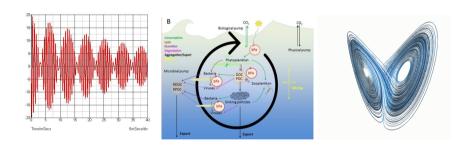
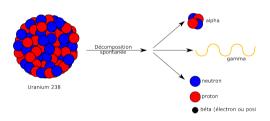
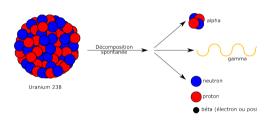
Ordinary Differential Equations





Observation: the variation in the quantity of radioactive nuclei is proportional to their quantity and to the elapsed time.

Radioactivité naturelle



Observation: the variation in the quantity of radioactive nuclei is proportional to their quantity and to the elapsed time.

$$N(t + \Delta t) - N(t) \propto \Delta t \, N(t) \quad \Longrightarrow_{\Delta t o 0} \, N'(t) = -\lambda \, N(t)$$

N(t): quantity of radioactive nuclei at time t, and $\lambda > 0$

Multiplication by
$$e^{\lambda t}$$
: $N'(t) e^{\lambda t} + \lambda N(t) e^{\lambda t} = 0$, i.e. $(N(t) e^{\lambda t})' = 0$

Hence
$$N(t) = C e^{-\lambda t} = N(0) e^{-\lambda t}$$

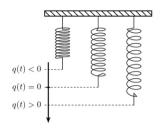
Multiplication by
$$e^{\lambda t}$$
: $N'(t) e^{\lambda t} + \lambda N(t) e^{\lambda t} = 0$, i.e. $(N(t) e^{\lambda t})' = 0$

Hence
$$N(t) = C e^{-\lambda t} = N(0) e^{-\lambda t}$$

Half-life time:
$$N(t) = \frac{N(0)}{2}$$
 for $e^{-\lambda t} = \frac{1}{2}$, i.e. $t_{half} = \frac{\ln 2}{\lambda}$

- lodine 131: $t_{half} \simeq 8 \text{ days}$
- ightharpoonup Cesium 137: $t_{half} \simeq 30$ years
- Plutonium 239: $t_{half} \simeq 24\,110$ years

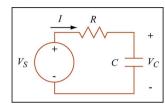
Example #2 : mass - spring system



Second law of dynamics: $m \, q''(t) + k \, q(t) = 0$ $(k > 0 : {\sf spring stiffness})$

$$q(t) = A\cos\omega t + B\sin\omega t$$
 , with $\omega = \sqrt{rac{k}{m}}$

Example #3: RC circuit

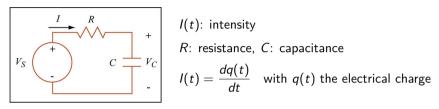


I(t): intensity

R: resistance, C: capacitance

$$I(t) = rac{dq(t)}{dt}$$
 with $q(t)$ the electrical charge

Example #3: RC circuit



I(t): intensity

$$q(t) = rac{dq(t)}{dt}$$
 with $q(t)$ the electrical charge

$$V_{S}(t) = V_{R}(t) + V_{C}(t)$$

$$= R I(t) + \frac{q(t)}{C} = R \frac{dq}{dt}(t) + \frac{q(t)}{C}$$

$$R \frac{dq}{dt}(t) + \frac{1}{C} q(t) = V_{S}(t)$$

Example #4 : viral epidemic (system of ODEs)

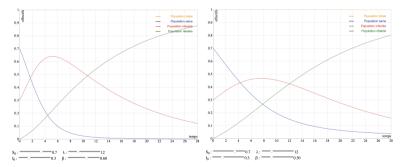
The SIR model

Susceptible individuals

Infectious individuals

Removed (and immune) or deceased individuals

$$\begin{cases} S'(t) &= -\beta I(t)S(t) \\ I'(t) &= \beta I(t)S(t) - \lambda I(t) \\ R'(t) &= \lambda I(t) \end{cases}$$



Further information:

https://interstices.info/modeliser-la-propagation-dune-epidemie/

A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called right-hand side (r.h.s.) of (E). They are generally put on the right-hand side of the equation, hence this name.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called right-hand side (r.h.s.) of (E). They are generally put on the right-hand side of the equation, hence this name.
- Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called right-hand side (r.h.s.) of (E). They are generally put on the right-hand side of the equation, hence this name.
- Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.
- Let (E) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (E) with 0 is called its corresponding homogeneous equation.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called right-hand side (r.h.s.) of (E). They are generally put on the right-hand side of the equation, hence this name.
- Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.
- Let (E) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (E) with 0 is called its corresponding homogeneous equation.
- Let (E) be a differential equation and (E_0) its associated homogeneous equation. (E) is linear if and only if the solutions of (E_0) are stable by linear combination. In other words, if y_0 and z_0 are two solutions of (E_0) , then $\lambda y_0 + \mu z_0$ is also a solution of (E_0) , $\forall (\lambda, \mu) \in \mathbb{R} \times \mathbb{R}$.

Otherwise (E) is said to be nonlinear.

