
Ordinary Differential Equations

M1 AM - refresher Ordinary differential equations 1



Example #1 : radioactivity

Observation : the variation in the quantity of radioactive nuclei is proportional to their
quantity and to the elapsed time.

N(t + ∆t)− N(t) ∝ ∆t N(t) =⇒
∆t→0

N ′(t) = −λN(t)

N(t): quantity of radioactive nuclei at time t, and λ > 0
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Example #1 : radioactivity

Multiplication by eλt : N ′(t) eλt + λN(t) eλt = 0, i.e.
(
N(t) eλt)′ = 0

Hence N(t) = C e−λt = N(0) e−λt

Half-life time : N(t) =
N(0)

2 for e−λt =
1
2 , i.e. thalf =

ln 2
λ

I Iodine 131: thalf ' 8 days

I Cesium 137: thalf ' 30 years

I Plutonium 239: thalf ' 24 110 years
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Example #2 : mass - spring system

Second law of dynamics: m q′′(t) + k q(t) = 0 (k > 0 : spring stiffness)

q(t) = A cosωt + B sinωt , with ω =

√
k
m
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Example #3: RC circuit

I(t): intensity

R: resistance, C : capacitance

I(t) =
dq(t)

dt with q(t) the electrical charge

VS(t) = VR (t) + VC (t)

= R I(t) +
q(t)

C = R dq
dt (t) +

q(t)

C

R dq
dt (t) +

1
C q(t) = VS(t)
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Example #4 : viral epidemic (system of ODEs)
The SIR model
Susceptible individuals
Infectious individuals
Removed (and immune) or deceased individuals


S′(t) = –β I(t)S(t)

I′(t) = β I(t)S(t)–λ I(t)

R′(t) = λ I(t)

Further information:
https://interstices.info/modeliser-la-propagation-dune-epidemie/
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Some vocabulary about differential equations
I A differential equation is a relationship linking a function and its successive derivatives. The unknown is

therefore a function. In very general terms, it can be written as F (x , y , y ′, y ′′, . . . , y (n)) = 0, where y(x)
is the unknown function.

I The order of a differential equation is the highest degree of derivation in the equation.

I Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not
appear is called right-hand side (r.h.s.) of (E). They are generally put on the right-hand side of the
equation, hence this name.

I Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be homogeneous.

I Let (E) be a non-homogeneous differential equation. The differential equation (E0) obtained by replacing
the r.h.s. of (E) with 0 is called its corresponding homogeneous equation.

I Let (E) be a differential equation and (E0) its associated homogeneous equation. (E) is linear if and only
if the solutions of (E0) are stable by linear combination. In other words, if y0 and z0 are two solutions of
(E0), then λ y0 + µ z0 is also a solution of (E0), ∀(λ, µ) ∈ R× R.

Otherwise (E) is said to be nonlinear.
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Example #5: predator-prey models

Alfred Lotka Vito Volterra
(1880 - 1949) (1860 - 1940)
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Example #5: predator-prey models

X (t) = quantity of preys Y (t) = quantity of predators

I If no predators: population of preys increases (hyp: constant rate) X ′(t) = a X (t)

I If no preys: population of predators decreases (hyp: constant rate) Y ′(t) = −c Y (t)

I Hyp: prey mortality rate ∝ number of predators X ′(t) = (a−b Y (t)) X (t)

I Hyp: predator growth rate ∝ number of preys Y ′(t) = (−c+d X (t)) Y (t)
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Example #5: predator-prey models

{ X ′(t) = (a − b Y (t)) X (t)

Y ′(t) = (−c + d X (t)) Y (t)

X (t) = number of preys Y (t) = number of predators

M1 AM - refresher Ordinary differential equations 10



Example #6: chaos and butterfly effect
Chaotic systems: small initial perturbations may lead to huge final differences (atmosphere, ocean,
climate are chaotic systems).

