Ordinary Differential Equations

Radioactivité naturelle

Observation : the variation in the quantity of radioactive nuclei is proportional to their quantity and to the elapsed time.

Radioactivité naturelle

Observation : the variation in the quantity of radioactive nuclei is proportional to their quantity and to the elapsed time.

$$
N(t + \Delta t) - N(t) \propto \Delta t N(t) \implies N'(t) = -\lambda N(t)
$$

 $N(t)$: quantity of radioactive nuclei at time t, and $\lambda > 0$

Multiplication by $e^{\lambda t}$: $N'(t) e^{\lambda t} + \lambda N(t) e^{\lambda t} = 0$, i.e. $(N(t) e^{\lambda t})' = 0$

Hence $N(t) = C e^{-\lambda t} = N(0) e^{-\lambda t}$

Multiplication by $e^{\lambda t}$: $N'(t) e^{\lambda t} + \lambda N(t) e^{\lambda t} = 0$, i.e. $(N(t) e^{\lambda t})' = 0$ Hence $N(t) = C e^{-\lambda t} = N(0) e^{-\lambda t}$

Half-life time :
$$
N(t) = \frac{N(0)}{2}
$$
 for $e^{-\lambda t} = \frac{1}{2}$, i.e. $t_{\text{half}} = \frac{\ln 2}{\lambda}$

- \blacktriangleright Iodine 131: $t_{\text{half}} \simeq 8$ days
- Gesium 137: $t_{\text{half}} \simeq 30$ years
- Plutonium 239: $t_{\text{half}} \approx 24110$ years

Second law of dynamics: $mq''(t) + k q(t) = 0$ ($k > 0$: spring stiffness)

$$
q(t) = A\cos \omega t + B\sin \omega t \quad , \quad \text{with } \omega = \sqrt{\frac{k}{m}}
$$

Example #3: RC circuit

 $I(t)$: intensity

R: resistance, C: capacitance

$$
I(t) = \frac{dq(t)}{dt}
$$
 with $q(t)$ the electrical charge

Example #3: RC circuit

 $I(t)$: intensity

R: resistance, C: capacitance

$$
I(t) = \frac{dq(t)}{dt}
$$
 with $q(t)$ the electrical charge

$$
V_S(t) = V_R(t) + V_C(t)
$$

= $R I(t) + \frac{q(t)}{C} = R \frac{dq}{dt}(t) + \frac{q(t)}{C}$
 $R \frac{dq}{dt}(t) + \frac{1}{C} q(t) = V_S(t)$

Example $#4$: viral epidemic (system of ODEs)

The SIR model

Susceptible individuals

Infectious individuals

 $S'(t) = -\beta I(t)S(t)$ $I'(t) = \beta I(t)S(t) - \lambda I(t)$

Removed (and immune) or deceased individuals

 $\sqrt{ }$ $\left\{ \right.$ \mathbf{I}

Further information:

<https://interstices.info/modeliser-la-propagation-dune-epidemie/>

▶ A differential equation is a relationship linking a function and its successive derivatives. The unknown is **therefore a function**. In very general terms, it can be written as $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, where $y(x)$ is the unknown function.

- ▶ A differential equation is a relationship linking a function and its successive derivatives. The unknown is **therefore a function**. In very general terms, it can be written as $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, where $y(x)$ is the unknown function.
- **In The order** of a differential equation is the highest degree of derivation in the equation.

- ▶ A differential equation is a relationship linking a function and its successive derivatives. The unknown is **therefore a function**. In very general terms, it can be written as $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, where $y(x)$ is the unknown function.
- **In The order** of a differential equation is the highest degree of derivation in the equation.
- In Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.

- ▶ A differential equation is a relationship linking a function and its successive derivatives. The unknown is **therefore a function**. In very general terms, it can be written as $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, where $y(x)$ is the unknown function.
- **In The order** of a differential equation is the highest degree of derivation in the equation.
- In Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- I Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be **homogeneous**.

- ▶ A differential equation is a relationship linking a function and its successive derivatives. The unknown is **therefore a function**. In very general terms, it can be written as $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, where $y(x)$ is the unknown function.
- **In The order** of a differential equation is the highest degree of derivation in the equation.
- In Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- I Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be **homogeneous**.
- I Let (E) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (E) with 0 is called its **corresponding homogeneous equation**.

- ▶ A differential equation is a relationship linking a function and its successive derivatives. The unknown is **therefore a function**. In very general terms, it can be written as $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, where $y(x)$ is the unknown function.
- **In The order** of a differential equation is the highest degree of derivation in the equation.
- In Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- I Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be **homogeneous**.
- I Let (E) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (E) with 0 is called its **corresponding homogeneous equation**.
- I Let (E) be a differential equation and (E_0) its associated homogeneous equation. (E) is **linear** if and only if the solutions of (E_0) are stable by linear combination. In other words, if y_0 and z_0 are two solutions of (E_0) , then $\lambda y_0 + \mu z_0$ is also a solution of (E_0) , $\forall (\lambda, \mu) \in \mathbb{R} \times \mathbb{R}$.

Otherwise (E) is said to be **nonlinear**.

