Ordinary Differential Equations

M1 AM - refresher

Radioactivité naturelle

Observation : the variation in the quantity of radioactive nuclei is proportional to their quantity and to the elapsed time.

Radioactivité naturelle

Observation : the variation in the quantity of radioactive nuclei is proportional to their quantity and to the elapsed time.

$$N(t + \Delta t) - N(t) \propto \Delta t N(t) \implies \Delta t \to 0 N'(t) = -\lambda N(t)$$

N(t): quantity of radioactive nuclei at time t, and $\lambda > 0$

Multiplication by $e^{\lambda t}$: $N'(t) e^{\lambda t} + \lambda N(t) e^{\lambda t} = 0$, i.e. $(N(t) e^{\lambda t})' = 0$

Hence $N(t) = C e^{-\lambda t} = N(0) e^{-\lambda t}$

Multiplication by $e^{\lambda t}$: $N'(t) e^{\lambda t} + \lambda N(t) e^{\lambda t} = 0$, i.e. $(N(t) e^{\lambda t})' = 0$ Hence $N(t) = C e^{-\lambda t} = N(0) e^{-\lambda t}$

Half-life time :
$$N(t) = \frac{N(0)}{2}$$
 for $e^{-\lambda t} = \frac{1}{2}$, i.e. $t_{half} = \frac{\ln 2}{\lambda}$

- ► lodine 131: $t_{half} \simeq 8 \text{ days}$
- Cesium 137: $t_{half} \simeq 30$ years
- Plutonium 239: $t_{half} \simeq 24\,110$ years

Second law of dynamics: m q''(t) + k q(t) = 0 (k > 0 : spring stiffness)

$$q(t) = A\cos\omega t + B\sin\omega t$$
 , with $\omega = \sqrt{rac{k}{m}}$

Example #3: RC circuit

I(t): intensity

I

R: resistance, C: capacitance

$$d r(t) = rac{dq(t)}{dt} \;\;$$
 with $q(t)$ the electrical charge

Example #3: RC circuit

I(t): intensity

I

R: resistance, C: capacitance

$$d(t)=rac{dq(t)}{dt}$$
 with $q(t)$ the electrical charge

$$V_{S}(t) = V_{R}(t) + V_{C}(t)$$

$$= R I(t) + \frac{q(t)}{C} = R \frac{dq}{dt}(t) + \frac{q(t)}{C}$$

$$R \frac{dq}{dt}(t) + \frac{1}{C} q(t) = V_{S}(t)$$

Example #4 : viral epidemic (system of ODEs) The SIR model (s'(t))

 ${\bf S} usceptible \ individuals$

Infectious individuals

 $S'(t) = -\beta I(t)S(t)$ $I'(t) = \beta I(t)S(t)-\lambda I(t)$ $R'(t) = \lambda I(t)$

Removed (and immune) or deceased individuals

Further information:

https://interstices.info/modeliser-la-propagation-dune-epidemie/

• A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- \blacktriangleright Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.
- Let (*E*) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (*E*) with 0 is called its corresponding homogeneous equation.

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.
- Let (*E*) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (*E*) with 0 is called its corresponding homogeneous equation.
- Let (*E*) be a differential equation and (*E*₀) its associated homogeneous equation. (*E*) is linear if and only if the solutions of (*E*₀) are stable by linear combination. In other words, if y_0 and z_0 are two solutions of (*E*₀), then $\lambda y_0 + \mu z_0$ is also a solution of (*E*₀), $\forall (\lambda, \mu) \in \mathbb{R} \times \mathbb{R}$.

Otherwise (E) is said to be **nonlinear**.

Alfred Lotka (1880 - 1949)

Vito Volterra (1860 - 1940)

X(t) = quantity of preys Y(t) = quantity of predators

X(t) = quantity of preys Y(t) = quantity of predators

• If no predators: population of preys increases (hyp: constant rate) X'(t) = aX(t)

X(t) = quantity of preys Y(t) = quantity of predators

- If no predators: population of preys increases (hyp: constant rate) X'(t) = aX(t)
- If no preys: population of predators decreases (hyp: constant rate)

Y'(t) = -c Y(t)

X(t) = quantity of preys Y(t) = quantity of predators

- If no predators: population of preys increases (hyp: constant rate) X'(t) = aX(t)
- ▶ If no preys: population of predators decreases (hyp: constant rate) Y'(t) = -c Y(t)
- Hyp: prey mortality rate \propto number of predators

X'(t) = (a - b Y(t)) X(t)

X(t) = quantity of preys Y(t) = quantity of predators

- If no predators: population of preys increases (hyp: constant rate) X'(t) = aX(t)
- ▶ If no preys: population of predators decreases (hyp: constant rate) Y'(t) = -c Y(t)
- \blacktriangleright Hyp: prey mortality rate \propto number of predators
- Hyp: predator growth rate \propto number of preys

X'(t) = (a-b Y(t)) X(t)Y'(t) = (-c+d X(t)) Y(t)

X(t) = number of preys Y(t) = number of predators

$$\begin{cases} X'(t) = (a - b Y(t)) X(t) \\ Y'(t) = (-c + d X(t)) Y(t) \end{cases}$$

M1 AM - refresher

Example #6: chaos and butterfly effect

Chaotic systems: small initial perturbations may lead to huge final differences (atmosphere, ocean, climate are chaotic systems).