Edward Lorenz
(1917-2008)



dx
dt = σ(y − x)

dy
dt = ρx − y − xz
dz
dt = xy − βz

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?
(139th meeting of the American Association for the Advancement of Science, 1972)
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http://www.chaos-math.org
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Vocabulary of differential equations
linear homogeneous order

(yes/no) (yes/no)

1. z ′(x) + x3 z(x) =
√

x

2. y ′(t) y(t)− t y(t) = cos t

3. y ′(t)2 + 3t2 y(t)− t = 0

4. z3 z ′ = 5 z

5. ex u′′(x)− x u(x) = 0

6. y y ′ + y − t = 0

7. z2 z ′ =
√

z

8. cos x y ′′(x) + x2 y(x) + x = 0
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First-order linear ODEs

M1 AM - refresher Ordinary differential equations 16



Solutions of a first-order linear ODE

A first-order linear ODE reads a(t) y ′(t) + b(t) y(t) = c(t) (E )
where a(t), b(t), c(t) are given functions.

Principle of superposition

Let up(x) a particular solution of (E ).
The solutions of (E ) are the functions u(x) = up(x) + u0(x), where u0 represents the solutions
of (E0).

In other words, the set of solutions of (E ) is S = up + S0, where S0 denotes the set of
solutions of (E0).
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Solving a first-order linear ODE
I Step 0: on which domain?

−→ each interval where a(t) does not cancel. Dividing by
a(t), the equation becomes

(E ) y ′(t) + α(t) y(t) = β(t) where α(t) = b(t)/a(t) and β(t) = c(t)/a(t)

I Step 1: solution of the associated homogeneous equation (E0) y ′0(t) + α(t) y0(t) = 0
−→ computation of a primitive.
One gets a set of solutions S0

I Step 2: determination of a particular solution yp of (E )

I either by analogy (simple and intuitive method, but does not work systematically)
I or by variation of constants (always works, but is a little bit more demanding in terms of

calculations)

The set of solutions is then S = yp + S0 = { yp + y0, y0 ∈ S0}
I Step 3 (possibly): connection of solutions between different intervals where a(t) does not

cancel out : given solutions on ]t1, t2[ and ]t2, t3[, does it exist C1 solutions on ]t1, t3[ ?
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−→ computation of a primitive.
One gets a set of solutions S0

I Step 2: determination of a particular solution yp of (E )

I either by analogy (simple and intuitive method, but does not work systematically)
I or by variation of constants (always works, but is a little bit more demanding in terms of

calculations)

The set of solutions is then S = yp + S0 = { yp + y0, y0 ∈ S0}
I Step 3 (possibly): connection of solutions between different intervals where a(t) does not

cancel out : given solutions on ]t1, t2[ and ]t2, t3[, does it exist C1 solutions on ]t1, t3[ ?
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Step 1: solution of the associated homogeneous equation

(E0) y ′0(x) + α(x) y0(x) = 0 x ∈ I

I Let A(x) a primitive of α(x).

Multiplying (E0) by eA(x): eA(x) y ′0(x) + α(x) eA(x) y0(x) = 0

i.e.
(

eA(x) y0(x)
)′

= 0

hence eA(x) y0(x) = cste

Solutions are thus of the form: y0(x) = K e−A(x) with K ∈ R.

I Conversely, any function of this form is a solution:

if y0(x) = K e−A(x), then y ′0(x) = −K α(x) e−A(x), hence y ′0(x) + α(x) y0(x) = 0

I In summary: the set of solutions on I is S0 =
{

y0/y0(x) = K e−A(x) with K ∈ R
}
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Solution of the homogeneous ED: example #1

(E0) (1 + x) y ′0(x) + y0(x) = 0

On I =]−∞;−1[ or I =]− 1; +∞[: (E0) becomes y ′0(x) +
1

1 + x
y0(x) = 0.