Alfred Lotka Vito Volterra (1880 - 1949) (1860 - 1940)

 $X(t) =$ quantity of preys $Y(t) =$ quantity of predators

 $X(t)$ = quantity of preys $Y(t)$ = quantity of predators

If no predators: population of preys increases (hyp: constant rate) $\ell'(t) = a X(t)$

 $X(t)$ = quantity of preys $Y(t)$ = quantity of predators

- If no predators: population of preys increases (hyp: constant rate) $\ell'(t) = a X(t)$
- If no preys: population of predators decreases (hyp: constant rate)

 $y'(t) = -c Y(t)$

 $X(t)$ = quantity of preys $Y(t)$ = quantity of predators

- If no predators: population of preys increases (hyp: constant rate) $\ell'(t) = a X(t)$
- If no preys: population of predators decreases (hyp: constant rate)
- \blacktriangleright Hyp: prey mortality rate \propto number of predators

 $V(t) = (a-b Y(t)) X(t)$

 $y'(t) = -c Y(t)$

 $X(t)$ = quantity of preys $Y(t)$ = quantity of predators

- If no predators: population of preys increases (hyp: constant rate) $\ell'(t) = a X(t)$
- If no preys: population of predators decreases (hyp: constant rate) $y'(t) = -c Y(t)$
- ► Hyp: prey mortality rate \propto number of predators
- \blacktriangleright Hyp: predator growth rate \propto number of preys

 $V(t) = (a-b Y(t)) X(t)$ $V(t) = (-c+d X(t)) Y(t)$

 $X(t)$ = number of preys $Y(t)$ = number of predators

$$
\begin{cases}\nX'(t) = (a - b Y(t)) X(t) \\
Y'(t) = (-c + d X(t)) Y(t)\n\end{cases}
$$

Example $#6$: chaos and butterfly effect

Chaotic systems: small initial perturbations may lead to huge final differences (atmosphere, ocean, climate are chaotic systems).

$$
\begin{cases}\n\frac{dx}{dt} = \sigma(y - x) \\
\frac{dy}{dt} = \rho x - y - xz \\
\frac{dz}{dt} = xy - \beta z\n\end{cases}
$$

Edward Lorenz (1917-2008)

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas? (139th meeting of the American Association for the Advancement of Science, 1972)

http://www.chaos-math.org

- ▶ A differential equation is a relationship linking a function and its successive derivatives. The unknown is **therefore a function**. In very general terms, it can be written as $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, where $y(x)$ is the unknown function.
- **In The order** of a differential equation is the highest degree of derivation in the equation.
- In Let (E) be a differential equation. The set of terms in (E) in which the unknown function does not appear is called **right-hand side (r.h.s.)** of (E). They are generally put on the right-hand side of the equation, hence this name.
- I Let (E) be a differential equation. If its r.h.s. is zero, then this equation is said to be **homogeneous**.
- I Let (E) be a non-homogeneous differential equation. The differential equation (E_0) obtained by replacing the r.h.s. of (E) with 0 is called its **corresponding homogeneous equation**.
- I Let (E) be a differential equation and (E_0) its associated homogeneous equation. (E) is **linear** if and only if the solutions of (E_0) are stable by linear combination. In other words, if y_0 and z_0 are two solutions of (E_0) , then $\lambda y_0 + \mu z_0$ is also a solution of (E_0) , $\forall (\lambda, \mu) \in \mathbb{R} \times \mathbb{R}$.

Otherwise (E) is said to be **nonlinear**.

1. $z'(x) + x^3 z(x) = \sqrt{x}$

5. $e^x u''(x) - x u(x) = 0$

8. $\cos x y''(x) + x^2 y(x) + x = 0$

First-order linear ODEs
Solutions of a first-order linear ODE

A first-order linear ODE reads $a(t)y'(t) + b(t)y(t) = c(t)$ (E) where $a(t)$, $b(t)$, $c(t)$ are given functions.

Solutions of a first-order linear ODE

A first-order linear ODE reads $a(t)y'(t) + b(t)y(t) = c(t)$ (E) where $a(t)$, $b(t)$, $c(t)$ are given functions.

Principle of superposition

Let $u_p(x)$ a particular solution of (E) . The solutions of (E) are the functions $u(x) = u_p(x) + u_0(x)$, where u_0 represents the solutions of (E_0) .

In other words, the set of solutions of (E) is $S = u_p + S_0$, where S_0 denotes the set of solutions of (E_0) .

► Step 0: on which domain?

IF Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

If Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

 \triangleright **Step 1**: solution of the associated homogeneous equation

If Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

► Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t)y_0(t) = 0$ \longrightarrow computation of a primitive.

One gets a set of solutions S_0

If Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ► Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t)y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- \triangleright **Step 2**: determination of a particular solution y_p of (E)

If Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ► Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t)y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- \triangleright **Step 2**: determination of a particular solution y_p of (E)
	- **E** either by analogy (simple and intuitive method, but does not work systematically)
	- \triangleright or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{y_p + y_0, y_0 \in S_0\}$

If Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ► Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t)y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- \triangleright **Step 2**: determination of a particular solution y_p of (E)
	- \triangleright either by analogy (simple and intuitive method, but does not work systematically)
	- \triangleright or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{y_p + y_0, y_0 \in S_0\}$

Step 3 (possibly): connection of solutions between different intervals where $a(t)$ does not cancel out : given solutions on $]t_1,t_2[$ and $]t_2,t_3[$, does it exist \mathcal{C}^1 solutions on $]t_1,t_3[$?