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = \rho x - y - xz$$
$$\frac{dz}{dt} = xy - \beta z$$

Edward Lorenz (1917-2008)

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas? (139th meeting of the American Association for the Advancement of Science, 1972)

http://www.chaos-math.org

- A differential equation is a relationship linking a function and its successive derivatives. The unknown is therefore a function. In very general terms, it can be written as $F(x, y, y', y'', \dots, y^{(n)}) = 0$, where y(x) is the unknown function.
- ▶ The order of a differential equation is the highest degree of derivation in the equation.
- Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.
- Let (*E*) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (*E*) with 0 is called its corresponding homogeneous equation.
- Let (*E*) be a differential equation and (*E*₀) its associated homogeneous equation. (*E*) is linear if and only if the solutions of (*E*₀) are stable by linear combination. In other words, if y_0 and z_0 are two solutions of (*E*₀), then $\lambda y_0 + \mu z_0$ is also a solution of (*E*₀), $\forall (\lambda, \mu) \in \mathbb{R} \times \mathbb{R}$.

Otherwise (E) is said to be **nonlinear**.

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$			
2.	$y'(t) y(t) - t y(t) = \cos t$			
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$			
4.	$z^3 z' = 5 z$			
5.	$e^x u^{\prime\prime}(x) - x u(x) = 0$			
6.	yy'+y-t=0			
7.	$z^2 z' = \sqrt{z}$			
8.	$\cos x y''(x) + x^2 y(x) + x = 0$			

linear	homogeneous	order
(yes/no)	(yes/no)	

1. $z'(x) + x^3 z(x) = \sqrt{x}$

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^{3} z' = 5 z$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1

5. $e^{x} u''(x) - x u(x) = 0$

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^x u''(x) - x u(x) = 0$	yes	yes	2
6.	y y' + y - t = 0			

		linear (yes/no)	homogeneous (yes/no)	order
-				1
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^x u''(x) - x u(x) = 0$	yes	yes	2
6.	yy'+y-t=0	no	no	1
7.	$z^2 z' = \sqrt{z}$			

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	yes	no	1
2.	$y'(t)y(t) - ty(t) = \cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^{x} u^{\prime\prime}(x) - x u(x) = 0$	yes	yes	2
6.	yy'+y-t=0	no	no	1
7.	$z^2 z' = \sqrt{z}$	no	yes	1

8. $\cos x y''(x) + x^2 y(x) + x = 0$

		linear (yes/no)	homogeneous (yes/no)	order
1.	$z'(x) + x^3 z(x) = \sqrt{x}$	ves	no	1
2.	$y'(t) y(t) - t y(t) = \cos t$	no	no	1
3.	$y'(t)^2 + 3t^2 y(t) - t = 0$	no	no	1
4.	$z^3 z' = 5 z$	no	yes	1
5.	$e^x u^{\prime\prime}(x) - x u(x) = 0$	yes	yes	2
6.	yy'+y-t=0	no	no	1
7.	$z^2 z' = \sqrt{z}$	no	yes	1
8.	$\cos x y''(x) + x^2 y(x) + x = 0$	yes	no	2

First-order linear ODEs
Solutions of a first-order linear ODE

A first-order linear ODE reads a(t) y'(t) + b(t) y(t) = c(t) (E) where a(t), b(t), c(t) are given functions.

Solutions of a first-order linear ODE

A first-order linear ODE reads a(t) y'(t) + b(t) y(t) = c(t) (E) where a(t), b(t), c(t) are given functions.

Principle of superposition

Let $u_p(x)$ a particular solution of (*E*). The solutions of (*E*) are the functions $u(x) = u_p(x) + u_0(x)$, where u_0 represents the solutions of (*E*₀).

In other words, the set of solutions of (*E*) is $S = u_p + S_0$, where S_0 denotes the set of solutions of (*E*₀).

Step 0: on which domain?

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

▶ Step 1: solution of the associated homogeneous equation

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

Step 1: solution of the associated homogeneous equation (E_0) $y'_0(t) + \alpha(t) y_0(t) = 0$ \rightarrow computation of a primitive.

One gets a set of solutions \mathcal{S}_0

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- Step 1: solution of the associated homogeneous equation (E₀) y'₀(t) + α(t) y₀(t) = 0 → computation of a primitive. One gets a set of solutions S₀
- **Step 2**: determination of a particular solution y_p of (E)

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- Step 1: solution of the associated homogeneous equation (E₀) y'₀(t) + α(t) y₀(t) = 0 → computation of a primitive. One gets a set of solutions S₀
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- Step 1: solution of the associated homogeneous equation (E₀) y'₀(t) + α(t) y₀(t) = 0 → computation of a primitive. One gets a set of solutions S₀
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

Step 3 (possibly): connection of solutions between different intervals where a(t) does not cancel out : given solutions on]t₁, t₂[and]t₂, t₃[, does it exist C¹ solutions on]t₁, t₃[?