A primitive of α(x) =
1

1 + x
is A(x) = ln |1 + x |. Hence e−A(x) =

1
|1 + x |

Hence the solutions on I:

y0(x) =
K

1 + x
K ∈ R
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Solution of the homogeneous ED: example #2

(E0) u′0(t) + tan(t) u0(t) = 0

On I =
]
−
π

2
;
π

2

[
, or any other interval I =

]
−
π

2
+ kπ;

π

2
+ kπ

[
.

A primitive of α(t) = tan(t) is A(t) = − ln | cos(t)|. Hence e−A(t) = | cos(t)|

Hence the solutions on I :

u0(t) = K cos t K ∈ R
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Remark: reminder on integration
Three main tools for the computation of primitives and integrals:

I handbook of usual primitives

I integration by parts

I change of variable
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Remark: reminder on integration

Three main tools for the computation of primitives and integrals:
I handbook of usual primitives

I integration by parts

(uv)′ = u′v + uv ′. Thus
∫

(uv)′ = uv =

∫
u′v +

∫
uv ′.

i.e.
∫

u′v = uv −
∫

uv ′

I change of variable
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Solving a first-order linear ODE
I Step 0: on which domain? −→ each interval where a(t) does not cancel. Dividing by

a(t), the equation becomes
(E ) y ′(t) + α(t) y(t) = β(t) where α(t) = b(t)/a(t) and β(t) = c(t)/a(t)

I Step 1: solution of the associated homogeneous equation (E0) y ′0(t) + α(t) y0(t) = 0
−→ computation of a primitive.
One gets a set of solutions S0

I Step 2: determination of a particular solution yp of (E )

I either by analogy (simple and intuitive method, but does not work systematically)
I or by variation of constants (always works, but is a little bit more demanding in terms of

calculations)

The set of solutions is then S = yp + S0 = { yp + y0, y0 ∈ S0}
I Step 3 (possibly): connection of solutions between different intervals where a(t) does not

cancel out : given solutions on ]t1, t2[ and ]t2, t3[, does it exist C1 solutions on ]t1, t3[ ?
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Particular solution: method by analogy

(E ) y ′(x) + α(x) y(x) = β(x)

If the right-hand side β(x) is a polynomial, or a linear combination of exponentials, or a linear
combination of sine and cosine functions, and if α(x) is constant or of similar nature as β(x),
then it may exist a particular solution up(x) in a form similar to that of β(x).

−→ simple method, but which is not always successful
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Particular solution: method by analogy
Example: y ′(t) + (2t + 1) y(t) = 6t2 − t + 1

If y(t) is a degree n polynomial, y ′(t) is a degree n − 1 pol. and (2t + 1) y(t) is a degree n + 1 pol. Thus
y ′(t) + (2t + 1) y(t) is a degree n + 1 pol.

The r.h.s. being of degree 2, one can look for yp(t) as a degree 1 pol.

Let inject yp(t) = at + b in (E) :
a + (2t + 1)(at + b) = 6t2 − t + 1

thus 2a t2 + (a + 2b) t + a + b = 6t2 − t + 1
Hence 2a = 6, a + 2b = −1, a + b = 1. Thus a = 3, b = −2.

yp(t) = 3t − 2 is a particular solution of (E).

It’s miraculous : 3 equations for 2 unknowns (a, b).

If one changes a coefficient in the r.h.s., it does not work anymore.

For instance: y ′(t) + (2t + 1) y(t) = 6t2 − t

2a = 6, a + 2b = −1, a + b = 0 −→ no solution.

M1 AM - refresher Ordinary differential equations 25



Particular solution: method by analogy
Example: y ′(t) + (2t + 1) y(t) = 6t2 − t + 1

If y(t) is a degree n polynomial, y ′(t) is a degree n − 1 pol. and (2t + 1) y(t) is a degree n + 1 pol. Thus
y ′(t) + (2t + 1) y(t) is a degree n + 1 pol.

The r.h.s. being of degree 2, one can look for yp(t) as a degree 1 pol.