Alfred Lotka (1880 - 1949)

Vito Volterra (1860 - 1940)

$$X(t) =$$
quantity of preys $Y(t) =$ quantity of predators

$$X(t) =$$
quantity of preys $Y(t) =$ quantity of predators

▶ If no predators: population of preys increases (hyp: constant rate) X'(t) = aX(t)

$$X(t) =$$
quantity of preys $Y(t) =$ quantity of predators

- ▶ If no predators: population of preys increases (hyp: constant rate)
- If no preys: population of predators decreases (hyp: constant rate) Y'(t) = -c Y(t)

X'(t) = aX(t)

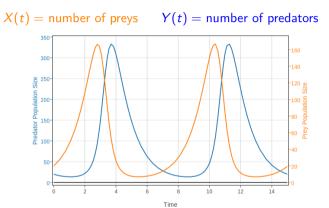
$$X(t) =$$
quantity of preys $Y(t) =$ quantity of predators

- ▶ If no predators: population of preys increases (hyp: constant rate) X'(t) = aX(t)
- If no preys: population of predators decreases (hyp: constant rate) Y'(t) = -c Y(t)
- ▶ Hyp: prey mortality rate \propto number of predators X'(t) = (a-b Y(t)) X(t)

$$X(t) =$$
quantity of preys $Y(t) =$ quantity of predators

- ▶ If no predators: population of preys increases (hyp: constant rate) X'(t) = aX(t)
- If no preys: population of predators decreases (hyp: constant rate) Y'(t) = -c Y(t)
- ▶ Hyp: prey mortality rate \propto number of predators X'(t) = (a-b Y(t)) X(t)
- ▶ Hyp: predator growth rate \propto number of preys Y'(t) = (-c+dX(t))Y(t)

$$\begin{cases} X'(t) = (a - b Y(t)) X(t) \\ Y'(t) = (-c + d X(t)) Y(t) \end{cases}$$



Example #6: chaos and butterfly effect

Chaotic systems: small initial perturbations may lead to huge final differences (atmosphere, ocean, climate are chaotic systems).

Edward Lorenz (1917-2008)

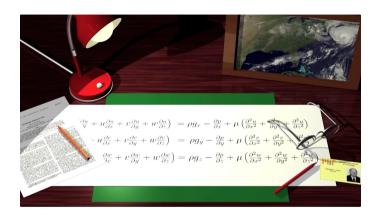
Ellen Fette (1940 –)

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = \rho x - y - xz$$

$$\frac{dz}{dt} = xy - \beta z$$

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas? (139th meeting of the American Association for the Advancement of Science, 1972)



http://www.chaos-math.org

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called right-hand side (r.h.s.) of (E). They are generally put on the right-hand side of the equation, hence this name.
- Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.
- Let (E) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (E) with 0 is called its corresponding homogeneous equation.
- Let (E) be a differential equation and (E_0) its associated homogeneous equation. (E) is linear if and only if the solutions of (E_0) are stable by linear combination. In other words, if y_0 and z_0 are two solutions of (E_0) , then $\lambda y_0 + \mu z_0$ is also a solution of (E_0) , $\forall (\lambda, \mu) \in \mathbb{R} \times \mathbb{R}$.

Otherwise (E) is said to be nonlinear.

linear	homogeneous	order
(yes/no)	(yes/no)	

1.
$$z'(x) + x^3 z(x) = \sqrt{x}$$

2.
$$y'(t) y(t) - t y(t) = \cos t$$

3.
$$y'(t)^2 + 3t^2y(t) - t = 0$$

4.
$$z^3 z' = 5 z$$

5.
$$e^{x} u''(x) - x u(x) = 0$$

$$5. yy' + y - t = 0$$

7.
$$z^2 z' = \sqrt{z}$$

8.
$$\cos x y''(x) + x^2 y(x) + x = 0$$

linear	homogeneous	order
(yes/no)	(yes/no)	

1.
$$z'(x) + x^3 z(x) = \sqrt{x}$$

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$			

		linear (yes/no)	homogeneous (yes/no)	order
1	//) + 3 /)			-1
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t)-t\ y(t)=\cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t)-t\ y(t)=\cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t)-t\ y(t)=\cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^{x} u''(x) - x u(x) = 0$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t)-t\ y(t)=\cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5 .	$e^{x} u''(x) - x u(x) = 0$	yes	yes	2
6.	yy'+y-t=0			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t)-t\ y(t)=\cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^{x} u''(x) - x u(x) = 0$	yes	yes	2
6.	yy'+y-t=0	no	no	1
7.	$z^2 z' = \sqrt{z}$			

		linear (yes/no)	homogeneous (yes/no)	order
_	//) . 3 /) /			
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t)-t\ y(t)=\cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^{x} u''(x) - x u(x) = 0$	yes	yes	2
6.	yy'+y-t=0	no	no	1
7.	$z^2 z' = \sqrt{z}$	no	yes	1
8.	$\cos x y''(x) + x^2 y(x) + x = 0$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t)-t\ y(t)=\cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^{x} u''(x) - x u(x) = 0$	yes	yes	2
6.	yy'+y-t=0	no	no	1
7.	$z^2 z' = \sqrt{z}$	no	yes	1
8.	$\cos x y''(x) + x^2 y(x) + x = 0$	yes	no	2

First-order linear ODEs

M1 AM - refresher Ordinary differential equations 16

Solutions of a first-order linear ODE

A first-order linear ODE reads a(t) y'(t) + b(t) y(t) = c(t) where a(t), b(t), c(t) are given functions. (E)

M1 AM - refresher Ordinary differential equations

Solutions of a first-order linear ODE

A first-order linear ODE reads a(t) y'(t) + b(t) y(t) = c(t) where a(t), b(t), c(t) are given functions. (E)

Principle of superposition

Let $u_p(x)$ a particular solution of (E).

The solutions of (E) are the functions $u(x) = u_p(x) + u_0(x)$, where u_0 represents the solutions of (E_0) .

In other words, the set of solutions of (E) is $S = u_p + S_0$, where S_0 denotes the set of solutions of (E_0) .

► **Step 0**: on which domain?