 $(E_0) \quad y_0'(x) + \alpha(x) \, y_0(x) = 0 \qquad x \in I$

 $(E_0) \quad y'_0(x) + \alpha(x) \, y_0(x) = 0 \qquad x \in I$

• Let
$$A(x) \ge primitive of \alpha(x)$$
.
Multiplying (E_0) by $e^{A(x)}$: $e^{A(x)} y'_0(x) + \alpha(x) e^{A(x)} y_0(x) = 0$
i.e. $\left(e^{A(x)} y_0(x)\right)' = 0$
hence $e^{A(x)} y_0(x) = cste$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

 $(E_0) \quad y'_0(x) + \alpha(x) \, y_0(x) = 0 \qquad x \in I$

Let
$$A(x) \ge primitive of \alpha(x)$$
.
Multiplying (E_0) by $e^{A(x)}$: $e^{A(x)} y'_0(x) + \alpha(x) e^{A(x)} y_0(x) = 0$
i.e. $(e^{A(x)} y_0(x))' = 0$
hence $e^{A(x)} y_0(x) = cste$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

Conversely, any function of this form is a solution: if $y_0(x) = K e^{-A(x)}$, then $y'_0(x) = -K \alpha(x) e^{-A(x)}$, hence $y'_0(x) + \alpha(x) y_0(x) = 0$

 $(E_0) \quad y'_0(x) + \alpha(x) \, y_0(x) = 0 \qquad x \in I$

• Let
$$A(x) \ge primitive of \alpha(x)$$
.
Multiplying (E_0) by $e^{A(x)}$: $e^{A(x)} y'_0(x) + \alpha(x) e^{A(x)} y_0(x) = 0$
i.e. $(e^{A(x)} y_0(x))' = 0$
hence $e^{A(x)} y_0(x) = cste$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

Conversely, any function of this form is a solution: if $y_0(x) = K e^{-A(x)}$, then $y'_0(x) = -K \alpha(x) e^{-A(x)}$, hence $y'_0(x) + \alpha(x) y_0(x) = 0$

▶ In summary: the set of solutions on *I* is
$$S_0 = \left\{ y_0 / y_0(x) = K e^{-A(x)} \text{ with } K \in \mathbb{R} \right\}$$

 $(E_0) \qquad (1+x) y_0'(x) + y_0(x) = 0$

 $(E_0) \qquad (1+x) y_0'(x) + y_0(x) = 0$

On
$$I =] -\infty; -1[$$
 or $I =] -1; +\infty[:$ (E_0) becomes $y'_0(x) + \frac{1}{1+x}y_0(x) = 0.$
A primitive of $\alpha(x) = \frac{1}{1+x}$ is $A(x) = \ln|1+x|$. Hence $e^{-A(x)} = \frac{1}{|1+x|}$

Hence the solutions on *I*:

$$y_0(x) = rac{\kappa}{1+x} \qquad \kappa \in \mathbb{R}$$

 (E_0) $u'_0(t) + \tan(t) u_0(t) = 0$

 (E_0) $u'_0(t) + \tan(t) u_0(t) = 0$

On
$$I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$
, or any other interval $I = \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$.

 (E_0) $u'_0(t) + \tan(t) u_0(t) = 0$

On $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, or any other interval $I = \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$.

A primitive of $\alpha(t) = \tan(t)$ is $A(t) = -\ln|\cos(t)|$. Hence $e^{-A(t)} = |\cos(t)|$

Hence the solutions on I:

 $u_0(t) = K \cos t \qquad K \in \mathbb{R}$

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

handbook of usual primitives

	Fonction		Primitives
	x^{α}	$(\alpha \in \mathbb{R}, \alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1} + C$
et aussi	$(x-a)^{\alpha}$	$(\alpha \in \mathbb{R}, \alpha \neq -1)$	$\frac{(x-a)^{\alpha+1}}{\alpha+1} + C$
	$\frac{1}{x}$		$\ln x + C$
et aussi	$\frac{1}{x-a}$		$\ln x-a + C$
	e^x		$e^x + C$
et aussi	$e^{\alpha x}$	$\alpha \neq 0$	$\frac{1}{\alpha}e^{\alpha x} + C$
	$\cos x$		$\sin x + C$
et aussi	$\cos(\alpha x)$	$\alpha \neq 0$	$\frac{1}{\alpha}\sin(\alpha x) + C$
	$\sin x$		$-\cos x + C$
et aussi	$\sin(\alpha x)$	$\alpha \neq 0$	$\frac{-1}{\alpha}\cos(\alpha x)+C$
	1 _ 1 + tan ² ~		ton a 1 C

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

- handbook of usual primitives
- integration by parts

$$(uv)' = u'v + uv'. \text{ Thus } \int (uv)' = uv = \int u'v + \int uv'.$$

i.e. $\int u'v = uv - \int uv'$
• $\int \ln x \, dx - En \text{ posant } u = x \text{ et } v = \ln x :$
 $\int \ln x \, dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - \int dx = x \ln x - x + C$

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

- handbook of usual primitives
- integration by parts
- change of variable

•
$$I = \int_{a}^{b} x e^{x^{2}} dx$$
 — On pose $u = x^{2}$. Alors $du = 2x \, dx$, d'où :
 $I = \int_{x=a}^{x=b} x e^{x^{2}} dx = \frac{1}{2} \int_{u=a^{2}}^{u=b^{2}} e^{u} du = \frac{1}{2} [e^{u}]_{a^{2}}^{b^{2}} = \frac{e^{b^{2}} - e^{a^{2}}}{2}$

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- Step 1: solution of the associated homogeneous equation (E₀) y'₀(t) + α(t) y₀(t) = 0 → computation of a primitive. One gets a set of solutions S₀
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

Step 3 (possibly): connection of solutions between different intervals where a(t) does not cancel out : given solutions on]t₁, t₂[and]t₂, t₃[, does it exist C¹ solutions on]t₁, t₃[?