Let inject yp(t) = at + b in (E) :
a + (2t + 1)(at + b) = 6t2 − t + 1

thus 2a t2 + (a + 2b) t + a + b = 6t2 − t + 1
Hence 2a = 6, a + 2b = −1, a + b = 1. Thus a = 3, b = −2.

yp(t) = 3t − 2 is a particular solution of (E).

It’s miraculous : 3 equations for 2 unknowns (a, b).

If one changes a coefficient in the r.h.s., it does not work anymore.

For instance: y ′(t) + (2t + 1) y(t) = 6t2 − t

2a = 6, a + 2b = −1, a + b = 0 −→ no solution.

M1 AM - refresher Ordinary differential equations 25



Particular solution: method by analogy
Example: y ′(t) + (2t + 1) y(t) = 6t2 − t + 1

If y(t) is a degree n polynomial, y ′(t) is a degree n − 1 pol. and (2t + 1) y(t) is a degree n + 1 pol. Thus
y ′(t) + (2t + 1) y(t) is a degree n + 1 pol.

The r.h.s. being of degree 2, one can look for yp(t) as a degree 1 pol.

Let inject yp(t) = at + b in (E) :
a + (2t + 1)(at + b) = 6t2 − t + 1

thus 2a t2 + (a + 2b) t + a + b = 6t2 − t + 1
Hence 2a = 6, a + 2b = −1, a + b = 1. Thus a = 3, b = −2.

yp(t) = 3t − 2 is a particular solution of (E).

It’s miraculous : 3 equations for 2 unknowns (a, b).

If one changes a coefficient in the r.h.s., it does not work anymore.

For instance: y ′(t) + (2t + 1) y(t) = 6t2 − t

2a = 6, a + 2b = −1, a + b = 0 −→ no solution.

M1 AM - refresher Ordinary differential equations 25



Particular solution: method by analogy
Example: y ′(t) + (2t + 1) y(t) = 6t2 − t + 1

If y(t) is a degree n polynomial, y ′(t) is a degree n − 1 pol. and (2t + 1) y(t) is a degree n + 1 pol. Thus
y ′(t) + (2t + 1) y(t) is a degree n + 1 pol.

The r.h.s. being of degree 2, one can look for yp(t) as a degree 1 pol.

Let inject yp(t) = at + b in (E) :
a + (2t + 1)(at + b) = 6t2 − t + 1

thus 2a t2 + (a + 2b) t + a + b = 6t2 − t + 1
Hence 2a = 6, a + 2b = −1, a + b = 1. Thus a = 3, b = −2.

yp(t) = 3t − 2 is a particular solution of (E).

It’s miraculous : 3 equations for 2 unknowns (a, b).

If one changes a coefficient in the r.h.s., it does not work anymore.

For instance: y ′(t) + (2t + 1) y(t) = 6t2 − t

2a = 6, a + 2b = −1, a + b = 0 −→ no solution.

M1 AM - refresher Ordinary differential equations 25



Method by analogy: examples

In what form can particular solutions of the following equations be found?

1. (t + 1)y ′ + (2t − 1) y = 2t3 + t2 + 1

2. f ′(t)− f (t) = sin t + 2 cos t

3. z ′(x)− 3 z(x) = sin 3x

4. u′ + 3u = 5e2x + 6e−x
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Method by analogy: examples
In what form can particular solutions of the following equations be found?

1. (t + 1)y ′ + (2t − 1) y = 2t3 + t2 + 1

−→ yp(t) = a t2 + b t + c

yp(t) = t2 − 1

2. f ′(t)− f (t) = sin t + 2 cos t −→ fp(t) = a sin t + b cos t

fp(t) = 1
2 sin t − 3

2 cos t

3. z ′(x)− 3 z(x) = sin 3x −→ zp(x) = a sin 3x + b cos 3x

zp(x) = − 1
6 sin 3x − 1

6 cos 3x

4. u′ + 3u = 5e2x + 6e−x −→ up(x) = a e2x + b e−x

up(x) = e2x + 3 e−x
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Variation of constants method: general principle

(E) y ′(x) + α(x) y(x) = β(x)

Solutions of (E0): y0(x) = K e−A(x) where K ∈ R and A(x) is a primitive of α(x)

Idea: look for a particular solution under the form yp(x) = K(x) e−A(x).