M1 AM - refresher Ordinary differential equations

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E)
$$y'(t) + \alpha(t) y(t) = \beta(t)$$
 where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E)
$$y'(t) + \alpha(t)y(t) = \beta(t)$$
 where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

► **Step 1**: solution of the associated homogeneous equation

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E)
$$y'(t) + \alpha(t)y(t) = \beta(t)$$
 where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

▶ Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t) y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

```
(E) y'(t) + \alpha(t)y(t) = \beta(t) where \alpha(t) = b(t)/a(t) and \beta(t) = c(t)/a(t)
```

- ▶ Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t) y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- **Step 2**: determination of a particular solution y_p of (E)

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E)
$$y'(t) + \alpha(t)y(t) = \beta(t)$$
 where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ▶ **Step 1**: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t) y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E)
$$y'(t) + \alpha(t)y(t) = \beta(t)$$
 where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ▶ Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t) y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

▶ Step 3 (possibly): connection of solutions between different intervals where a(t) does not cancel out : given solutions on $]t_1, t_2[$ and $]t_2, t_3[$, does it exist C^1 solutions on $]t_1, t_3[$?

$$(E_0)$$
 $y_0'(x) + \alpha(x) y_0(x) = 0$ $x \in I$

$$(E_0)$$
 $y_0'(x) + \alpha(x) y_0(x) = 0$ $x \in I$

Let A(x) a primitive of $\alpha(x)$.

Multiplying (
$$E_0$$
) by $e^{A(x)}$: $e^{A(x)}\,y_0'(x)+\alpha(x)\,e^{A(x)}\,y_0(x)=0$ i.e. $\left(e^{A(x)}\,y_0(x)\right)'=0$ hence $e^{A(x)}\,y_0(x)={
m cste}$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

$$(E_0)$$
 $y_0'(x) + \alpha(x) y_0(x) = 0$ $x \in I$

Let A(x) a primitive of $\alpha(x)$.

Multiplying (
$$E_0$$
) by $e^{A(x)}$: $e^{A(x)}\,y_0'(x)+\alpha(x)\,e^{A(x)}\,y_0(x)=0$ i.e. $\left(e^{A(x)}\,y_0(x)\right)'=0$ hence $e^{A(x)}\,y_0(x)=\mathrm{cste}$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

► Conversely, any function of this form is a solution:

if
$$y_0(x)=K\,e^{-A(x)}$$
, then $y_0'(x)=-K\,\alpha(x)\,e^{-A(x)}$, hence $y_0'(x)+\alpha(x)\,y_0(x)=0$

$$(E_0)$$
 $y_0'(x) + \alpha(x) y_0(x) = 0$ $x \in I$

Let A(x) a primitive of $\alpha(x)$.

Multiplying (
$$E_0$$
) by $e^{A(x)}$: $e^{A(x)}\,y_0'(x)+\alpha(x)\,e^{A(x)}\,y_0(x)=0$ i.e. $\left(e^{A(x)}\,y_0(x)\right)'=0$ hence $e^{A(x)}\,y_0(x)=\mathrm{cste}$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

► Conversely, any function of this form is a solution:

if
$$y_0(x) = K e^{-A(x)}$$
, then $y_0'(x) = -K \alpha(x) e^{-A(x)}$, hence $y_0'(x) + \alpha(x) y_0(x) = 0$

▶ In summary: the set of solutions on I is $S_0 = \left\{ y_0/y_0(x) = K \, e^{-A(x)} \quad \text{with } K \in \mathbb{R} \right\}$

$$(E_0) \qquad (1+x)\,y_0'(x)+y_0(x)=0$$

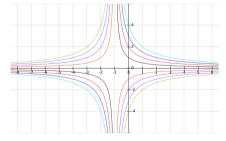
$$(E_0) \qquad (1+x)y_0'(x) + y_0(x) = 0$$

On
$$I =]-\infty; -1[$$
 or $I =]-1; +\infty[$: (E_0) becomes $y_0'(x) + \frac{1}{1+x}y_0(x) = 0.$

A primitive of
$$\alpha(x)=\dfrac{1}{1+x}$$
 is $A(x)=\ln|1+x|$. Hence $e^{-A(x)}=\dfrac{1}{|1+x|}$

Hence the solutions on *I*:

$$y_0(x) = \frac{K}{1+x}$$
 $K \in \mathbb{R}$



$$(E_0)$$
 $u'_0(t) + \tan(t) u_0(t) = 0$

$$(E_0)$$
 $u_0'(t) + \tan(t) u_0(t) = 0$

On
$$I = \left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$$
, or any other interval $I = \left] - \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$.

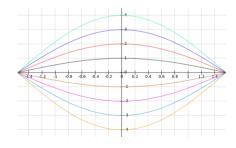
$$(E_0)$$
 $u_0'(t) + \tan(t) u_0(t) = 0$

On
$$I=\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$$
, or any other interval $I=\left]-\frac{\pi}{2}+k\pi;\frac{\pi}{2}+k\pi\right[$.

A primitive of
$$\alpha(t) = \tan(t)$$
 is $A(t) = -\ln|\cos(t)|$. Hence $e^{-A(t)} = |\cos(t)|$

Hence the solutions on I:

$$u_0(t) = K \cos t \qquad K \in \mathbb{R}$$



Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

handbook of usual primitives

	Fonction		Primitives
	x^{α}	$(\alpha \in \mathbb{R}, \alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1} + C$
et aussi	$(x-a)^{\alpha}$	$(\alpha \in \mathbb{R}, \alpha \neq -1)$	$\frac{(x-a)^{\alpha+1}}{\alpha+1}+C$
	$\frac{1}{x}$		$\ln x + C$
et aussi	$\frac{1}{x-a}$		$\ln x-a + C$
	e^x		$e^x + C$
et aussi	$e^{\alpha x}$	$\alpha \neq 0$	$\frac{1}{\alpha}e^{\alpha x} + C$
	$\cos x$		$\sin x + C$
et aussi	$\cos(\alpha x)$	$\alpha \neq 0$	$\frac{1}{\alpha}\sin(\alpha x) + C$
	$\sin x$		$-\cos x + C$
et aussi	$\sin(\alpha x)$	$\alpha \neq 0$	$\frac{-1}{\alpha}\cos(\alpha x) + C$
	1 _ 1 + + + + + = =		ton m + C