(E) $y'(x) + \alpha(x) y(x) = \beta(x)$

If the right-hand side $\beta(x)$ is a polynomial, or a linear combination of exponentials, or a linear combination of sine and cosine functions, and if $\alpha(x)$ is constant or of similar nature as $\beta(x)$, then it may exist a particular solution $u_p(x)$ in a form similar to that of $\beta(x)$.

 \longrightarrow simple method, but which is not always successful

Example: $y'(t) + (2t+1)y(t) = 6t^2 - t + 1$

Example: $y'(t) + (2t+1)y(t) = 6t^2 - t + 1$

If y(t) is a degree n polynomial, y'(t) is a degree n-1 pol. and (2t+1)y(t) is a degree n+1 pol. Thus y'(t) + (2t+1)y(t) is a degree n+1 pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Example: $y'(t) + (2t+1)y(t) = 6t^2 - t + 1$

If y(t) is a degree n polynomial, y'(t) is a degree n-1 pol. and (2t+1)y(t) is a degree n+1 pol. Thus y'(t) + (2t+1)y(t) is a degree n+1 pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Let inject $y_p(t) = at + b$ in (E): $a + (2t + 1)(at + b) = 6t^2 - t + 1$ thus $2at^2 + (a + 2b)t + a + b = 6t^2 - t + 1$ Hence 2a = 6, a + 2b = -1, a + b = 1. Thus a = 3, b = -2.

 $y_p(t) = 3t - 2$ is a particular solution of (E).

Example: $y'(t) + (2t+1)y(t) = 6t^2 - t + 1$

If y(t) is a degree n polynomial, y'(t) is a degree n-1 pol. and (2t+1)y(t) is a degree n+1 pol. Thus y'(t) + (2t+1)y(t) is a degree n+1 pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Let inject $y_p(t) = at + b$ in (E): $a + (2t+1)(at+b) = 6t^2 - t + 1$ thus $2at^2 + (a+2b)t + a + b = 6t^2 - t + 1$ Hence 2a = 6, a + 2b = -1, a + b = 1. Thus a = 3, b = -2.

 $y_p(t) = 3t - 2$ is a particular solution of (E).

It's miraculous : 3 equations for 2 unknowns (a, b).

If one changes a coefficient in the r.h.s., it does not work anymore.

For instance:
$$y'(t) + (2t+1)y(t) = 6t^2 - t$$

$$2a = 6, a + 2b = -1, a + b = 0 \longrightarrow$$
 no solution.

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t$$

3.
$$z'(x) - 3z(x) = \sin 3x$$

4.
$$u' + 3u = 5e^{2x} + 6e^{-x}$$

In what form can particular solutions of the following equations be found?

1. $(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1 \qquad \longrightarrow y_p(t) = at^2 + bt + c$$

 $y_p(t) = t^2 - 1$

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1 \qquad \longrightarrow y_p(t) = at^2 + bt + c$$

 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t$

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1 \qquad \longrightarrow y_p(t) = at^2 + bt + c$$

 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t \qquad \longrightarrow f_p(t) = a \sin t + b \cos t$

$$f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$$

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1 \qquad \longrightarrow y_p(t) = at^2 + bt + c$$

 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t \longrightarrow f_p(t) = a \sin t + b \cos t$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3. $z'(x) - 3 z(x) = \sin 3x$

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1 \qquad \longrightarrow y_p(t) = at^2 + bt + c$$

 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t \qquad \longrightarrow f_p(t) = a \sin t + b \cos t$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3. $z'(x) - 3 z(x) = \sin 3x$ $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$ $z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1 \qquad \longrightarrow y_p(t) = at^2 + bt + c$$

 $y_p(t) = t^2 - 1$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t \longrightarrow f_p(t) = a \sin t + b \cos t$$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3.
$$z'(x) - 3 z(x) = \sin 3x \qquad \longrightarrow z_p(x) = a \sin 3x + b \cos 3x$$

 $z_{\rho}(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$

4.
$$u' + 3u = 5e^{2x} + 6e^{-x}$$

In what form can particular solutions of the following equations be found?

1.
$$(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1 \longrightarrow y_p(t) = at^2 + bt + c$$

 $y_p(t) = t^2 - 1$

2.
$$f'(t) - f(t) = \sin t + 2 \cos t \qquad \longrightarrow f_p(t) = a \sin t + b \cos t$$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3.
$$z'(x) - 3 z(x) = \sin 3x$$
 $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$
 $z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$
 $A = u' + 3u = 5e^{2x} + 6e^{-x}$ $\longrightarrow u_n(x) = 2e^{2x} + be^{-x}$

4.
$$u' + 3u = 5e^{2x} + 6e^{-x} \longrightarrow u_p(x) = ae^{2x} + be^{-x}$$

 $u_p(x) = e^{2x} + 3e^{-x}$
(E) $y'(x) + \alpha(x)y(x) = \beta(x)$

Solutions of (*E*₀): $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

(E) $y'(x) + \alpha(x)y(x) = \beta(x)$

Solutions of (*E*₀): $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then $y'_p(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$.