Then y ′p(x) = K ′(x) e−A(x) − K(x)α(x) e−A(x). Thus:

y ′p(x) + α(x) yp(x) = K ′(x) e−A(x) − K(x)α(x) e−A(x)︸ ︷︷ ︸
y′p

+α(x) K(x) e−A(x)︸ ︷︷ ︸
yp

= K ′(x) e−A(x)

Hence K ′(x) = β(x) eA(x). Hence K(x) by integration. Hence yp(x).
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Variation of constants method: example

(E) y ′(x) + 2x y(x) = 2x e−x2

Solutions of (E0) y ′0(x) + 2x y0(x) = 0 : y0(x) = K e−
∫

2x = K e−x2
K ∈ R

Particular solution: let yp(x) = K(x) e−x2 . Thus, injecting in (E):

K ′(x) e−x2
+ K(x) (−2x) e−x2︸ ︷︷ ︸

y′p

+2x K(x) e−x2︸ ︷︷ ︸
yp

= 2x e−x2

thus K ′(x) e−x2
= 2x e−x2 , then K ′(x) = 2x .

Hence K(x) = x2 (no need to bother with the integration constant: one just looks for one particular solution).

Finally: yp(x) = x2 e−x2

The solutions of (E): y(x) = x2 e−x2
+ K e−x2

= (x2 + K) e−x2
K ∈ R
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Variation of constants method: example

(E ) y ′(x) + 2x y(x) = 2x e−x2
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Solving a first-order linear ODE
I Step 0: on which domain? −→ each interval where a(t) does not cancel. Dividing by

a(t), the equation becomes
(E ) y ′(t) + α(t) y(t) = β(t) where α(t) = b(t)/a(t) and β(t) = c(t)/a(t)

I Step 1: solution of the associated homogeneous equation (E0) y ′0(t) + α(t) y0(t) = 0
−→ computation of a primitive.
One gets a set of solutions S0

I Step 2: determination of a particular solution yp of (E )

I either by analogy (simple and intuitive method, but does not work systematically)
I or by variation of constants (always works, but is a little bit more demanding in terms of

calculations)

The set of solutions is then S = yp + S0 = { yp + y0, y0 ∈ S0}
I Step 3 (possibly): connection of solutions between different intervals where a(t) does not

cancel out : given solutions on ]t1, t2[ and ]t2, t3[, does it exist C1 solutions on ]t1, t3[ ?
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Connection of solutions: example #1
(E) tz ′(t) + z(t)− sin t = 0

Solutions de (E) are:
I on ]−∞, 0[: z−(t) = −

cos t
t

+
K−

t
K− ∈ R

I on ]0,+∞[: z+(t) = −
cos t

t
+

K+

t
K+ ∈ R

What are the solutions of (E) on
R ?

i.e. what are the possible continuous and differentiable connections at t = 0 between a function z− and a
function z+?

M1 AM - refresher Ordinary differential equations 32



Connection of solutions: example #1
I on ]−∞, 0[: z−(t) = −

cos t
t

+
K−

t
K− ∈ R

I on ]0,+∞[: z+(t) = −
cos t

t
+

K+

t
K+ ∈ R

Continuity:

lim
t→0−

z−(t) = lim
t→0−

K− − 1 + t2/2 + O(t4)

t
=

 +∞ if K− < 1
0 if K− = 1
−∞ if K− > 1

lim
t→0+

z+(t) = lim
t→0+

K+ − 1 + t2/2 + O(t4)

t
=

 −∞ if K+ < 1
0 if K+ = 1
+∞ if K+ > 1

The only possible choice for a continuous connection at t = 0 is thus K− = K+ = 1.