(E₀) $y'_0(x) + \alpha(x) y_0(x) = 0 \quad x \in I$

(E₀) $y'_0(x) + \alpha(x) y_0(x) = 0 \quad x \in I$

Let
$$
A(x)
$$
 a primitive of $\alpha(x)$.
\nMultiplying (E_0) by $e^{A(x)}$: $e^{A(x)} y'_0(x) + \alpha(x) e^{A(x)} y_0(x) = 0$
\ni.e. $(e^{A(x)} y_0(x))' = 0$
\nhence $e^{A(x)} y_0(x) = \text{cste}$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

(E₀) $y'_0(x) + \alpha(x) y_0(x) = 0 \quad x \in I$

Let
$$
A(x)
$$
 a primitive of $\alpha(x)$.
\nMultiplying (E_0) by $e^{A(x)}$: $e^{A(x)} y'_0(x) + \alpha(x) e^{A(x)} y_0(x) = 0$
\ni.e. $(e^{A(x)} y_0(x))' = 0$
\nhence $e^{A(x)} y_0(x) = \text{cste}$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

 \blacktriangleright Conversely, any function of this form is a solution: if $y_0(x) = K e^{-A(x)}$, then $y'_0(x) = -K \alpha(x) e^{-A(x)}$, hence $y'_0(x) + \alpha(x) y_0(x) = 0$

(E₀) $y'_0(x) + \alpha(x) y_0(x) = 0 \quad x \in I$

Let
$$
A(x)
$$
 a primitive of $\alpha(x)$.
\nMultiplying (E_0) by $e^{A(x)}$: $e^{A(x)} y'_0(x) + \alpha(x) e^{A(x)} y_0(x) = 0$
\ni.e. $(e^{A(x)} y_0(x))' = 0$
\nhence $e^{A(x)} y_0(x) = \text{cste}$

Solutions are thus of the form: $y_0(x) = K e^{-A(x)}$ with $K \in \mathbb{R}$.

 \blacktriangleright Conversely, any function of this form is a solution: if $y_0(x) = K e^{-A(x)}$, then $y'_0(x) = -K \alpha(x) e^{-A(x)}$, hence $y'_0(x) + \alpha(x) y_0(x) = 0$

In summary: the set of solutions on *I* is
$$
\mathcal{S}_0 = \left\{ y_0/y_0(x) = K e^{-A(x)} \text{ with } K \in \mathbb{R} \right\}
$$

 (E_0) $(1+x) y'_0(x) + y_0(x) = 0$

 (E_0) $(1+x) y'_0(x) + y_0(x) = 0$

On
$$
I =]-\infty; -1[
$$
 or $I =]-1; +\infty[$: (E_0) becomes $y'_0(x) + \frac{1}{1+x}y_0(x) = 0$.
A primitive of $\alpha(x) = \frac{1}{1+x}$ is $A(x) = \ln|1+x|$. Hence $e^{-A(x)} = \frac{1}{|1+x|}$

Hence the solutions on I:

$$
y_0(x) = \frac{K}{1+x} \qquad K \in \mathbb{R}
$$

 (L_0) $u'_0(t) + \tan(t) u_0(t) = 0$

 (L_0) $u'_0(t) + \tan(t) u_0(t) = 0$

On
$$
I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[
$$
, or any other interval $I = \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$.

 (L_0) $u'_0(t) + \tan(t) u_0(t) = 0$

On $I = \left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ 2 \int , or any other interval $I = \left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2} + k\pi$; $\frac{\pi}{2}$ $\frac{\pi}{2} + k\pi$.

A primitive of $\alpha(t) = \tan(t)$ is $A(t) = -\ln|\cos(t)|$. Hence $e^{-A(t)} = |\cos(t)|$

Hence the solutions on I :

 $u_0(t) = K \cos t$ $K \in \mathbb{R}$

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

\blacktriangleright handbook of usual primitives

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

- \blacktriangleright handbook of usual primitives
- \blacktriangleright **integration by parts**

$$
(uv)' = u'v + uv'. Thus \int (uv)' = uv = \int u'v + \int uv'.
$$

i.e.
$$
\int u'v = uv - \int uv'
$$

\n•
$$
\int \ln x \, dx \quad - \quad \text{En posant } u = x \text{ et } v = \ln x
$$

\n
$$
\int \ln x \, dx = x \ln x - \int x \frac{1}{x} dx = x \ln x - \int dx = x \ln x - x + C
$$

Remark: reminder on integration

Three main tools for the computation of primitives and integrals:

- \blacktriangleright handbook of usual primitives
- **Integration by parts**
- \blacktriangleright change of variable

•
$$
I = \int_{a}^{b} xe^{x^{2}} dx
$$
 — On pose $u = x^{2}$. Alors $du = 2x dx$, $d' \circ \dot{u}$:

$$
I = \int_{x=a}^{x=b} xe^{x^{2}} dx = \frac{1}{2} \int_{u=a^{2}}^{u=b^{2}} e^{u} du = \frac{1}{2} [e^{u}]_{a^{2}}^{b^{2}} = \frac{e^{b^{2}} - e^{a^{2}}}{2}
$$

If Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ► Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t)y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- \triangleright **Step 2**: determination of a particular solution y_p of (E)
	- \triangleright either by analogy (simple and intuitive method, but does not work systematically)
	- \triangleright or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{y_p + y_0, y_0 \in S_0\}$

Step 3 (possibly): connection of solutions between different intervals where $a(t)$ does not cancel out : given solutions on $]t_1,t_2[$ and $]t_2,t_3[$, does it exist \mathcal{C}^1 solutions on $]t_1,t_3[$?