(E) $y'(x) + \alpha(x)y(x) = \beta(x)$

Solutions of (E₀): $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then $y'_{p}(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$. Thus:

$$y'_{p}(x) + \alpha(x) y_{p}(x) = \underbrace{K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}}_{y'_{p}} + \alpha(x) \underbrace{K(x) e^{-A(x)}}_{y_{p}}$$
$$= K'(x) e^{-A(x)}$$

(E) $y'(x) + \alpha(x)y(x) = \beta(x)$

Solutions of (*E*₀): $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and A(x) is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then $y'_{\rho}(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$. Thus:

$$y'_{p}(x) + \alpha(x) y_{p}(x) = \underbrace{K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}}_{y'_{p}} + \alpha(x) \underbrace{K(x) e^{-A(x)}}_{y_{p}}$$
$$= K'(x) e^{-A(x)}$$

Hence $K'(x) = \beta(x) e^{A(x)}$. Hence K(x) by integration. Hence $y_p(x)$.

(E) $y'(x) + 2x y(x) = 2x e^{-x^2}$

Solutions of (E_0) $y'_0(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

(E) $y'(x) + 2x y(x) = 2x e^{-x^2}$

Solutions of (E_0) $y'_0(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E):

$$\underbrace{K'(x) e^{-x^2} + K(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{K(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then K'(x) = 2x.

(E) $y'(x) + 2x y(x) = 2x e^{-x^2}$

Solutions of (E_0) $y'_0(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E):

$$\underbrace{\mathcal{K}'(x) e^{-x^2} + \mathcal{K}(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{\mathcal{K}(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then K'(x) = 2x.

Hence $K(x) = x^2$ (no need to bother with the integration constant: one just looks for <u>one</u> particular solution). Finally: $y_p(x) = x^2 e^{-x^2}$

(E) $y'(x) + 2x y(x) = 2x e^{-x^2}$

Solutions of (E_0) $y_0'(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E):

$$\underbrace{\mathcal{K}'(x) e^{-x^2} + \mathcal{K}(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{\mathcal{K}(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then K'(x) = 2x.

Hence $K(x) = x^2$ (no need to bother with the integration constant: one just looks for <u>one</u> particular solution). Finally: $y_p(x) = x^2 e^{-x^2}$

The solutions of (*E*): $y(x) = x^2 e^{-x^2} + K e^{-x^2} = (x^2 + K) e^{-x^2}$ $K \in \mathbb{R}$

(E) $y'(x) + 2x y(x) = 2x e^{-x^2}$

Solutions :
$$y(x) = x^2 e^{-x^2} + K e^{-x^2} = (x^2 + K) e^{-x^2}$$
 $K \in \mathbb{R}$

Solving a first-order linear ODE

Step 0: on which domain? \rightarrow each interval where a(t) does not cancel. Dividing by a(t), the equation becomes

(E) $y'(t) + \alpha(t) y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- Step 1: solution of the associated homogeneous equation (E₀) y'₀(t) + α(t) y₀(t) = 0 → computation of a primitive. One gets a set of solutions S₀
- **Step 2**: determination of a particular solution y_p of (E)
 - either by analogy (simple and intuitive method, but does not work systematically)
 - or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{ y_p + y_0, y_0 \in S_0 \}$

Step 3 (possibly): connection of solutions between different intervals where a(t) does not cancel out : given solutions on]t₁, t₂[and]t₂, t₃[, does it exist C¹ solutions on]t₁, t₃[?

(E) $tz'(t) + z(t) - \sin t = 0$

Solutions de (E) are:

• on
$$]-\infty, 0[: z_-(t) = -\frac{\cos t}{t} + \frac{K_-}{t}$$
 $K_- \in \mathbb{R}$
• on $]0, +\infty[: z_+(t) = -\frac{\cos t}{t} + \frac{K_+}{t}$ $K_+ \in \mathbb{R}$

i.e. what are the possible continuous and differentiable connections at t = 0 between a function z_{-} and a function z_{+} ?

• on
$$]-\infty, 0[: z_{-}(t) = -\frac{\cos t}{t} + \frac{K_{-}}{t}$$
 $K_{-} \in \mathbb{R}$
• on $]0, +\infty[: z_{+}(t) = -\frac{\cos t}{t} + \frac{K_{+}}{t}$ $K_{+} \in \mathbb{R}$

Continuity:

$$\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1\\ 0 & \text{if } K_{-} = 1\\ -\infty & \text{if } K_{-} > 1 \end{cases}$$
$$\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1\\ 0 & \text{if } K_{+} = 1\\ +\infty & \text{if } K_{+} > 1 \end{cases}$$

• on
$$]-\infty, 0[: z_{-}(t) = -\frac{\cos t}{t} + \frac{K_{-}}{t}$$
 $K_{-} \in \mathbb{R}$
• on $]0, +\infty[: z_{+}(t) = -\frac{\cos t}{t} + \frac{K_{+}}{t}$ $K_{+} \in \mathbb{R}$

Continuity:

$$\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}$$
$$\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}$$

The only possible choice for a continuous connection at t = 0 is thus $K_{-} = K_{+} = 1$.