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

- handbook of usual primitives
- ► integration by parts

$$(uv)'=u'v+uv'.$$
 Thus $\int (uv)'=uv=\int u'v+\int uv'.$ i.e. $\int u'v=uv-\int uv'$

•
$$\int \ln x \ dx$$
 — En posant $u=x$ et $v=\ln x$:
$$\int \ln x \ dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - \int dx = x \ln x - x + C$$

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

- handbook of usual primitives
- integration by parts
- change of variable

$$\bullet \ I = \int_a^b x e^{x^2} \, dx \qquad - \quad \text{On pose } u = x^2. \ \text{Alors } du = 2x \ dx, \ d' \text{où} :$$

$$I = \int_{x=a}^{x=b} x e^{x^2} \, dx = \frac{1}{2} \int_{u=a^2}^{u=b^2} e^u \, du = \frac{1}{2} [e^u]_{a^2}^{b^2} = \frac{e^{b^2} - e^{a^2}}{2}$$

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E)
$$y'(t) + \alpha(t)y(t) = \beta(t)$$
 where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ▶ Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t) y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

Step 3 (possibly): connection of solutions between different intervals where a(t) does not cancel out: given solutions on $]t_1, t_2[$ and $]t_2, t_3[$, does it exist C^1 solutions on $]t_1, t_3[$?

(E)
$$y'(x) + \alpha(x)y(x) = \beta(x)$$

If the right-hand side $\beta(x)$ is a polynomial, or a linear combination of exponentials, or a linear combination of sine and cosine functions, and if $\alpha(x)$ is constant or of similar nature as $\beta(x)$, then it may exist a particular solution $u_p(x)$ in a form similar to that of $\beta(x)$.

→ simple method, but which is not always successful

Example: $y'(t) + (2t+1)y(t) = 6t^2 - t + 1$

Example: $y'(t) + (2t+1)y(t) = 6t^2 - t + 1$

If y(t) is a degree n polynomial, y'(t) is a degree n-1 pol. and (2t+1)y(t) is a degree n+1 pol. Thus y'(t)+(2t+1)y(t) is a degree n+1 pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Example:
$$y'(t) + (2t+1)y(t) = 6t^2 - t + 1$$

If y(t) is a degree n polynomial, y'(t) is a degree n-1 pol. and (2t+1)y(t) is a degree n+1 pol. Thus y'(t)+(2t+1)y(t) is a degree n+1 pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Let inject
$$y_p(t) = at + b$$
 in (E) :

$$a + (2t+1)(at+b) = 6t^2 - t + 1$$

thus
$$2at^2 + (a+2b)t + a + b = 6t^2 - t + 1$$

Hence
$$2a = 6$$
, $a + 2b = -1$, $a + b = 1$. Thus $a = 3$, $b = -2$.

$$y_p(t) = 3t - 2$$
 is a particular solution of (E) .

Example:
$$y'(t) + (2t+1)y(t) = 6t^2 - t + 1$$

If y(t) is a degree n polynomial, y'(t) is a degree n-1 pol. and (2t+1)y(t) is a degree n+1 pol. Thus y'(t)+(2t+1)y(t) is a degree n+1 pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Let inject
$$y_p(t) = at + b$$
 in (E) :

$$a + (2t+1)(at+b) = 6t^2 - t + 1$$

thus
$$2at^2 + (a+2b)t + a + b = 6t^2 - t + 1$$

Hence
$$2a = 6$$
, $a + 2b = -1$, $a + b = 1$. Thus $a = 3$, $b = -2$.

$$y_p(t) = 3t - 2$$
 is a particular solution of (E) .

It's miraculous : 3 equations for 2 unknowns (a, b).

If one changes a coefficient in the r.h.s., it does not work anymore.

For instance:
$$y'(t) + (2t + 1)y(t) = 6t^2 - t$$

$$2a = 6$$
, $a + 2b = -1$, $a + b = 0 \longrightarrow$ no solution.

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$

3.
$$z'(x) - 3z(x) = \sin 3x$$

4.
$$u' + 3u = 5e^{2x} + 6e^{-x}$$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$
 $\longrightarrow y_p(t) = at^2 + bt + c$ $y_p(t) = t^2 - 1$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$
 $\longrightarrow y_p(t) = at^2 + bt + c$

$$y_p(t)=t^2-1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$
 $\longrightarrow y_p(t) = at^2 + bt + c$

$$y_p(t)=t^2-1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$
 $\longrightarrow f_p(t) = a \sin t + b \cos t$

$$f_p(t) = \frac{1}{2}\sin t - \frac{3}{2}\cos t$$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$
 $\longrightarrow y_p(t) = at^2 + bt + c$

$$y_p(t)=t^2-1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$
 $\longrightarrow f_p(t) = a \sin t + b \cos t$

$$f_p(t) = \frac{1}{2}\sin t - \frac{3}{2}\cos t$$

3.
$$z'(x) - 3z(x) = \sin 3x$$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$
 $\longrightarrow y_p(t) = at^2 + bt + c$

$$y_p(t)=t^2-1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$
 $\longrightarrow f_p(t) = a \sin t + b \cos t$

$$f_p(t) = \frac{1}{2}\sin t - \frac{3}{2}\cos t$$

3.
$$z'(x) - 3z(x) = \sin 3x$$
 $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$