Let z∗(t) =


1− cos t

t
if t 6= 0

0 if t = 0

−→ Remaining point: is z∗ differentiable at t = 0?
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Connection of solutions: example #1

z∗(t) =


1− cos t

t
if t 6= 0

0 if t = 0

Differentiability: z∗′(t) =
sin t

t
+

cos t − 1
t2 for t 6= 0.

In the vicinity of 0: z∗′(t) =
t + O(t3)

t
+

(1− t2/2 + O(t4))− 1
t2 = 1−

1
2

+ O(t2) =
1
2

+ O(t2).

So z∗′(0) =
1
2

. z∗ is thus differentiable in 0, and its derivative is continuous.

z∗ is the unique C1 solution
of (E) on R.
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Connection of solutions: example #2

(E) y ′(x) +
x − 1

x
y(x) = x2

I on ]−∞, 0[: y−(x) = x2 − x + K− x e−x K− ∈ R
I on ]0,+∞[: y+(x) = x2 − x + K+ x e−x K+ ∈ R

Given those solutions, what are the solutions of (E) on R ? i.e. what are the possible
continuous and differentiable connections at x = 0 between a function y− and a function y+ ?
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Connection of solutions: example #2

The solutions of (E) on R∗ are the functions

y(x) =

 x2 − x + K− x e−x on ]−∞, 0[

x2 − x + K+ x e−x on ]0,+∞[

Continuity: lim
x→0−

y(x) = 0 and lim
x→0+

y(x) = 0. Thus any branch of solution on ]−∞, 0[ is continuously

connected to any branch of solution on ]0,+∞[.

Differentiability: (x2 − x + K x e−x )′ = 2x − 1 + K (1− x) e−x . Thus lim
x→0−

y ′(x) = −1 + K− and

lim
x→0+

y(x) = −1 + K+.

Thus a branch of solution on ]−∞, 0[ connects smoothly to a branch of solution on ]0,+∞[ iff K− = K+.
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Connection of solutions: example #2

(E ) y ′(x) +
x − 1

x y(x) = x2

The solutions of (E ) on R are the functions y(x) = x2 − x + K x e−x , K ∈ R
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And what for first-order
nonlinear differential equations?

I No fully general method
I A simple method for separable differential equations
I Some methods, on a case-by-case basis (often by a change of unknown function), for some

particular equations
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Separable differential equations
Definition A first-order differential equation is separable iff it can be written as
y ′(t) = g(y(t)) f (t).

Computation method (schematically)

y ′(t) = g(y(t)) f (t) ⇐⇒ y ′(t)

g(y(t))
= f (t)

⇐⇒
∫ y ′(t)

g(y(t))
=

∫
f (t)

⇐⇒ H(y(t)) = F (t) + C where H is a primitive of 1/g
F a primitive of f , and C ∈ R

⇐⇒ y(t) = H−1 (F (t) + C) C ∈ R
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Separable differential equations
Definition A first-order differential equation is separable iff it can be written as
y ′(t) = g(y(t)) f (t).

Are the following equations separable?

1. y ′(t)− y3(t) sin 2t = 0 YES - NO

2. y ′(t)− y3(t) sin 2t + 2t + 1 = 0 YES - NO

3. y ′(t)− y3(t) sin 2t + (2t + 1) y(t) = 0 YES - NO

4. y ′(t)− y3(t) sin 2t − sin 2t + 1 + y3(t) = 0 YES - NO

5. ez(x) z ′(x) + ln(x) z2(x) = 0 YES - NO

6. t u′(t)− u(t) + eu′(t) = 0 YES - NO

7. f ′(t)− f (t) = t f 2(t) YES - NO

8. x y ′(x)− sin(x) cos(y2(x)) = 0 YES - NO
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Separable differential equations

Definition A first-order differential equation is separable iff it can be written as
y ′(t) = g(y(t)) f (t).