Let
$$z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}$$

• on
$$]-\infty, 0[: z_{-}(t) = -\frac{\cos t}{t} + \frac{K_{-}}{t}$$
 $K_{-} \in \mathbb{R}$
• on $]0, +\infty[: z_{+}(t) = -\frac{\cos t}{t} + \frac{K_{+}}{t}$ $K_{+} \in \mathbb{R}$

Continuity:

$$\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}$$
$$\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}$$

The only possible choice for a continuous connection at t = 0 is thus $K_{-} = K_{+} = 1$.

Let
$$z^*(t) = \begin{cases} \frac{1-\cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}$$

 \longrightarrow Remaining point: is z^* differentiable at t = 0?

$$z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \end{cases}$$

Differentiability:

In the vicinity of 0: $z^{*'}(t) = \frac{t + O(t^3)}{t} + \frac{(1 - t^2/2 + O(t^4)) - 1}{t^2} = 1 - \frac{1}{2} + O(t^2) = \frac{1}{2} + O(t^2).$ So $z^{*'}(0) = \frac{1}{2}$. z^* is thus differentiable in 0, and its derivative is continuous.

 $z^{*'}(t) = rac{\sin t}{t} + rac{\cos t - 1}{t^2}$ for $t \neq 0$.

$$z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0\\ 0 & \text{if } t = 0 \end{cases}$$

Differentiability:

In the vicinity of 0:
$$z^{*'}(t) = \frac{t + O(t^3)}{t} + \frac{(1 - t^2/2 + O(t^4)) - 1}{t^2} = 1 - \frac{1}{2} + O(t^2) = \frac{1}{2} + O(t^2)$$

So $z^{*'}(0) = \frac{1}{2}$. z^* is thus differentiable in 0, and its derivative is continuous.

 $z^{st'}(t)=rac{\sin t}{t}+rac{\cos t-1}{t^2} \ ext{ for } t
eq 0.$

 z^* is the unique C^1 solution of (*E*) on \mathbb{R} .

(E)
$$y'(x) + \frac{x-1}{x}y(x) = x^2$$

▶ on]
$$-\infty$$
, 0[: $y_{-}(x) = x^{2} - x + K_{-} x e^{-x}$ $K_{-} \in \mathbb{R}$

• on
$$]0, +\infty[: y_+(x) = x^2 - x + K_+ x e^{-x}$$
 $K_+ \in \mathbb{R}$

Given those solutions, what are the solutions of (*E*) on \mathbb{R} ? i.e. what are the possible continuous and differentiable connections at x = 0 between a function y_- and a function y_+ ?

The solutions of (E) on \mathbb{R}^* are the functions

$$y(x) = \begin{cases} x^2 - x + K_- x e^{-x} & \text{on }] - \infty, 0[\\ x^2 - x + K_+ x e^{-x} & \text{on }]0, +\infty[\end{cases}$$

Continuity: $\lim_{x\to 0^-} y(x) = 0$ and $\lim_{x\to 0^+} y(x) = 0$. Thus any branch of solution on $] - \infty, 0[$ is continuously connected to any branch of solution on $]0, +\infty[$.

Differentiability: $(x^2 - x + Kx e^{-x})' = 2x - 1 + K(1 - x) e^{-x}$. Thus $\lim_{x \to 0^-} y'(x) = -1 + K_-$ and $\lim_{x \to 0^+} y(x) = -1 + K_+$.

Thus a branch of solution on $] - \infty, 0[$ connects smoothly to a branch of solution on $]0, +\infty[$ iff $K_{-} = K_{+}$.

(E)
$$y'(x) + \frac{x-1}{x}y(x) = x^2$$

The solutions of (E) on \mathbb{R} are the functions $y(x) = x^2 - x + K x e^{-x}$, $K \in \mathbb{R}$

And what for first-order <u>nonlinear</u> differential equations?

And what for first-order <u>nonlinear</u> differential equations?

- No fully general method
- A simple method for separable differential equations
- Some methods, on a case-by-case basis (often by a change of unknown function), for some particular equations

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Computation method (schematically)

$$y'(t) = g(y(t)) f(t) \iff rac{y'(t)}{g(y(t))} = f(t)$$

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Computation method (schematically)

$$y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)$$
$$\iff \int \frac{y'(t)}{g(y(t))} = \int f(t)$$
$$\iff H(y(t)) = F(t) + C \quad \text{where } H \text{ is a primitive of } 1/g$$
$$F \text{ a primitive of } f, \text{ and } C \in \mathbb{R}$$

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Computation method (schematically)

$$y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)$$

$$\iff \int \frac{y'(t)}{g(y(t))} = \int f(t)$$

$$\iff H(y(t)) = F(t) + C \text{ where } H \text{ is a primitive of } 1/g$$

$$F \text{ a primitive of } f, \text{ and } C \in \mathbb{R}$$

$$\iff y(t) = H^{-1}(F(t) + C) \quad C \in \mathbb{R}$$

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

1. $y'(t) - y^3(t) \sin 2t = 0$	YES - NO
2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$	YES - NO
3. $y'(t) - y^3(t) \sin 2t + (2t+1)y(t) = 0$	YES - NO
4. $y'(t) - y^3(t) \sin 2t - \sin 2t + 1 + y^3(t) = 0$	YES - NO
5. $e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$	YES - NO
6. $t u'(t) - u(t) + e^{u'(t)} = 0$	YES - NO
7. $f'(t) - f(t) = t f^2(t)$	YES - NO
8. $xy'(x) - \sin(x)\cos(y^2(x)) = 0$	YES - NO

