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Objectives

» introduce (once again) the several points of view for data
assimilation

» introduce data assimilation as an optimization problem
» discuss the different forms of the objective functions
» discuss their properties w.r.t. optimization

» introduce the adjoint technique for the computation of the
gradient

Link with statistical methods: cf lectures by E. Cosme

Variational data assimilation algorithms, tangent and adjoint
codes: cf lectures by A. Vidard
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Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value 7 — least squares approach




DA for dummies: the simplest possible model problem

Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value 7 — least squares approach

Example a prior value x? = 19°C and an observation y = 21°C of the
(unknown) present temperature x.

> Let J(x) = 3 [(x = x2)2 + (x = )]

> Miny J(x)

-
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DA for dummies: the simplest possible model problem

Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value 7 — least squares approach

Example a prior value x? = 19°C and an observation y = 21°C of the
(unknown) present temperature x.

> Let J(x) = 3 [(x = x2)2 + (x = )]

b
> Ming J(x) — x*= X ;ry =20°C
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DA for dummies: the simplest possible model problem

Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value 7 — least squares approach

Example a prior value x? = 19°C and an observation y = 21°C of the
(unknown) present temperature x.

> Let J(x) = 3 [(x = x2)2 + (x = )]

b
> Ming J(x) — x*= X ;ry =20°C

If # units: x® = 66.2°F and y = 69.8°F

> Let H(x) = gx +32 observation operator
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DA for dummies: the simplest possible model problem

Model problem: least squares approach

Two pieces of information on a single quantity. Which estimation for its
true value 7 — least squares approach

Example a prior value x? = 19°C and an observation y = 21°C of the
(unknown) present temperature x.

> Let J(x) = 3 [(x = x2)2 + (x = )]

b
> Ming J(x) — x*= X ;ry =20°C

If # units: x® = 66.2°F and y = 69.8°F
> Let H(x) = gx +32 observation operator
1
Let J(x) = 5 [(H(x) - xP)? 4+ (H(x) — ¥)?]

Min, J(x) — x?=20°C

-
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DA for dummies: the simplest possible model problem

Model problem: least squares approach

Drawback # 1: if observation units are inhomogeneous

xb =19°C and y = 69.8°F
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DA for dummies: the simplest possible model problem

Model problem: least squares approach

Drawback # 1: if observation units are inhomogeneous
xb =19°C and y = 69.8°F

> J0) = 3 [ X+ (H() ~y)?] s x° = 2053°C
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DA for dummies: the simplest possible model problem

Model problem: least squares approach

Drawback # 1: if observation units are inhomogeneous
xb =19°C and y = 69.8°F

1
> J(x) = 5 [(x —x®)? + (H(x) —y)?)] — x*=20.53°C
— adding apples and oranges !!

e
E. Blayo - Variational approach to data assimilation 5 &zu’a/_



DA for dummies: the simplest possible model problem

Model problem: least squares approach

Drawback # 1: if observation units are inhomogeneous
xb =19°C and y = 69.8°F
1
» J(x) == [(x = xP)? + (H(x) —y)*)] — x*=20.53°C

2
— adding apples and oranges !!

Drawback # 2: if observation accuracies are inhomogeneous

b
XY _q9.67°C

If x® is twice more accurate than y, one should obtain x* =

— J should be J(x) :% [<)<1_/;<b>2+ (X;y>21

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

Reformulation in a probabilistic framework:

» the goal is to find an estimator X? of the true unknown value x

» x’ and y are realizations of random variables X? and Y
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

Reformulation in a probabilistic framework:

» the goal is to find an estimator X? of the true unknown value x

» x’ and y are realizations of random variables X? and Y

Let Xb=x+cband Y =x+° with

Hypotheses

» E(e®) = E(e°) =0 unbiased background and measurement device
> Var(e?) = o2 Var(g°) = o2 known accuracies

» Cov(eb,e°) =0 independent errors

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

One is looking for an estimator (i.e. a r.v.) X? that is

> linear: X7 = apX? +a,Y (in order to be simple)
> unbiased: E(X?) =x (it seems reasonable)
» of minimal variance: Var(X?) minimum (optimal accuracy)

— BLUE (Best Linear Unbiased Estimator)
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