$$z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$
 $\longrightarrow y_p(t) = at^2 + bt + c$

$$y_p(t)=t^2-1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$
 $\longrightarrow f_p(t) = a \sin t + b \cos t$

$$f_p(t) = \frac{1}{2}\sin t - \frac{3}{2}\cos t$$

3.
$$z'(x) - 3z(x) = \sin 3x$$
 $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$

$$z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$$

4.
$$u' + 3u = 5e^{2x} + 6e^{-x}$$

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$
 $\longrightarrow y_p(t) = at^2 + bt + c$

$$y_p(t)=t^2-1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$
 $\longrightarrow f_p(t) = a \sin t + b \cos t$

$$f_p(t) = \frac{1}{2}\sin t - \frac{3}{2}\cos t$$

3.
$$z'(x) - 3z(x) = \sin 3x$$
 $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$

$$z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$$

4.
$$u' + 3u = 5e^{2x} + 6e^{-x}$$
 $\longrightarrow u_p(x) = ae^{2x} + be^{-x}$

$$u_p(x) = e^{2x} + 3e^{-x}$$

(E)
$$y'(x) + \alpha(x)y(x) = \beta(x)$$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

(E)
$$y'(x) + \alpha(x)y(x) = \beta(x)$$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then
$$y_p'(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$$
.

(E)
$$y'(x) + \alpha(x)y(x) = \beta(x)$$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then
$$y_p'(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$$
. Thus:

$$y'_{p}(x) + \alpha(x) y_{p}(x) = \underbrace{K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}}_{y'_{p}} + \alpha(x) \underbrace{K(x) e^{-A(x)}}_{y_{p}}$$
$$= K'(x) e^{-A(x)}$$

(E)
$$y'(x) + \alpha(x)y(x) = \beta(x)$$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then
$$y_p'(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$$
. Thus:

$$y'_{p}(x) + \alpha(x) y_{p}(x) = \underbrace{K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}}_{y'_{p}} + \alpha(x) \underbrace{K(x) e^{-A(x)}}_{y_{p}}$$
$$= K'(x) e^{-A(x)}$$

Hence $K'(x) = \beta(x) e^{A(x)}$. Hence K(x) by integration. Hence $y_p(x)$.

(E)
$$y'(x) + 2x y(x) = 2x e^{-x^2}$$

(E)
$$y'(x) + 2xy(x) = 2xe^{-x^2}$$

Solutions of
$$(E_0)$$
 $y_0'(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

(E)
$$y'(x) + 2xy(x) = 2xe^{-x^2}$$

Solutions of
$$(E_0)$$
 $y_0'(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E):

$$\underbrace{K'(x) e^{-x^2} + K(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{K(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then K'(x) = 2x.

(E)
$$y'(x) + 2x y(x) = 2x e^{-x^2}$$

Solutions of
$$(E_0)$$
 $y_0'(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E):

$$\underbrace{K'(x) e^{-x^2} + K(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{K(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then K'(x) = 2x.

Hence $K(x) = x^2$ (no need to bother with the integration constant: one just looks for <u>one</u> particular solution).

Finally: $y_p(x) = x^2 e^{-x^2}$

(E)
$$y'(x) + 2x y(x) = 2x e^{-x^2}$$

Solutions of
$$(E_0)$$
 $y_0'(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E):

$$\underbrace{K'(x) e^{-x^2} + K(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{K(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}$$

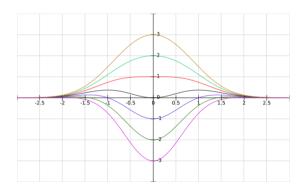
thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then K'(x) = 2x.

Hence $K(x) = x^2$ (no need to bother with the integration constant: one just looks for <u>one</u> particular solution).

Finally: $y_p(x) = x^2 e^{-x^2}$

The solutions of (*E*): $y(x) = x^2 e^{-x^2} + K e^{-x^2} = (x^2 + K) e^{-x^2}$ $K \in \mathbb{R}$

(E)
$$y'(x) + 2x y(x) = 2x e^{-x^2}$$



Solutions:
$$y(x) = x^2 e^{-x^2} + K e^{-x^2} = (x^2 + K) e^{-x^2}$$
 $K \in \mathbb{R}$

Solving a first-order linear ODE

Step 0: on which domain? \longrightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E)
$$y'(t) + \alpha(t)y(t) = \beta(t)$$
 where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ▶ Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t) y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

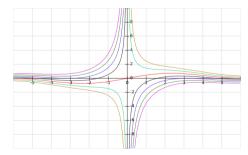
▶ Step 3 (possibly): connection of solutions between different intervals where a(t) does not cancel out: given solutions on $]t_1, t_2[$ and $]t_2, t_3[$, does it exist C^1 solutions on $]t_1, t_3[$?

(E)
$$tz'(t) + z(t) - \sin t = 0$$

Solutions de (E) are:

$$ightharpoonup$$
 on $]-\infty,0[: z_-(t)=-rac{\cos t}{t}+rac{\mathcal{K}_-}{t} \qquad \mathcal{K}_-\in\mathbb{R}$

$$ightharpoonup$$
 on $]0,+\infty[: z_+(t)=-rac{\cos t}{t}+rac{K_+}{t}$ $K_+\in\mathbb{R}$



What are the solutions of (E) on \mathbb{R} ?

i.e. what are the possible continuous and differentiable connections at t=0 between a function z_{-} and a function z_{+} ?