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1. $y'(t) - y^3(t) \sin 2t = 0$

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1.
$$y'(t) - y^3(t) \sin 2t = 0$$
 YES - NO

 $y'(t) = y^{3}(t) \sin 2t$ $g(X) = X^{3}$ $f(t) = \sin 2t$

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1. $y'(t) - y^3(t) \sin 2t = 0$ YES - NO

 $y'(t) = y^{3}(t) \sin 2t$ $g(X) = X^{3}$ $f(t) = \sin 2t$

2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1. $y'(t) - y^{3}(t) \sin 2t = 0$ YES - NO $y'(t) = y^{3}(t) \sin 2t$ $g(X) = X^{3}$ $f(t) = \sin 2t$

2.
$$y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$$

YES - NO

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

1. $y'(t) - y^3(t) \sin 2t = 0$ YES - NO $y'(t) = y^3(t) \sin 2t$ $g(X) = X^3$ $f(t) = \sin 2t$ 2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$ YES - NO

3. $y'(t) - y^{3}(t) \sin 2t + (2t+1)y(t) = 0$

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

1. $y'(t) - y^3(t) \sin 2t = 0$			YES	- NO
	$y'(t) = y^3(t) \sin 2t$	$g(X) = X^3$	$f(t) = \sin 2t$	
2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$			YES	- NO
3. $y'(t) - y^{3}(t) \sin 2t + (2t+1)y(t) = 0$			YES	- NO

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

1. $y'(t) - y^3(t) \sin 2t = 0$			YES - NO
	$y'(t) = y^3(t) \sin 2t$	$g(X) = X^3$	$f(t) = \sin 2t$
2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$			YES - NO
3. $y'(t) - y^{3}(t) \sin 2t + (2t + 1)y(t) = 0$			YES - NO
4. $y'(t) - y^3(t) \sin 2t - \sin 2t + 1 + y^3(t) = 0$			

Definition A first-order differential equation is separable iff it can be written as y'(t) = g(y(t)) f(t).

1. $y'(t) - y^3(t) \sin 2t = 0$			YES - NO
	$y'(t) = y^3(t) \sin 2$	$g(X) = X^3$	$f(t) = \sin 2t$
2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$			YES - NO
3. $y'(t) - y^{3}(t) \sin 2t + (2t + 1)y(t) = 0$			YES - NO
4. $y'(t) - y^3(t) \sin 2t - \sin 2t + 1 + y^3(t) = 0$			YES - NO
$y'(t) = (y^3(t) + 1)($	$\sin(2t)-1)$ $g(X$	$X) = X^3 + 1 f(t)$	$r) = \sin(2t) - 1$

Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

5. $e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$

Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Are the following equations separable?

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$
 YES - NO

 $z'(x) = -z^2(x)e^{-z(x)} \ln x$ $g(X) = -X^2 e^{-X} f(t) = \ln t$
Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

 $z'(x) = -z^2(x)e^{-z(x)} \ln x$ $g(X) = -X^2 e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$

Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

 $z'(x) = -z^2(x)e^{-z(x)} \ln x$
 $g(X) = -X^2 e^{-X}$ $f(t) = \ln t$
6. $t u'(t) - u(t) + e^{u'(t)} = 0$
YES - NO

Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

 $z'(x) = -z^2(x) e^{-z(x)} \ln x$
 $g(X) = -X^2 e^{-X}$ $f(t) = \ln t$
6. $t u'(t) - u(t) + e^{u'(t)} = 0$
7. $f'(t) - f(t) = t f^2(t)$

Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$

 $z'(x) = -z^2(x)e^{-z(x)} \ln x$
 $g(X) = -X^2 e^{-X}$ $f(t) = \ln t$
6. $t u'(t) - u(t) + e^{u'(t)} = 0$
7. $f'(t) - f(t) = t f^2(t)$
8. $x y'(x) - \sin(x) \cos(y^2(x)) = 0$
YES - NO

Definition A first-order differential équation is separable iff it can be written as y'(t) = g(y(t)) f(t).

5.
$$e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$$
 YES - NO
 $z'(x) = -z^2(x)e^{-z(x)} \ln x$ $g(X) = -X^2 e^{-X}$ $f(t) = \ln t$

6.
$$t u'(t) - u(t) + e^{u'(t)} = 0$$
 YES - NO

7.
$$f'(t) - f(t) = t f^2(t)$$
 YES - NO

8.
$$xy'(x) - \sin(x) \cos(y^2(x)) = 0$$
 YES - NO

$$y'(x) = \frac{\sin x}{x} \cos(y^2(x))$$
 $g(X) = \cos(X^2)$ $f(t) = \frac{\sin t}{t}$

$$e^{-t} y'(t) - t y^2(t) = 0$$

$$e^{-t} y'(t) - t y^2(t) = 0$$

Let assume that y(t) does not cancel. Then $\frac{y'(t)}{y^2(t)} = t e^t$, which leads to:

$$\int \frac{y'(t)}{y^2(t)} dt = \int t e^t dt$$

$$\iff -\frac{1}{y(t)} = (t-1)e^t + C \quad \text{(by IBP)}$$

$$\iff y(t) = \frac{-1}{(t-1)e^t + C} \quad C \in \mathbb{R}$$

We see a posteriori that y does indeed not cancel. Its definition domain depends on the integration constant C.