One is looking for an estimator (i.e. a r.v.) X? that is

> linear: X7 = apX? +a,Y (in order to be simple)
> unbiased: E(X?) =x (it seems reasonable)
» of minimal variance: Var(X?) minimum (optimal accuracy)

— BLUE (Best Linear Unbiased Estimator)

Since X? = apXP? + oY = (ap + qo)x + ape® + e’ :

> E(X?) = (ap 4 ao)x + ap E(e2) +a0 E(e°) = ap+ao=1
—— ~——

=0 =0
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

One is looking for an estimator (i.e. a r.v.) X? that is

> linear: X7 = apX? +a,Y (in order to be simple)
> unbiased: E(X?) =x (it seems reasonable)
» of minimal variance: Var(X?) minimum (optimal accuracy)

— BLUE (Best Linear Unbiased Estimator)

Since X? = apXP? + oY = (ap + qo)x + ape® + e’ :
> E(X?) = (ap 4 ao)x + ap E(e2) +a0 E(e°) = ap+ao=1
—— ~——
-0 =0
> Var(X?) = E[(X® — X)2] =E [(abeb + a0€°)2] = aiag + (1 — ap)?02

o o2
— =0 E ap = °

2 2
o+ o5

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

BLUE

1 ., 1

X2 = b o
1 N 1

o2 o2

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

BLUE

1, 1
R o2
X2 = bl 10 :Xb+ 5 b 2(y_xb)
B = 0p+ 05 ~——
o2 + o2 ~——innovation
gain

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

BLUE

1 1
=X+ =Y 2
2 v b 9 b
Xa=_"b "o _ ¥ + 2= (Y — X"
1 + 1 Oh+ 05 ~—
o2 02 ~——innovation
b o
gain
a—1 1 1 :
Its accuracy:  [Var(X?)] " = -5 + — accuracies are added
Ob 5

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

b
? X° + ; Y 2
X?= b =X+ —+ s (Y —X")
el Sl Oh —
o2 + o2 \‘{_’ innovation
gain
a—1 1 1 :
Its accuracy:  [Var(X?)] " = -5 + — accuracies are added
Ob 5

Remark: Hypotheses on the two first moments of £, ° lead to results
on the two first moments of X?.

UCGA " L 4
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

Variational equivalence

This is equivalent to the problem:

Minimize J(x) = 5 [(X —x0)? L (x= Y)z]

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

Variational equivalence

This is equivalent to the problem:

A 1
Minimize J(x) = 5 { 3 U

Remarks:

» This answers the previous problems of sensitivity to inhomogeneous
units and insensitivity to inhomogeneous accuracies

» This gives a rationale for choosing the norm for defining J

1 1 _

> J(xX7) = 5+ — = [Var(x?)] !
N—— Op 0o N————
convexity accuracy

-
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DA for dummies: the simplest possible model problem

Model problem: linear statistical approach

Geometric interpretation E(c°s?) =0 = E(?(Y — X;)) =0

Y°

g°

x3

— orthogonal projection for the scalar product < Zj, Z» >= E(Z1Z>) for unbiased
random variables.

E. Blayo - Variational approach to data assimilation



DA for dummies: the simplest possible model problem

Model problem: Bayesian approach

> x: a realization of a random variable X. What is the pdf p(X|Y)?

> Based on the Bayes rule:

likelihood prior
—
P(Y=y|X=x) P(X=x)
P(Y =y)
——

PX=x|Y=y)=

normalisation factor
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DA for dummies: the simplest possible model problem

Model problem: Bayesian approach

> x: a realization of a random variable X. What is the pdf p(X|Y)?

> Based on the Bayes rule:

likelihood prior
—
P(Y=y|X=x) P(X=x)
P(Y =y)
——

PX=x|Y=y)=

normalisation factor

> Back to our example:
» Background X? ~ N(19,02)
» Observation y = 21°C, and Y = X + £° with £° ~ N(0,02)
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DA for dummies: the simplest possible model problem

Model problem: Bayesian approach

» Background X® ~ N (19, 0%)
» Observation y = 21°C, and Y = X + ° with £° ~ N(0,02)

P(Y =21|X =x) P(X = x)

P(X =x|Y =21)= Y =)
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DA for dummies: the simplest possible model problem

Model problem: Bayesian approach

v

Background X® ~ N(19, 0%)
Observation y = 21°C, and Y = X + £° with £° ~ N(0, 02)

v

P(X = x|V =21) = P(Y =21|X =x)P(X =x)

