

(0, .)p(0, .) + ψ2
∂p
∂x

(L, .)− ψ1
∂p
∂x

(0, .)
]
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The adjoint method The adjoint method as a constrained minimization

Saddle point:

I (∇pL, hp) =

∫ T

0

∫ L

0

(
∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 − f

)
hp

I (∇uL, hu) =

∫ T

0

∫ L

0

(
(u − uobs)− ∂p

∂t − u ∂p
∂x − ν

∂2p
∂x2

)
hu

+

∫ L

0
hu(.,T )p(.,T )

−ν
∫ T

0

[
∂hu
∂x (L, .)p(L, .)− ∂hu

∂x (0, .)p(0, .)
]

I (∇u0L, h0) = −
∫ L

0
h0(., 0)p(., 0)
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The adjoint method The adjoint method as a constrained minimization

∇L = (∇pL,∇uL,∇u0L) = 0

I ∇pL = 0 ⇐⇒ ∂u
∂t + u ∂u

∂x − ν
∂2u
∂x2 = f ∀x ∀t

I

∇uL = 0 ⇐⇒


∂p
∂t + u ∂p

∂x + ν
∂2p
∂x2 = u − uobs

p(x ,T ) = 0 ∀x
p(0, t) = p(L, t) = 0 ∀t

I ∇u0L = −p(., 0) = 0

Optimality system
This set of equations (direct model, adjoint model, Euler equation) is
called the optimality system. It gathers all the information of the data
assimilation problem.
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The adjoint method The adjoint method as a constrained minimization

Thank you !

E. Blayo - Variational approach to data assimilation


	Introduction: model problem
	Definition and minimization of the cost function
	Least squares problems
	Linear (time independent) problems

	The adjoint method
	Rationale
	A simple example
	A more complex (but still linear) example
	Control of the initial condition
	The adjoint method as a constrained minimization