$$\begin{array}{l} \mbox{For } C>1: \ensuremath{\mathcal{D}}_y=\mathbb{R}\\ \mbox{For } C=1: \ensuremath{\mathcal{D}}_y=\mathbb{R}^*\\ \mbox{For } 0< C<1: \ensuremath{\mathcal{D}}_y=\mathbb{R} \mbox{ except 2 forbidden values}\\ \mbox{For } C\leq 0: \ensuremath{\mathcal{D}}_y=\mathbb{R} \mbox{ except 1 forbidden value} \end{array}$$

$$y(t) = rac{-1}{(t-1)e^t + C} \qquad C \in \mathbb{R}$$

 $\begin{array}{l} \mbox{For } C>1: \ \mathcal{D}_y=\mathbb{R}\\ \mbox{For } C=1: \ \mathcal{D}_y=\mathbb{R}^*\\ \mbox{For } 0< C<1: \ \mathcal{D}_y=\mathbb{R} \mbox{ except 2 forbidden values}\\ \mbox{For } C\leq 0: \ \mathcal{D}_y=\mathbb{R} \mbox{ except 1 forbidden value} \end{array}$

$$(E) \qquad x \, y' + \frac{3}{y} = 0$$

$$(E) \qquad x y' + \frac{3}{y} = 0$$

On $I =] - \infty, 0[$ or $]0, +\infty[$, we have: $y y' = -\frac{3}{x}$, which leads by integration to: $\frac{1}{2}y^2(x) = -3 \ln |x| + C$, hence $y(x) = \pm \sqrt{-6 \ln |x| + K}$ ($K = 2C \in \mathbb{R}$)

$$E) \qquad x\,y'+\frac{3}{y}=0$$

On $I =] - \infty, 0[$ or $]0, +\infty[$, we have: $y y' = -\frac{3}{x}$, which leads by integration to: $\frac{1}{2}y^2(x) = -3 \ln |x| + C$, hence $y(x) = \pm \sqrt{-6 \ln |x| + K}$ ($K = 2C \in \mathbb{R}$)

The domain of y is given by the condition $-6 \ln |x| + K \ge 0$, i.e. $|x| \le e^{K/6}$.

$$(E) \qquad x \, y' + \frac{3}{y} = 0$$

On $I =] - \infty, 0[$ or $]0, +\infty[$, we have: $y y' = -\frac{3}{x}$, which leads by integration to: $\frac{1}{2}y^2(x) = -3 \ln |x| + C$, hence $y(x) = \pm \sqrt{-6 \ln |x| + K}$ ($K = 2C \in \mathbb{R}$)

The domain of y is given by the condition $-6 \ln |x| + K \ge 0$, i.e. $|x| \le e^{K/6}$.

In summary:

 $\forall K \in \mathbb{R},$

$$\begin{cases} y_{K,-}(x) = -\sqrt{-6\ln|x| + K} \\ y_{K,+}(x) = \sqrt{-6\ln|x| + K} \end{cases}$$

are solutions of (E) on $] - e^{K/6}, 0[\cup]0, e^{K/6}[.$

Second-order linear differential equations with constant coefficients

Second-order linear ODEs with constant coefficients

 $(E) \qquad au''(x) + bu'(x) + cu(x) = f(x) \qquad \text{with } a, b, c \in \mathbb{R} \text{ and } a \neq 0$

Principle of superposition $S = u_p + S_0$, where $u_p(x)$ is a particular solution of (E) and S_0 is the set of solutions of the associated homogeneous equation (E₀).

Solutions of (E_0) Let $P(X) = aX^2 + bX + c$ the *characteristic polynomial* associated to (E_0) , and $\Delta = b^2 - 4ac$ its discriminant. Then:

- if $\Delta > 0$, $u_0(x) = Ae^{r_1x} + Be^{r_2x}$ $A, B \in \mathbb{R}$, where $r_1 = \frac{-b \sqrt{\Delta}}{2a}$ and $r_2 = \frac{-b + \sqrt{\Delta}}{2a}$ are the two real roots of P.
- if $\Delta = 0$, $u_0(x) = (Ax + B)e^{rx}$ $A, B \in \mathbb{R}$, where $r = \frac{-b}{2a}$ is the unique root of P.

• if
$$\Delta < 0$$
, $u_0(x) = (A \cos \alpha x + B \sin \alpha x)e^{\beta x}$ $A, B \in \mathbb{R}$, where $\alpha = \frac{\sqrt{-\Delta}}{2a}$ and $\beta = \frac{-b}{2a}$.

Particular solution of (*E*) (similar to first-order equations) A particular solution u_p can be obtained either by analogy with the right-hand side (if simple), or by the method of variation of constants (i.e. replacing the constants *A* and *B*, or only one of them, by a function of *x*).

M1 AM - refresher