▶ on
$$]-\infty,0[: z_-(t)=-\frac{\cos t}{t}+\frac{K_-}{t}$$
 $K_-\in\mathbb{R}$

$$ightharpoonup$$
 on $]0,+\infty[: z_+(t)=-rac{\cos t}{t}+rac{K_+}{t} \qquad K_+\in\mathbb{R}$

Continuity:

$$\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}$$

$$\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}$$

on
$$]-\infty,0[: z_-(t)=-\frac{\cos t}{t}+\frac{K_-}{t}$$
 $K_-\in\mathbb{R}$

$$ightharpoonup$$
 on $]0,+\infty[: z_+(t)=-rac{\cos t}{t}+rac{K_+}{t} \qquad K_+\in\mathbb{R}$

Continuity:

$$\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}$$

$$\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}$$

The only possible choice for a continuous connection at t=0 is thus $K_-=K_+=1$.

Let
$$z^*(t) = \begin{cases} \frac{1-\cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}$$

on
$$]-\infty,0[: z_-(t)=-\frac{\cos t}{t}+\frac{K_-}{t}$$
 $K_-\in\mathbb{R}$

$$ightharpoonup$$
 on $]0,+\infty[: z_+(t)=-rac{\cos t}{t}+rac{K_+}{t} \qquad K_+\in\mathbb{R}$

Continuity:

$$\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}$$

$$\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}$$

The only possible choice for a continuous connection at t=0 is thus $K_-=K_+=1$.

Let
$$z^*(t) = \begin{cases} \frac{1-\cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}$$

 \longrightarrow Remaining point: is z^* differentiable at t=0?

$$z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}$$

Differentiability:
$$z^{*'}(t) = \frac{\sin t}{t} + \frac{\cos t - 1}{t^2}$$
 for $t \neq 0$.

In the vicinity of 0:
$$z^{*'}(t) = \frac{t + O(t^3)}{t} + \frac{(1 - t^2/2 + O(t^4)) - 1}{t^2} = 1 - \frac{1}{2} + O(t^2) = \frac{1}{2} + O(t^2).$$

So $z^{*'}(0) = \frac{1}{2}$. z^* is thus differentiable in 0, and its derivative is continuous.

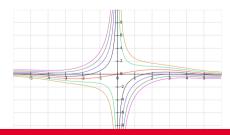
$$z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}$$

Differentiability: $z^{*'}(t) = \frac{\sin t}{t} + \frac{\cos t - 1}{t^2}$ for $t \neq 0$.

In the vicinity of 0:
$$z^{*'}(t) = \frac{t + O(t^3)}{t} + \frac{(1 - t^2/2 + O(t^4)) - 1}{t^2} = 1 - \frac{1}{2} + O(t^2) = \frac{1}{2} + O(t^2)$$
.

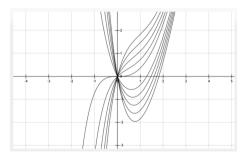
So $z^{*'}(0) = \frac{1}{2}$. z^* is thus differentiable in 0, and its derivative is continuous.

 z^* is the unique \mathcal{C}^1 solution of (E) on \mathbb{R} .



(E)
$$y'(x) + \frac{x-1}{x}y(x) = x^2$$

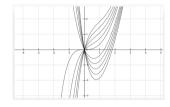
- ▶ on] $-\infty$, 0[: $y_{-}(x) = x^{2} x + K_{-} \times e^{-x}$ $K_{-} \in \mathbb{R}$
- on $]0, +\infty[: y_+(x) = x^2 x + K_+ \times e^{-x} \quad K_+ \in \mathbb{R}$



Given those solutions, what are the solutions of (E) on \mathbb{R} ? i.e. what are the possible continuous and differentiable connections at x = 0 between a function y_- and a function y_+ ?

The solutions of (E) on \mathbb{R}^* are the functions

$$y(x) = \begin{cases} x^2 - x + K_- x e^{-x} & \text{on }] - \infty, 0[\\ x^2 - x + K_+ x e^{-x} & \text{on }]0, +\infty[\end{cases}$$



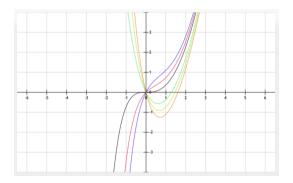
Continuity: $\lim_{x\to 0^-} y(x) = 0$ and $\lim_{x\to 0^+} y(x) = 0$. Thus any branch of solution on $]-\infty,0[$ is continuously connected to any branch of solution on $]0,+\infty[$.

Differentiability:
$$(x^2 - x + K \times e^{-x})' = 2x - 1 + K (1 - x) e^{-x}$$
. Thus $\lim_{x \to 0^-} y'(x) = -1 + K_-$ and $\lim_{x \to 0^+} y(x) = -1 + K_+$.

Thus a branch of solution on $]-\infty,0[$ connects smoothly to a branch of solution on $]0,+\infty[$ iff $K_-=K_+.$

(E)
$$y'(x) + \frac{x-1}{x}y(x) = x^2$$

The solutions of (E) on \mathbb{R} are the functions $y(x) = x^2 - x + Kxe^{-x}$, $K \in \mathbb{R}$



And what for first-order nonlinear differential equations?

M1 AM - refresher Ordinary differential equations 3

And what for first-order nonlinear differential equations?

