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Partial differential operators
u : Rn −→ R

x = (x1, . . . , xn) −→ u(x1, . . . , xn)

I Gâteaux derivative
∂u
∂d

(x) = lim
α→0

u(x + αd)− u(x)

α

R. Gâteaux
(1889-1914)

I Gradient ∇u(x) =


∂u
∂x1

(x)

...
∂u
∂xn

(x)


∂u
∂d

(x) = ∇u(x). d
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Partial differential operators: Jacobian

u : Rn −→ Rp

x = (x1, . . . , xn) −→ u(x1, . . . , xn) =

 u1(x1, . . . , xn)
...

up(x1, . . . , xn)



Jacobian J(u)(x) =


∂u1
∂x1

(x) . . . ∂u1
∂xn

(x)

...
...

∂up
∂x1

(x) . . .
∂up
∂xn

(x)



Exercise Let F (x , y) =

(
x2 + y2

2xy

)
. Compute the Jacobian of F .

Exercise Let a 2D vector field U(x , y) =

(
u(x , y)
v(x , y)

)
where u and v are given regular functions. Let

F (x , y) =

(
U(x , y) ·∇u(x , y)
U(x , y) ·∇v(x , y)

)
. What is the Jacobian of F ? Can it be written in a more compact way? Can

you make a parallel with usual derivation?
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Reminder: Schwarz theorem

Let Ω an open subset of Rn, and a ∈ Ω.
Let f : Ω −→ R.

If f has continuous second partial derivatives on a neighborhood of a, then

∀i , j ∈ {1, 2, . . . , n} ,
∂2f
∂xi∂xj

(a) =
∂2f
∂xj∂xi

(a)
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Partial differential operators: Divergence
u : Rn −→ Rn

x = (x1, . . . , xn) −→ u(x1, . . . , xn) =

 u1(x1, . . . , xn)
...

un(x1, . . . , xn)



Divergence div u(x) =
n∑

i=1

∂ui
∂xi

(x) Also denoted ∇.u(x)

div u = 0

laminar flow magnetic poles incompressible flow
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Partial differential operators: Curl
u : R3 −→ R3

x = (x1, . . . , xn) −→ u(x1, . . . , xn) =

 u1(x1, . . . , xn)
...

un(x1, . . . , xn)



Curl curl u(x) =



∂u3
∂x2

(x)−
∂u2
∂x3

(x)

∂u1
∂x3

(x)−
∂u3
∂x1

(x)

∂u2
∂x1

(x)−
∂u1
∂x2

(x)


also denoted ∇∧ u(x)

M1 AM - refresher Partial differential operators 6



Hessian matrix

u : Rn −→ R
x = (x1, . . . , xn) −→ u(x1, . . . , xn)

Hess(u)(x) =


∂2u
∂x2

1
(x)

∂2u
∂x1∂x2

(x) . . .
∂2u

∂x1∂xn
(x)

...
...

∂2u
∂xn∂x1

(x)
∂2u

∂xn∂x2
(x) . . .

∂2u
∂x2

n
(x)



Schwarz theorem Let Ω an open subset of Rn, and a ∈ Ω. Let f : Ω −→ R.

If f has continuous second partial derivatives on a neighborhood of a, then Hess(u)(a) is
symmetric.
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Partial differential operators: Laplacian

u : Rn −→ R
x = (x1, . . . , xn) −→ u(x1, . . . , xn)

Laplacian ∆u(x) =
n∑

i=1

∂2u
∂x2

i
(x) = Tr (Hess(u)(x))

u : Rn −→ Rp

x = (x1, . . . , xn) −→ u(x1, . . . , xn) =

 u1(x1, . . . , xn)
...

up(x1, . . . , xn)



∆u =

 ∆u1
...

∆up



Harmonic functions: ∆u = 0
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Exercises

1. Let u(x , y) = 2x2y + y3. Compute ∇u and ∆u.

2. For the same u, compute ∂u
∂d for d = (1,−1).

3. Let u(x , y , z) = (xy2 − z2, x3 − y3, x2 − 2z). Compute div u.
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1. Let u(x , y) = 2x2y + y3. Compute ∇u and ∆u.

∇u =


∂u
∂x (x , y)

∂u
∂y (x , y)

 =


4xy

2x2 + 3y2



∆u =
∂2u
∂x2 +

∂2u
∂y2 = 4y + 6y = 10y
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2. For the same u, compute ∂u
∂d for d = (1,−1).

∂u
∂d = ∇u. d =

 4xy

2x2 + 3y2

 .

 1

−1

 = 4xy − 2x2 − 3y2
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3. Let u(x , y , z) = (xy2 − z2, x3 − y3, x2 − 2z). Compute div u.

div u =
∂u1
∂x +

∂u2
∂y +

∂u3
∂z

= y2 − 3y2 − 2

= −2y2 − 2
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Exercises

1. Let ϕ : R3 → R. Compute curl(∇ϕ).

2. Let ϕ : Rn → R. Compute div(∇ϕ).

3. Let ψ : Ω ⊂ R2 → R. (u, v) = (∂ψ/∂y ,−∂ψ/∂x) is the velocity field derived from the streamfunction
ψ. Prove that the velocity field is everywhere tangent to the isolines of ψ. Compute the divergence of the
velocity field.
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Exercise: spectrum of the Laplacian operator

Let Ω ⊂ Rn a bounded domain, and consider the following eigenvalue problem:
∆u(x) =

n∑
i=1

∂2u
∂x2

i
(x1, . . . , xn) = λ u(x1, . . . , xn) x ∈ Ω

u(x) = 0 on ∂Ω

1. Particular case n = 1: Let Ω = (0, L) and find the eigenvalues and eigenfunctions.
2. Generalization for any value of n:

Prove that all eigenvalues are negative.
Prove that eigenfunctions associated to different eigenvalues are orthogonal.
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Exercise: spectrum of the Laplacian operator
1. 1-D case: Ω = (0, L). The eigenvalue problem reads u′′(x) = λ u(x) x ∈ (0, L), with u(0) = u(L) = 0.

λ < 0 and can be written λ = −ω2 (otherwise the only solution is u = 0). Hence u′′(x) + ω2u(x) = 0,
which yields u(x) = α sinωx + β cosωx . u(0) = 0 implies β = 0, while u(L) = 0 implies α sinωL = 0.

Non zero solutions are then obtained for ωk =
kπ
L

and uk (x) = sin
kπx

L
, k ∈ N

2. All eigenvalues are negative: (∆u − λu = 0) =⇒
∫

Ω
u∆u = −

∫
Ω
‖∇u‖2 = λ

∫
Ω

u2.

Hence λ = −
∫

Ω ‖∇u‖2∫
Ω u2 ≤ 0.

Eigenfunctions associated to different eigenvalues are orthogonal:
Let uk and ul two eigenfunctions associated to two different eigenvalues −ω2

k and −ω2
l . ∆uk + ω2

k uk = 0 =⇒
∫

Ω ∆uk ul + ω2
k
∫

Ω uk ul = −
∫

Ω∇uk ∇ul + ω2
k
∫

Ω uk ul = 0

∆ul + ω2
l ul = 0 =⇒

∫
Ω ∆ul uk + ω2

l
∫

Ω ul uk = −
∫

Ω∇ul ∇uk + ω2
l
∫

Ω ul uk = 0

Making the difference between those two equations yields (ω2
k − ω

2
l )

∫
Ω

ul uk = 0, hence
∫

Ω
ul uk = 0.

Note that this also implies
∫

Ω
∇ul ∇uk = 0. uk and ul are orthogonal both in L2(Ω) and in H1(Ω).
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