(E) $y'(x) + \alpha(x) y(x) = \beta(x)$

If the right-hand side $\beta(x)$ is a polynomial, or a linear combination of exponentials, or a linear combination of sine and cosine functions, and if $\alpha(x)$ is constant or of similar nature as $\beta(x)$, then it may exist a particular solution $u_p(x)$ in a form similar to that of $\beta(x)$.

 \rightarrow simple method, but which is not always successful

Example: $y'(t) + (2t + 1) y(t) = 6t^2 - t + 1$

Example: $y'(t) + (2t + 1) y(t) = 6t^2 - t + 1$

If $y(t)$ is a degree n polynomial, $y'(t)$ is a degree $n-1$ pol. and $(2t+1)y(t)$ is a degree $n+1$ pol. Thus $y'(t) + (2t+1) y(t)$ is a degree $n+1$ pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Example: $y'(t) + (2t + 1) y(t) = 6t^2 - t + 1$

If $y(t)$ is a degree n polynomial, $y'(t)$ is a degree $n-1$ pol. and $(2t+1)y(t)$ is a degree $n+1$ pol. Thus $y'(t) + (2t+1) y(t)$ is a degree $n+1$ pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Let inject $y_p(t) = at + b$ in (E) : $a + (2t+1)(at+b) = 6t^2 - t + 1$ thus $2a t^2 + (a+2b) t + a + b = 6t^2 - t + 1$ Hence $2a = 6$, $a + 2b = -1$, $a + b = 1$. Thus $a = 3$, $b = -2$.

 $y_p(t) = 3t - 2$ is a particular solution of (E) .

Example: $y'(t) + (2t + 1) y(t) = 6t^2 - t + 1$

If $y(t)$ is a degree n polynomial, $y'(t)$ is a degree $n-1$ pol. and $(2t+1)y(t)$ is a degree $n+1$ pol. Thus $y'(t) + (2t+1) y(t)$ is a degree $n+1$ pol.

The r.h.s. being of degree 2, one can look for $y_p(t)$ as a degree 1 pol.

Let inject $y_p(t) = at + b$ in (E) : $a + (2t+1)(at+b) = 6t^2 - t + 1$ thus $2a t^2 + (a+2b) t + a + b = 6t^2 - t + 1$ Hence $2a = 6$, $a + 2b = -1$, $a + b = 1$. Thus $a = 3$, $b = -2$.

 $y_p(t) = 3t - 2$ is a particular solution of (E) .

It's miraculous : 3 equations for 2 unknowns (a, b) .

If one changes a coefficient in the r.h.s., it does not work anymore.

For instance: $y'(t) + (2t + 1) y(t) = 6t^2 - t$

$$
2a = 6, a + 2b = -1, a + b = 0 \longrightarrow \text{no solution.}
$$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$

2.
$$
f'(t) - f(t) = \sin t + 2 \cos t
$$

3.
$$
z'(x) - 3z(x) = \sin 3x
$$

4.
$$
u' + 3u = 5e^{2x} + 6e^{-x}
$$

In what form can particular solutions of the following equations be found?

1. $(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$
 \longrightarrow $y_p(t) = a t^2 + b t + c$
 $y_p(t) = t^2 - 1$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$
 \longrightarrow $y_p(t) = a t^2 + b t + c$
 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$
 \longrightarrow $y_p(t) = a t^2 + b t + c$
 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t \longrightarrow f_p(t) = a \sin t + b \cos t$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$
 \longrightarrow $y_p(t) = a t^2 + b t + c$
 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t \longrightarrow f_p(t) = a \sin t + b \cos t$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3. $z'(x) - 3z(x) = \sin 3x$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$
 \longrightarrow $y_p(t) = a t^2 + b t + c$
 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t \longrightarrow f_p(t) = a \sin t + b \cos t$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3. $z'(x) - 3z(x) = \sin 3x$ $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$ $z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$
 \longrightarrow $y_p(t) = a t^2 + b t + c$
 $y_p(t) = t^2 - 1$

2. $f'(t) - f(t) = \sin t + 2 \cos t \longrightarrow f_p(t) = a \sin t + b \cos t$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3. $z'(x) - 3z(x) = \sin 3x$ $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$

 $z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$

4.
$$
u' + 3u = 5e^{2x} + 6e^{-x}
$$

In what form can particular solutions of the following equations be found?

1.
$$
(t+1)y' + (2t-1)y = 2t^3 + t^2 + 1
$$
 \longrightarrow $y_p(t) = a t^2 + b t + c$
 $y_p(t) = t^2 - 1$

2.
$$
f'(t) - f(t) = \sin t + 2 \cos t \longrightarrow f_p(t) = a \sin t + b \cos t
$$

 $f_p(t) = \frac{1}{2} \sin t - \frac{3}{2} \cos t$

3.
$$
z'(x) - 3 z(x) = \sin 3x
$$
 $\longrightarrow z_p(x) = a \sin 3x + b \cos 3x$
 $z_p(x) = -\frac{1}{6} \sin 3x - \frac{1}{6} \cos 3x$

4.
$$
u' + 3u = 5e^{2x} + 6e^{-x}
$$
 \longrightarrow $u_p(x) = a e^{2x} + b e^{-x}$

 $u_p(x) = e^{2x} + 3e^{-x}$
(E) $y'(x) + \alpha(x) y(x) = \beta(x)$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and $A(x)$ is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

(E) $y'(x) + \alpha(x) y(x) = \beta(x)$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and $A(x)$ is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then $y'_p(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$.