Are the following equations separable?

1. y ′(t)− y3(t) sin 2t = 0

YES - NO

y ′(t) = y3(t) sin 2t g(X) = X 3 f (t) = sin 2t

2. y ′(t)− y3(t) sin 2t + 2t + 1 = 0 YES - NO

3. y ′(t)− y3(t) sin 2t + (2t + 1) y(t) = 0 YES - NO

4. y ′(t)− y3(t) sin 2t − sin 2t + 1 + y3(t) = 0 YES - NO

y ′(t) = (y3(t) + 1) (sin(2t)− 1) g(X) = X 3 + 1 f (t) = sin(2t)− 1
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Separable differential equations: example #1

e−t y ′(t)− t y2(t) = 0

Let assume that y(t) does not cancel. Then
y ′(t)

y2(t)
= t et , which leads to:

∫ y ′(t)

y2(t)
dt =

∫
t et dt

⇐⇒ −
1

y(t)
= (t − 1) et + C (by IBP)

⇐⇒ y(t) =
−1

(t − 1) et + C
C ∈ R

We see a posteriori that y does indeed not cancel. Its definition domain
depends on the integration constant C .

For C > 1 : Dy = R
For C = 1 : Dy = R∗
For 0 < C < 1 : Dy = R except 2 forbidden values
For C ≤ 0 : Dy = R except 1 forbidden value

(t − 1) et
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Separable differential equations: example #1
y(t) =

−1
(t − 1) et + C

C ∈ R

For C > 1 : Dy = R
For C = 1 : Dy = R∗
For 0 < C < 1 : Dy = R except 2 forbidden values
For C ≤ 0 : Dy = R except 1 forbidden value

y(t) =
−1

(t − 1) et + 2

y(t) =
−1

(t − 1) et + 1

y(t) =
−1

(t − 1) et + 0.5

y(t) =
−1

(t − 1) et − 1
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Separable differential equations: example #2

(E ) x y ′ +
3
y = 0

On I =]−∞, 0[ or ]0,+∞[, we have: y y ′ = −
3
x

, which leads by integration to:
1
2

y2(x) = −3 ln |x |+ C ,

hence y(x) = ±
√
−6 ln |x |+ K (K = 2C ∈ R)

The domain of y is given by the condition −6 ln |x |+ K ≥ 0, i.e. |x | ≤ eK/6.

In summary:

∀K ∈ R,  yK ,−(x) = −
√
−6 ln |x |+ K

yK ,+(x) =
√
−6 ln |x |+ K

are solutions of (E) on ]− eK/6, 0[∪ ]0, eK/6[.
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Second-order linear differential equations
with constant coefficients
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Second-order linear ODEs with constant coefficients

(E ) au′′(x) + bu′(x) + cu(x) = f (x) with a, b, c ∈ R and a 6= 0

Principle of superposition S = up + S0, where up(x) is a particular solution of (E ) and S0 is
the set of solutions of the associated homogeneous equation (E0).

Solutions of (E0) Let P(X ) = aX 2 + bX + c the characteristic polynomial associated to
(E0), and ∆ = b2 − 4ac its discriminant. Then:

I if ∆ > 0, u0(x) = Aer1x + Ber2x A,B ∈ R, where r1 = −b−
√

∆
2a and r2 = −b+

√
∆

2a are the
two real roots of P.

I if ∆ = 0, u0(x) = (Ax + B)erx A,B ∈ R, where r = −b
2a is the unique root of P.

I if ∆ < 0, u0(x) = (A cosαx + B sinαx)eβx A,B ∈ R, where α =
√
−∆
2a and β = −b

2a .

Particular solution of (E ) (similar to first-order equations) A particular solution up can be
obtained either by analogy with the right-hand side (if simple), or by the method of variation of
constants (i.e. replacing the constants A and B, or only one of them, by a function of x).
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