- No fully general method
- A simple method for separable differential equations
- ► Some methods, on a case-by-case basis (often by a change of unknown function), for some particular equations

M1 AM - refresher Ordinary differential equations 3

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Computation method (schematically)

$$y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)$$

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Computation method (schematically)

$$y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)$$
 $\iff \int \frac{y'(t)}{g(y(t))} = \int f(t)$
 $\iff H(y(t)) = F(t) + C \text{ where } H \text{ is a primitive of } 1/g$
 $F \text{ a primitive of } f, \text{ and } C \in \mathbb{R}$

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Computation method (schematically)

$$y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)$$

$$\iff \int \frac{y'(t)}{g(y(t))} = \int f(t)$$

$$\iff H(y(t)) = F(t) + C \text{ where } H \text{ is a primitive of } 1/g$$

$$F \text{ a primitive of } f, \text{ and } C \in \mathbb{R}$$

$$\iff y(t) = H^{-1}(F(t) + C) \quad C \in \mathbb{R}$$

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

1. $y'(t) - y^3(t) \sin 2t = 0$	YES - NO
2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$	YES - NO
3. $y'(t) - y^3(t) \sin 2t + (2t+1)y(t) = 0$	YES - NO
4. $y'(t) - y^3(t) \sin 2t - \sin 2t + 1 + y^3(t) = 0$	YES - NO
5. $e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$	YES - NO
6. $t u'(t) - u(t) + e^{u'(t)} = 0$	YES - NO
7. $f'(t) - f(t) = t f^2(t)$	YES - NO
8. $xy'(x) - \sin(x)\cos(y^2(x)) = 0$	YES - NO

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

$$y'(t) = y^{3}(t) \sin 2t$$
 $g(X) = X^{3}$ $f(t) = \sin 2t$

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

$$y'(t) = y^{3}(t) \sin 2t$$
 $g(X) = X^{3}$ $f(t) = \sin 2t$

2.
$$y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$$

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

YES - NO

$$y'(t) = y^{3}(t) \sin 2t$$
 $g(X) = X^{3}$ $f(t) = \sin 2t$

2.
$$y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$$

Definition A first-order differential equation is separable iff it can be written as v'(t) = g(v(t)) f(t).

Are the following equations separable?

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

YES - NO

$$y'(t) = y^{3}(t) \sin 2t$$
 $g(X) = X^{3}$ $f(t) = \sin 2t$

$$g(X) = X^3 \quad f(t) = \sin 2t$$

2.
$$y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$$

3.
$$y'(t) - y^3(t) \sin 2t + (2t+1)y(t) = 0$$

Definition A first-order differential equation is separable iff it can be written as v'(t) = g(v(t)) f(t).

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

$$y'(t) = y^3(t) \sin 2t$$

$$y'(t) = y^{3}(t) \sin 2t$$
 $g(X) = X^{3}$ $f(t) = \sin 2t$

2.
$$y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$$

3.
$$y'(t) - y^3(t) \sin 2t + (2t+1)y(t) = 0$$

Definition A first-order differential equation is separable iff it can be written as v'(t) = g(v(t)) f(t).

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

$$y'(t) = y^3(t) \sin t$$

$$y'(t) = y^{3}(t) \sin 2t$$
 $g(X) = X^{3}$ $f(t) = \sin 2t$

2.
$$y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$$

3.
$$y'(t) - y^3(t) \sin 2t + (2t+1)y(t) = 0$$

4.
$$y'(t) - y^3(t) \sin 2t - \sin 2t + 1 + y^3(t) = 0$$

DefinitionA first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

1.
$$y'(t) - y^3(t) \sin 2t = 0$$

$$y'(t) = y^{3}(t) \sin 2t$$
 $g(X) = X^{3}$ $f(t) = \sin 2t$

2.
$$y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$$

3.
$$y'(t) - y^3(t) \sin 2t + (2t+1)y(t) = 0$$

4.
$$y'(t) - y^3(t) \sin 2t - \sin 2t + 1 + y^3(t) = 0$$

$$y'(t) = (y^3(t) + 1)(\sin(2t) - 1)$$
 $g(X) = X^3 + 1$ $f(t) = \sin(2t) - 1$

DefinitionA first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

DefinitionA first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

$$z'(x) = -z^{2}(x)e^{-z(x)} \ln x$$
 $g(X) = -X^{2}e^{-X}$ $f(t) = \ln t$

DefinitionA first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

$$z'(x) = -z^{2}(x)e^{-z(x)} \ln x$$
 $g(X) = -X^{2}e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$

DefinitionA first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

YES - NO

$$z'(x) = -z^{2}(x)e^{-z(x)} \ln x$$
 $g(X) = -X^{2}e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$

DefinitionA first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

YES - NO

$$z'(x) = -z^{2}(x)e^{-z(x)} \ln x$$
 $g(X) = -X^{2}e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$

7.
$$f'(t) - f(t) = t f^2(t)$$

DefinitionA first-order differential équation is separable iff it can be written as v'(t) = g(v(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

$$z'(x) = -z'(x)e^{-z(x)}$$

$$z'(x) = -z^2(x)e^{-z(x)} \ln x$$
 $g(X) = -X^2 e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$

7.
$$f'(t) - f(t) = t f^2(t)$$

DefinitionA first-order differential équation is separable iff it can be written as v'(t) = g(v(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

$$z'(x) = -z''(x)e^{-z(x)}$$

$$z'(x) = -z^{2}(x)e^{-z(x)} \ln x$$
 $g(X) = -X^{2}e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$

7.
$$f'(t) - f(t) = t f^2(t)$$

8.
$$xy'(x) - \sin(x) \cos(y^2(x)) = 0$$

Definition A first-order differential equation is separable iff it can be written as v'(t) = g(v(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

$$z'(x) = -z^2(x)e^{-2(x)}$$

$$z'(x) = -z^{2}(x)e^{-z(x)} \ln x$$
 $g(X) = -X^{2}e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$

7.
$$f'(t) - f(t) = t f^2(t)$$

8.
$$xy'(x) - \sin(x) \cos(y^2(x)) = 0$$

$$y'(x) = \frac{\sin x}{x} \cos(y^2(x)) \qquad g(X) = \cos(X^2) \quad f(t) = \frac{\sin t}{t}$$

$$e^{-t} y'(t) - t y^2(t) = 0$$

$$e^{-t} y'(t) - t y^2(t) = 0$$

Let assume that y(t) does not cancel. Then $\frac{y'(t)}{y^2(t)} = t e^t$, which leads to:

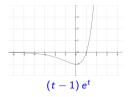
$$\int \frac{y'(t)}{y^2(t)} dt = \int t e^t dt$$

$$\iff -\frac{1}{y(t)} = (t-1) e^t + C \qquad \text{(by IBP)}$$

$$\iff y(t) = \frac{-1}{(t-1) e^t + C} \qquad C \in \mathbb{R}$$

We see a posteriori that y does indeed not cancel. Its definition domain depends on the integration constant C.