(E) $y'(x) + \alpha(x) y(x) = \beta(x)$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and $A(x)$ is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then $y'_p(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$. Thus:

$$
y'_p(x) + \alpha(x) y_p(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)} + \alpha(x) K(x) e^{-A(x)}
$$

= $K'(x) e^{-A(x)}$

(E) $y'(x) + \alpha(x) y(x) = \beta(x)$

Solutions of (E_0) : $y_0(x) = K e^{-A(x)}$ where $K \in \mathbb{R}$ and $A(x)$ is a primitive of $\alpha(x)$

Idea: look for a particular solution under the form $y_p(x) = K(x) e^{-A(x)}$.

Then $y'_p(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$. Thus: $y'_p(x) + \alpha(x) y_p(x) = K'(x) e^{-A(x)} - K(x) \alpha(x) e^{-A(x)}$ y'_{p} $+\alpha(x) K(x) e^{-A(x)}$ ${y_p}$ $= K'(x) e^{-A(x)}$

Hence $K'(x) = \beta(x) e^{A(x)}$. Hence $K(x)$ by integration. Hence $y_p(x)$.

 (E) $y'(x) + 2xy(x) = 2x e^{-x^2}$

Solutions of (E_0) $y'_0(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

 (E) $y'(x) + 2xy(x) = 2x e^{-x^2}$

Solutions of (E_0) $y'_0(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E) :

$$
\underbrace{K'(x) e^{-x^2} + K(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{K(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}
$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then $K'(x) = 2x$.

 (E) $y'(x) + 2xy(x) = 2x e^{-x^2}$

Solutions of (E_0) $y'_0(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E) :

$$
\underbrace{K'(x) e^{-x^2} + K(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{K(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}
$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then $K'(x) = 2x$.

Hence $K(x) = x^2$ (no need to bother with the integration constant: one just looks for <u>one</u> particular solution). Finally: $y_p(x) = x^2 e^{-x^2}$

 (E) $y'(x) + 2xy(x) = 2x e^{-x^2}$

Solutions of (E_0) $y'_0(x) + 2x y_0(x) = 0$: $y_0(x) = K e^{-\int 2x} = K e^{-x^2}$ $K \in \mathbb{R}$

Particular solution: let $y_p(x) = K(x) e^{-x^2}$. Thus, injecting in (E) :

$$
\underbrace{K'(x) e^{-x^2} + K(x) (-2x) e^{-x^2}}_{y'_p} + 2x \underbrace{K(x) e^{-x^2}}_{y_p} = 2x e^{-x^2}
$$

thus $K'(x) e^{-x^2} = 2x e^{-x^2}$, then $K'(x) = 2x$.

Hence $K(x) = x^2$ (no need to bother with the integration constant: one just looks for <u>one</u> particular solution). Finally: $y_p(x) = x^2 e^{-x^2}$

The solutions of (E):
$$
y(x) = x^2 e^{-x^2} + Ke^{-x^2} = (x^2 + K) e^{-x^2}
$$
 $K \in \mathbb{R}$

 (E) $y'(x) + 2x y(x) = 2x e^{-x^2}$

Solutions :
$$
y(x) = x^2 e^{-x^2} + K e^{-x^2} = (x^2 + K) e^{-x^2} \quad K \in \mathbb{R}
$$

Solving a first-order linear ODE

If Step 0: on which domain? \rightarrow each interval where $a(t)$ does not cancel. Dividing by $a(t)$, the equation becomes

 $\overline{\mathcal{L}}(E)$ $y'(t) + \alpha(t)y(t) = \beta(t)$ where $\alpha(t) = b(t)/a(t)$ and $\beta(t) = c(t)/a(t)$

- ► Step 1: solution of the associated homogeneous equation (E_0) $y_0'(t) + \alpha(t)y_0(t) = 0$ \longrightarrow computation of a primitive. One gets a set of solutions S_0
- \triangleright **Step 2**: determination of a particular solution y_p of (E)
	- \triangleright either by analogy (simple and intuitive method, but does not work systematically)
	- \triangleright or by variation of constants (always works, but is a little bit more demanding in terms of calculations)

The set of solutions is then $S = y_p + S_0 = \{y_p + y_0, y_0 \in S_0\}$

Step 3 (possibly): connection of solutions between different intervals where $a(t)$ does not cancel out : given solutions on $]t_1,t_2[$ and $]t_2,t_3[$, does it exist \mathcal{C}^1 solutions on $]t_1,t_3[$?

