Fourier series and Fourier transforms

J.B.J. Fourier (1768 - 1830)

Fourier series expansion

Let f an integrable and periodic function, with period L. One can then define

$$F(x) = a_0 + \sum_{k\geq 1} \left(a_k \cos \frac{2\pi kx}{L} + b_k \sin \frac{2\pi kx}{L} \right)$$

with
$$a_0 = \frac{1}{L} \int_0^L f(x) \, dx$$
, $a_k = \frac{2}{L} \int_0^L f(x) \cos \frac{2\pi kx}{L} \, dx$, $b_k = \frac{2}{L} \int_0^L f(x) \sin \frac{2\pi kx}{L} \, dx$

F is the so-called Fourier series expansion of f.

This expansion also reads
$$F(x) = \sum_{k=-\infty}^{+\infty} c_k e^{\frac{2i\pi kx}{L}}$$
 with $c_k = \frac{1}{L} \int_0^L f(x) e^{-\frac{2i\pi kx}{L}} dx$

Fourier series expansion

Odd and even functions

- ▶ If f is an even function, $b_k = 0 \quad \forall k \ge 1$ (i.e. $c_k = c_{-k} \quad \forall k$)
- ▶ If f is an odd function, $a_k = 0 \quad \forall k \ge 0$ (i.e. $c_k = -c_{-k} \quad \forall k$)

Pointwise convergence

If f is $C^1(0, L)$, then F = f (note that some similar results exist which require less regularity for f)

Parseval's equality (conservation of energy)

If
$$f \in \mathcal{L}^2(0, L)$$
, then $||f||_{L^2}^2 = \frac{1}{L} \int_0^L (f(x))^2 dx = a_0^2 + \frac{1}{2} \sum_{k=1}^{+\infty} (a_k^2 + b_k^2) = \sum_{k=-\infty}^{+\infty} |c_k|^2 = ||F||_{L^2}^2$

(even without pointwise convergence)

Fourier analysis

time series

power spectrum

Exercise #1

1. Let the 1-D diffusion equation on a bounded domain

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \nu \frac{\partial^2 u}{\partial x^2}(x,t) = 0 \quad x \in (0,L), t > 0 \\ u(0,t) = u(L,t) = 0 \quad t > 0 \\ u(x,0) = u_0(x) \quad x \in (0,L) \end{cases}$$

Solve this equation using a separation of variables technique.

2. Same question, replacing the boundary conditions u(0, t) = u(L, t) = 0 with $\frac{\partial u}{\partial x}(0, t) = \frac{\partial u}{\partial x}(L, t) = 0$.

Fourier transform

Let f integrable on \mathbb{R} .

The Fourier transform of f is $FT[f](\xi) = \hat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2i\pi\xi x} dx$

The inverse Fourier transform of \widehat{f} is $FT^{-1}[\widehat{f}](x) = \int_{\mathbb{R}} \widehat{f}(\xi) e^{2i\pi\xi x} d\xi$

Some properties of the Fourier transform

Reciprocity If $f \in C^1(\mathbb{R})$ and if \hat{f} is $L^1(\mathbb{R})$, then $FT^{-1}[\hat{f}] = f$

Parseval's equality (conservation of energy) If $f \in \mathcal{L}^2(\mathbb{R})$, then $\int_{\mathbb{R}} |f(x)|^2 dx = \int_{\mathbb{R}} \left| \widehat{f}(\xi) \right|^2 d\xi$

Derivation $\widehat{f'}$

$$(\xi)=2i\pi\xi\,\widehat{f}(\xi)$$

Convolution

$$\widehat{f} \, \widehat{g} = \widehat{f * g} \quad \text{and} \quad \widehat{f} * \widehat{g} = \widehat{fg}$$
Reminder: convolution product $(a * b)(x) = \int_{\mathbb{R}} a(y) \, b(x - y) \, dy = \int_{\mathbb{R}} a(x - y) \, b(y) \, dy$

Some properties of the Fourier transform

Translation If $g(x) = f(x - x_0)$, then $\widehat{g}(\xi) = e^{-2i\pi x_0 \xi} \widehat{f}(\xi)$

Gaussian functions

The Fourier transform of the Gaussian function $\exp(-\pi \alpha x^2)$ is the Gaussian function $\frac{1}{\sqrt{\alpha}} \exp\left(-\frac{\pi}{\alpha}\xi^2\right)$

Gate function The Fourier transform of the gate function $\Pi(x) = 1$ for $x \in (-1/2; 1/2)$ and 0 elsewhere is $\operatorname{sinc}(\pi\xi)$ where sinc is the sine cardinal function defined by $\operatorname{sinc} a = (\sin a)/a$.

Filtering, smoothing

Convolutions with a Gaussian function

Exercise #2

- 1. Let consider the diffusion equation $\frac{\partial u}{\partial t}(x,t) \nu \frac{\partial^2 u}{\partial x^2}(x,t) = 0$ $(x \in \mathbb{R}, t > 0, \nu > 0)$ with the initial condition $u(x,0) = u_0(x)$. Solve this equation using a Fourier transform.
- 2. Same question with a source term: $\frac{\partial u}{\partial t}(x,t) \nu \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t)$ $(x \in \mathbb{R}, t > 0, \nu > 0)$ with the initial condition u(x,0) = 0.
- 3. Same question with an additional reaction term : $\frac{\partial u}{\partial t}(x,t) - \nu \frac{\partial^2 u}{\partial x^2}(x,t) + r u(x,t) = 0 \qquad (x \in \mathbb{R}, \ t > 0, \nu > 0, r > 0)$

Let the diffusion equation:

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \nu \frac{\partial^2 u}{\partial x^2}(x,t) = 0 \quad x > 0, \ t > 0 \\ u(0,t) = 0 \quad t > 0 \\ u(x,0) = u_0(x) \quad x > 0 \end{cases}$$

- 1. Solve this equation by extending u_0 on \mathbb{R}_- into an odd function.
- 2. Solve again the equation when the boundary condition at x = 0 is replaced by $\frac{\partial u}{\partial x}(0, t) = 0$.

Exercise #4

The Airy equation, that appears for instance in biological fluid modeling, reads:

$$\begin{cases} \frac{\partial u}{\partial t} + k \frac{\partial^3 u}{\partial x^3} = 0 \quad x \in \mathbb{R}, t > 0, \quad k \in \mathbb{R} \text{ given} \\ u(x,0) = u_0(x) \quad x \in \mathbb{R} \end{cases}$$

1. Using Fourier transform (assuming sufficient regularity), give the analytical expression of the solution u(x, t) under the form of a convolution product.

2. Let the so-called Airy function:

$$A(x) = \frac{1}{\pi} \int_{0}^{+\infty} \cos\left(sx + \frac{s^{3}}{3}\right) ds$$
It can be shown that $\widehat{A}(\xi) = e^{\frac{i}{3}(2\pi\xi)^{3}}$ where $\widehat{}$ is the symbol of the Fourier transform.
What does the analytical expression of $u(x, t)$ become, as a function of the Airs function of $u(x, t)$ become, as a

function of the Airy function A?

Hint:
$$\widehat{f(ax)} = \frac{1}{|a|} \widehat{f}\left(\frac{\xi}{a}\right)$$

(1)