For $C>1: \mathcal{D}_y=\mathbb{R}$ For $C=1: \mathcal{D}_y=\mathbb{R}^*$ For $0< C<1: \mathcal{D}_y=\mathbb{R}$ except 2 forbidden values For $C\leq 0: \mathcal{D}_v=\mathbb{R}$ except 1 forbidden value



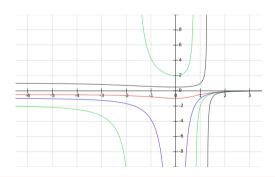
$$y(t) = \frac{-1}{(t-1)e^t + C} \qquad C \in \mathbb{R}$$

For C > 1: $\mathcal{D}_y = \mathbb{R}$

For $\mathit{C} = 1: \mathcal{D}_{\mathit{y}} = \mathbb{R}^*$

For 0 < C < 1: $\mathcal{D}_y = \mathbb{R}$ except 2 forbidden values

For $C \leq 0$: $\mathcal{D}_{v} = \mathbb{R}$ except 1 forbidden value



$$y(t) = \frac{-1}{(t-1)e^t + 2}$$

$$y(t) = \frac{-1}{(t-1)e^t + 1}$$

$$y(t) = \frac{-1}{(t-1)e^t + 0.5}$$

$$y(t) = \frac{-1}{(t-1)e^t - 1}$$

$$(E) \qquad x\,y' + \frac{3}{y} = 0$$

$$(E) \qquad x\,y' + \frac{3}{y} = 0$$

On $I=]-\infty,0[$ or $]0,+\infty[$, we have: $y\,y'=-\frac{3}{x}$, which leads by integration to: $\frac{1}{2}y^2(x)=-3\ln|x|+C$, hence $y(x)=\pm\sqrt{-6\ln|x|+K}$ $(K=2C\in\mathbb{R})$

$$(E) \qquad xy' + \frac{3}{y} = 0$$

On $I=]-\infty,0[$ or $]0,+\infty[$, we have: $y\,y'=-\frac{3}{x}$, which leads by integration to: $\frac{1}{2}y^2(x)=-3\ln|x|+C$, hence $y(x)=\pm\sqrt{-6\ln|x|+K}$ $(K=2C\in\mathbb{R})$

The domain of y is given by the condition $-6 \ln |x| + K \ge 0$, i.e. $|x| \le e^{K/6}$.

$$(E) \qquad xy' + \frac{3}{y} = 0$$

On $I=]-\infty,0[$ or $]0,+\infty[$, we have: $y\,y'=-\frac{3}{x}$, which leads by integration to: $\frac{1}{2}y^2(x)=-3\ln|x|+C$, hence $y(x)=\pm\sqrt{-6\ln|x|+K}$ $(K=2C\in\mathbb{R})$

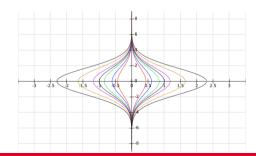
The domain of y is given by the condition $-6 \ln |x| + K \ge 0$, i.e. $|x| \le e^{K/6}$.

In summary:

 $\forall K \in \mathbb{R},$

$$\begin{cases} y_{K,-}(x) = -\sqrt{-6\ln|x| + K} \\ y_{K,+}(x) = \sqrt{-6\ln|x| + K} \end{cases}$$

are solutions of (E) on $[-e^{K/6}, 0[\cup]0, e^{K/6}]$.



Second-order linear differential equations with constant coefficients

M1 AM - refresher Ordinary differential equations 46

Second-order linear ODEs with constant coefficients

(E)
$$au''(x) + bu'(x) + cu(x) = f(x)$$
 with $a, b, c \in \mathbb{R}$ and $a \neq 0$

Principle of superposition $S = u_p + S_0$, where $u_p(x)$ is a particular solution of (E) and S_0 is the set of solutions of the associated homogeneous equation (E_0) .

Solutions of (E_0) Let $P(X) = aX^2 + bX + c$ the *characteristic polynomial* associated to (E_0) , and $\Delta = b^2 - 4ac$ its discriminant. Then:

- ▶ if $\Delta > 0$, $u_0(x) = Ae^{r_1x} + Be^{r_2x}$ $A, B \in \mathbb{R}$, where $r_1 = \frac{-b \sqrt{\Delta}}{2a}$ and $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$ are the two real roots of P.
- ▶ if $\Delta = 0$, $u_0(x) = (Ax + B)e^{rx}$ $A, B \in \mathbb{R}$, where $r = \frac{-b}{2a}$ is the unique root of P.
- ▶ if $\Delta < 0$, $u_0(x) = (A\cos\alpha x + B\sin\alpha x)e^{\beta x}$ $A, B \in \mathbb{R}$, where $\alpha = \frac{\sqrt{-\Delta}}{2a}$ and $\beta = \frac{-b}{2a}$.

Particular solution of (E) (similar to first-order equations) A particular solution u_p can be obtained either by analogy with the right-hand side (if simple), or by the method of variation of constants (i.e. replacing the constants A and B, or only one of them, by a function of x).