(E) $tz'(t) + z(t) - \sin t = 0$

Solutions de (E) are:

$$
\triangleright \text{ on }]-\infty, 0[: z_{-}(t) = -\frac{\cos t}{t} + \frac{K_{-}}{t} \qquad K_{-} \in \mathbb{R}
$$

\n
$$
\triangleright \text{ on }]0, +\infty[: z_{+}(t) = -\frac{\cos t}{t} + \frac{K_{+}}{t} \qquad K_{+} \in \mathbb{R}
$$

i.e. what are the possible continuous and differentiable connections at $t = 0$ between a function $z_$ and a function z_{+} ?

$$
\triangleright \text{ on }]-\infty, 0[: z_{-}(t) = -\frac{\cos t}{t} + \frac{K_{-}}{t} \qquad K_{-} \in \mathbb{R}
$$

$$
\triangleright \text{ on }]0, +\infty[: z_{+}(t) = -\frac{\cos t}{t} + \frac{K_{+}}{t} \qquad K_{+} \in \mathbb{R}
$$

Continuity:

$$
\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}
$$

$$
\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}
$$

$$
\triangleright \text{ on }]-\infty, 0[: z_{-}(t) = -\frac{\cos t}{t} + \frac{K_{-}}{t} \qquad K_{-} \in \mathbb{R}
$$

$$
\triangleright \text{ on }]0, +\infty[: z_{+}(t) = -\frac{\cos t}{t} + \frac{K_{+}}{t} \qquad K_{+} \in \mathbb{R}
$$

Continuity:

$$
\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}
$$

$$
\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}
$$

The only possible choice for a continuous connection at $t = 0$ is thus $K_ - = K_ + = 1$.

Let
$$
z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}
$$

$$
\triangleright \text{ on }]-\infty, 0[: z_{-}(t) = -\frac{\cos t}{t} + \frac{K_{-}}{t} \qquad K_{-} \in \mathbb{R}
$$

$$
\triangleright \text{ on }]0, +\infty[: z_{+}(t) = -\frac{\cos t}{t} + \frac{K_{+}}{t} \qquad K_{+} \in \mathbb{R}
$$

Continuity:

$$
\lim_{t \to 0^{-}} z_{-}(t) = \lim_{t \to 0^{-}} \frac{K_{-} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} +\infty & \text{if } K_{-} < 1 \\ 0 & \text{if } K_{-} = 1 \\ -\infty & \text{if } K_{-} > 1 \end{cases}
$$

$$
\lim_{t \to 0^{+}} z_{+}(t) = \lim_{t \to 0^{+}} \frac{K_{+} - 1 + t^{2}/2 + O(t^{4})}{t} = \begin{cases} -\infty & \text{if } K_{+} < 1 \\ 0 & \text{if } K_{+} = 1 \\ +\infty & \text{if } K_{+} > 1 \end{cases}
$$

The only possible choice for a continuous connection at $t = 0$ is thus $K_ - = K_ + = 1$.

Let
$$
z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}
$$

 \longrightarrow **Remaining point: is** z^* differentiable at $t = 0$?

$$
z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}
$$

Differentiability: $z^{*'}(t) = \frac{\sin t}{t} + \frac{\cos t - 1}{t^2}$

In the vicinity of 0: $z^{*'}(t) = \frac{t + O(t^3)}{t^3}$ $\frac{O(t^3)}{t} + \frac{(1-t^2/2 + O(t^4)) - 1}{t^2}$ $\frac{1}{t^2} + O(t^4) - 1 = 1 - \frac{1}{2}$ $\frac{1}{2} + O(t^2) = \frac{1}{2} + O(t^2).$ So $z^{*'}(0) = \frac{1}{2}$. z^{*} is thus differentiable in 0, and its derivative is continuous.

 $\frac{1}{t^2}$ for $t \neq 0$.

 $f''(t) = \frac{\sin t}{t} + \frac{\cos t - 1}{t^2}$

$$
z^*(t) = \begin{cases} \frac{1 - \cos t}{t} & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}
$$

Differentiability:

In the vicinity of 0:
$$
z^{*'}(t) = \frac{t + O(t^3)}{t} + \frac{(1 - t^2/2 + O(t^4)) - 1}{t^2} = 1 - \frac{1}{2} + O(t^2) = \frac{1}{2} + O(t^2)
$$
. So $z^{*'}(0) = \frac{1}{2}$. z^* is thus differentiable in 0, and its derivative is continuous.

 $\frac{1}{t^2}$ for $t \neq 0$.

 z^* is the unique \mathcal{C}^1 solution of (E) on \mathbb{R} .

(E)
$$
y'(x) + \frac{x-1}{x}y(x) = x^2
$$

• on
$$
]-\infty, 0[
$$
: $y_-(x) = x^2 - x + K_ - x e^{-x}$ $K_- \in \mathbb{R}$

• on
$$
]0, +\infty[
$$
: $y_+(x) = x^2 - x + K_+ x e^{-x}$ $K_+ \in \mathbb{R}$

Given those solutions, what are the solutions of (E) on $\mathbb R$? i.e. what are the possible continuous and differentiable connections at $x = 0$ between a function $y_-\,$ and a function y_+ ?

The solutions of (E) on \mathbb{R}^* are the functions

$$
y(x) = \begin{cases} x^2 - x + K_-\,x\,e^{-x} & \text{on }] - \infty, 0[\\ x^2 - x + K_+\,x\,e^{-x} & \text{on }]0, +\infty[\end{cases}
$$

Continuity: $\lim_{x\to 0^-} y(x) = 0$ and $\lim_{x\to 0^+} y(x) = 0$. Thus any branch of solution on $]-\infty,0[$ is continuously connected to any branch of solution on $]0, +\infty[$.