P(Y =y)
_ 1 (x19)2)
> Prior: P(X =x)=P(X’=x)= ex <
(X=x=PX* =2 = e (Vs
» Likelihood:
p(Y=21| X=x) = p(e®=21-X|X=x)

= p(so =21 — X) €° is assumed independent from X

L (-2

2
207




DA for dummies: the simplest possible model problem

Model problem: Bayesian approach

» Background X® ~ N(19,0%)

» Observation y = 21°C, and Y = X +° with £° ~ N(0,02)
P(Y =21|X = x) P(X = x)

P(X =x|Y =21)=

P(Y =y)
» Hence
(X = x) p(Y = 21| X = x) 1 (x —19)2 1 < (217x)2)
=x = =X = exp | — exp | —
P i V27moy P 202 V2ro, P 202
_ 2
— Kep (_ w)
2U§
1 1 _
P 19 + 7321 ) 1 1 1
with ma:blil and 0% = —+ =
4 1 o o2
P 52 b o
b o
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DA for dummies: the simplest possible model problem

Model problem: Bayesian approach

» Background X® ~ N(19,0%)

» Observation y = 21°C, and Y = X +° with £° ~ N(0,02)
P(Y =21|X = x) P(X = x)

P(X =x|Y =21)=

P(Y =y)
» Hence
(X = x) p(Y = 21| X = x) 1 (x —19)2 1 < (217x)2)
=x = =X = exp | — exp | —
P i V27moy P 202 V2ro, P 202
_ 2
— Kep (_ w)
2U§
1 1 _
P 19 + 7321 ) 1 1 1
with ma:blil and 0% = —+ =
4 1 o o2
P 52 b o
b o

— X|Y =21 ~ N(m,,0?)
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Model problem: Bayesian approach
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DA for dummies: the simplest possible model problem

Model problem: synthesis

Data assimilation methods are often split into 2-3 families:

» Variational methods: minimization of a cost function (least squares
approach)

» Linear statistical approach: computation of the BLUE (with
hypotheses on the first two moments)

» Bayesian approach: approximation of pdfs (with hypotheses on the pdfs)

» There are strong links between those approaches, depending on the
case (linear, Gaussian...)

iational approach to data assimi



DA for dummies: the simplest possible model problem

Model problem: synthesis

Data assimilation methods are often split into 2-3 families:

» Variational methods: minimization of a cost function (least squares
approach)

» Linear statistical approach: computation of the BLUE (with
hypotheses on the first two moments)

» Bayesian approach: approximation of pdfs (with hypotheses on the pdfs)

» There are strong links between those approaches, depending on the
case (linear, Gaussian...)

If you have understood this previous stuff, you have understood a lot on
data assimilation.
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Definition and minimization of the cost function Least squares problems
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

X1
To be estimated: x = : eR"
Xp
1
Observations: y = : € RP
Yp

Observation operator: y = H(x), with H: R” — R”
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

X1

X an observation of X112
If x= 2 and y = . 2

X3 an observation of x4

X4

then H(x) =Hx with H=
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

A simple example of observation operator

X1

X2 an observation of X112
If x= and y= . 2

X3 an observation of x4

X4

1 1
2 2
0 0

then H(x) =Hx with H=




Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations

X1
To be estimated: x = : e R"
Xn
1
Observations: y = : € RP
Yp

Observation operator: y = H(x), with H: R" — R”

1
Cost function: J(x) = 5 |H(x) —y|? with ||.|| to be chosen.
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Definition and minimization of the cost function Least squares problems

Reminder: norms and scalar products

u
€R"

Un

n
lul? =uTu=3"uf
i=1
n

Associated scalar product: (u,v) = u'v= g u;v;
i=1

let M a symmetric positive definite matrix
n n

M-norm: |jul|3y =u’Mu= sz’l u;uj

i=1 j=1

n

n
Associated scalar product: (u,v)y =u’M v = Z Z mjj u;v;

i=1 j=1
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations
X1
To be estimated: x = : eR’
Xn
y1
Observations: y = : e R’
Yp

Observation operator: y = H(x), with H: R” — RP

1
Cost function: J(x) = 5 |H(x) - y|? with ||.|| to be chosen.
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Definition and minimization of the cost function Least squares problems