Differentiability: $(x^2 - x + Kx e^{-x})' = 2x - 1 + K(1 - x) e^{-x}$. Thus $\lim_{x \to 0^{-}} y'(x) = -1 + K$ and $\lim_{x \to 0^+} y(x) = -1 + K_+.$

Thus a branch of solution on $] - \infty$, 0[connects smoothly to a branch of solution on $]0, +\infty[$ iff $K = K_{+}$.

(E)
$$
y'(x) + \frac{x-1}{x}y(x) = x^2
$$

The solutions of (E) on $\mathbb R$ are the functions $y(x) = x^2 - x + Kx e^{-x}$, $K \in \mathbb R$

And what for first-order nonlinear differential equations?

And what for first-order nonlinear differential equations?

- \triangleright No fully general method
- \triangleright A simple method for separable differential equations
- \triangleright Some methods, on a case-by-case basis (often by a change of unknown function), for some particular equations

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Computation method (schematically)

$$
y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)
$$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Computation method (schematically)

$$
y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)
$$

\n
$$
\iff \int \frac{y'(t)}{g(y(t))} = \int f(t)
$$

\n
$$
\iff H(y(t)) = F(t) + C \text{ where } H \text{ is a primitive of } 1/g
$$

\n
$$
F \text{ a primitive of } f, \text{ and } C \in \mathbb{R}
$$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Computation method (schematically)

$$
y'(t) = g(y(t)) f(t) \iff \frac{y'(t)}{g(y(t))} = f(t)
$$

\n
$$
\iff \int \frac{y'(t)}{g(y(t))} = \int f(t)
$$

\n
$$
\iff H(y(t)) = F(t) + C \text{ where } H \text{ is a primitive of } 1/g
$$

\n
$$
F \text{ a primitive of } f \text{, and } C \in \mathbb{R}
$$

$$
\iff y(t) = H^{-1}(F(t) + C) \quad C \in \mathbb{R}
$$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Are the following equations separable?

1. $y'(t) - y^3(t) \sin 2t = 0$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Are the following equations separable?

1.
$$
y'(t) - y^3(t) \sin 2t = 0
$$
 YES - NO

 $y'(t) = y^3(t)$ sin 2t $g(X) = X^3$ $f(t) = \sin 2t$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Are the following equations separable?

1.
$$
y'(t) - y^3(t) \sin 2t = 0
$$
 YES - NO

 $y'(t) = y^3(t)$ sin 2t $g(X) = X^3$ $f(t) = \sin 2t$

2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Are the following equations separable?

1. $y'(t) - y^3(t) \sin 2t = 0$ **YES - NO**

 $y'(t) = y^3(t)$ sin 2t $g(X) = X^3$ $f(t) = \sin 2t$

2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$ **YES** - **NO**

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Are the following equations separable?

1. $y'(t) - y^3(t) \sin 2t = 0$ **YES - NO** $y'(t) = y^3(t)$ sin 2t $g(X) = X^3$ $f(t) = \sin 2t$ 2. $y'(t) - y^3(t) \sin 2t + 2t + 1 = 0$ **YES** - **NO** 3. $y'(t) - y^3(t) \sin 2t + (2t + 1) y(t) = 0$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Definition A first-order differential equation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Are the following equations separable?

5. $e^{z(x)} z'(x) + \ln(x) z^2(x) = 0$

Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

5.
$$
e^{z(x)} z'(x) + \ln(x) z^2(x) = 0
$$

\nYES - NO
\nYES - NO
\nYES - NO
\nYES - NO
Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

5.
$$
e^{z(x)} z'(x) + \ln(x) z^2(x) = 0
$$

\nYES - NO
\n $z'(x) = -z^2(x) e^{-z(x)} \ln x$ $g(X) = -X^2 e^{-X}$ $f(t) = \ln t$

6.
$$
tu'(t) - u(t) + e^{u'(t)} = 0
$$

Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

5.
$$
e^{z(x)} z'(x) + \ln(x) z^2(x) = 0
$$

\n
$$
z'(x) = -z^2(x) e^{-z(x)} \ln x
$$
\n6. $tu'(t) - u(t) + e^{u'(t)} = 0$
\n6. $tu'(t) - u(t) + e^{u'(t)} = 0$
\n7. $z'(x) = -x^2 e^{-x} \ln x$
\n8. $z'(x) = -x^2 e^{-x} \ln x$
\n9. $z'(x) = -x^2 e^{-x} \ln x$
\n10. $z'(x) = -x^2 e^{-x} \ln x$
\n11. $z'(x) = -x^2 e^{-x} \ln x$
\n21. $z'(x) = -x^2 e^{-x} \ln x$
\n31. $z'(x) = -x^2 e^{-x} \ln x$
\n42. $z'(x) = -x^2 e^{-x} \ln x$
\n5. 0

Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

5.
$$
e^{z(x)} z'(x) + \ln(x) z^2(x) = 0
$$

\n
$$
z'(x) = -z^2(x) e^{-z(x)} \ln x
$$
 $g(x) = -x^2 e^{-x}$ $f(t) = \ln t$
\n6. $tu'(t) - u(t) + e^{u'(t)} = 0$
\n7. $f'(t) - f(t) = t f^2(t)$

Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

Definition A first-order differential équation is separable iff it can be written as $y'(t) = g(y(t)) f(t).$

 $e^{-t} y'(t) - t y^2(t) = 0$

$$
e^{-t} y'(t) - t y^2(t) = 0
$$

Let assume that $y(t)$ does not cancel. Then $\frac{y'(t)}{2(t)}$ $\frac{y'(t)}{y^2(t)} = t e^t$, which leads to:

$$
\int \frac{y'(t)}{y^2(t)} dt = \int t e^t dt
$$

\n
$$
\iff -\frac{1}{y(t)} = (t-1) e^t + C \qquad \text{(by IBP)}
$$

\n
$$
\iff y(t) = \frac{-1}{(t-1) e^t + C} \qquad C \in \mathbb{R}
$$

We see a posteriori that y does indeed not cancel. Its definition domain depends on the integration constant C.

For
$$
C > 1 : \mathcal{D}_y = \mathbb{R}
$$

For $C = 1 : \mathcal{D}_y = \mathbb{R}^*$
For $0 < C < 1 : \mathcal{D}_y = \mathbb{R}$ except 2 forbidden values
For $C \le 0 : \mathcal{D}_y = \mathbb{R}$ except 1 forbidden value
 $(t-1) \in$

$$
y(t)=\frac{-1}{(t-1)\,e^t+C}\qquad C\in\mathbb{R}
$$

For $C > 1$: $\mathcal{D}_V = \mathbb{R}$ For $C = 1$: $\mathcal{D}_v = \mathbb{R}^*$ For $0 < C < 1$: $\mathcal{D}_V = \mathbb{R}$ except 2 forbidden values For $C < 0$: $\mathcal{D}_V = \mathbb{R}$ except 1 forbidden value

$$
(E) \qquad xy' + \frac{3}{y} = 0
$$

$$
(E) \qquad xy' + \frac{3}{y} = 0
$$

On $I=]-\infty,0[$ or $]0,+\infty[$, we have: \quad y $y'=-\frac{3}{2}$ $\frac{3}{x}$, which leads by integration to: $\frac{1}{2}$ $\frac{1}{2}y^2(x) = -3 \ln|x| + C$, hence $y(x)=\pm \sqrt{-6 \ln |x|+K}$ $\quad (K=2\, \in \mathbb{R})$

$$
(E) \qquad xy' + \frac{3}{y} = 0
$$

On $I=]-\infty,0[$ or $]0,+\infty[$, we have: \quad y $y'=-\frac{3}{2}$ $\frac{3}{x}$, which leads by integration to: $\frac{1}{2}$ $\frac{1}{2}y^2(x) = -3 \ln|x| + C$, hence $y(x)=\pm \sqrt{-6 \ln |x|+K}$ $\quad (K=2\, \in \mathbb{R})$

The domain of y is given by the condition $\;$ −6 ln $|x|+K\geq$ 0, i.e. $|x|\leq e^{K/6}.$

$$
(E) \qquad xy' + \frac{3}{y} = 0
$$

On $I=]-\infty,0[$ or $]0,+\infty[$, we have: \quad y $y'=-\frac{3}{2}$ $\frac{3}{x}$, which leads by integration to: $\frac{1}{2}$ $\frac{1}{2}y^2(x) = -3 \ln|x| + C$, hence $y(x)=\pm \sqrt{-6 \ln |x|+K}$ $\quad (K=2\, \in \mathbb{R})$

The domain of y is given by the condition $\;$ −6 ln $|x|+K\geq$ 0, i.e. $|x|\leq e^{K/6}.$

In summary:

 $\forall K \in \mathbb{R},$

$$
\begin{cases}\n y_{K,-}(x) = -\sqrt{-6 \ln |x| + K} \\
y_{K,+}(x) = \sqrt{-6 \ln |x| + K}\n\end{cases}
$$

are solutions of (E) on $]-e^{K/6},0[\,\cup\,]0,e^{K/6}[\,.]$

Second-order linear differential equations with constant coefficients

Second-order linear ODEs with constant coefficients

(E) $au''(x) + bu'(x) + cu(x) = f(x)$ with $a, b, c \in \mathbb{R}$ and $a \neq 0$

Principle of superposition $S = u_p + S_0$, where $u_p(x)$ is a particular solution of (E) and S_0 is the set of solutions of the associated homogeneous equation (E_0) .

Solutions of (E_0) Let $P(X) = aX^2 + bX + c$ the *characteristic polynomial* associated to (E_0) , and $\Delta=b^2-4ac$ its discriminant. Then:

- ► if $\Delta > 0$, $u_0(x) = Ae^{r_1x} + Be^{r_2x}$ $A, B \in \mathbb{R}$, where $r_1 = \frac{-b-\sqrt{\Delta}}{2a}$ and $r_2 = \frac{-b+\sqrt{\Delta}}{2a}$ are the two real roots of P.
- ► if $\Delta = 0$, $u_0(x) = (Ax + B)e^{rx}$ $A, B \in \mathbb{R}$, where $r = \frac{-b}{2a}$ is the unique root of P.

• if
$$
\Delta < 0
$$
, $u_0(x) = (A \cos \alpha x + B \sin \alpha x)e^{\beta x}$ $A, B \in \mathbb{R}$, where $\alpha = \frac{\sqrt{-\Delta}}{2a}$ and $\beta = \frac{-b}{2a}$.

Particular solution of (E) (similar to first-order equations) A particular solution u_p can be obtained either by analogy with the right-hand side (if simple), or by the method of variation of constants (i.e. replacing the constants A and B, or only one of them, by a function of x).