Generalization: arbitrary number of unknowns and observations
X1
To be estimated: x = : eR’
Xn
Y1
Observations: y = : e R’
Yp

Observation operator: y = H(x), with H : R” — RP

1
Cost function: J(x) = 5 |H(x) - y|? with ||.|| to be chosen.

(Intuitive) necessary (but not sufficient) condition for the existence
of a unique minimum:




Definition and minimization of the cost function Least squares problems

Formalism “background value + new observations”

y_ (X ) background
Sy <— new obs

The cost function becomes:

1 1
) = Slx=xl S IH I3
—— ——
Ip Jo
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Definition and minimization of the cost function Least squares problems

Formalism “background value + new observations”

yo X)) background
\y <— new obs

The cost function becomes:

1 1
) = Slx-xeld 4 S IHG) -2
—— ——
Jb Jo

= (x—xp) "B (x —xp) + (H(x) — y) "R} (H(x) —y)
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Definition and minimization of the cost function Least squares problems

Formalism “background value + new observations”

yo X)) background
\y <— new obs

The cost function becomes:

1 1
) = Slx-xeld 4 S IHG) -2
—— ——
Jb Jo

= (x—xp) "B (x —xp) + (H(x) — y) "R} (H(x) —y)

The necessary condition for the existence of a unique minimum
(p > n) is automatically fulfilled.
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Definition and minimization of the cost function Least squares problems

If the problem is time dependent

» Observations are distributed in time: y = y(t).

» The observation cost function becomes:

1 N
Jo(x) = 5 D IHi(x(t:)) — y(8)l3
i=0
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Definition and minimization of the cost function Least squares problems

If the problem is time dependent

» Observations are distributed in time: y = y(t).

» The observation cost function becomes:

LN
Jo(x) = 5 D IHi(x(t:)) — y(8)[13
i=0

» There is a model describing the evolution of x: % = M(x)

with x(t = 0) = xg. Then J is often no longer minimized
w.r.t. x, but w.r.t. xg only, or to some other parameters.

ZIIH () -y(&)l5 = ZIIH (Mo, (x0)) —¥ (8l
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Definition and minimization of the cost function Least squares problems

If the problem is time dependent

bt
obs
. obs
¥ .
/—\ Previous forecast
{ obs
obs
Time
Assimilation window
1 1<
Jixo) = Slxo=xglls  +5 D IHi(x(@) = y(8)13
S— i=0

background term J .
& b observation term J,

E. Blayo - Variational approach to data assimilation 2l —



Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

N
1 1
J(x0) = J(%0) + Jo(x0) = 5 [[x0 —xpll5 + 5 > I Hi(Mo-t,(x0)) — y ()13
i=0

> If H and M are linear then J, is quadratic.
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

N
1 1
J(x0) = Jp(x0) + Jo(x0) = 7 lIx0 —xpll5 + 5 > I Hi(Mo-t,(x0)) — y ()13
i=0

> If H and M are linear then J, is quadratic.

» However it generally does not have a unique minimum, since the
number of observations is generally less than the size of xq (the
problem is underdetermined: p < n).

@5t

Example: let (x{,x}) = (1,1) and y = 1.1 an observa-
tion of %(Xl + x2).

1 2
Jo(x1,x2) = 3 (% - 1-1)

E. Blayo - Variational approach to data assimi



Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(%0) + Jo(%0) = 5 IIxo —xb[[F+ 5 D IHi(Mo-se,(x0)) —y(t) 12
i=0

» If H and M are linear then J, is quadratic.

» However it generally does not have a unique minimum, since the
number of observations is generally less than the size of xq (the
problem is underdetermined).

» Adding J, makes the problem of minimizing J = J, + Jp well posed.

(05 fxoy)-1.17+x-0. 0 sty-1 08

Example: let (xf,x}) = (1,1) and y = 1.1 an observa-
tion of 1(x1 +x2). Let (x,x?) = (0.9,1.05)

1 2 ‘
Ja,) = (Xl :XQ - 1.1) + 5 [(a =09 + (2 — 1.05)°]

Jo b
— (4", x3) = (0.94166..., 1.09166...)
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

N
1 1
J(x0) = Jp(x0) + Jo(x0) = 5 [Ix0 —xp[5+ 3 D IHi (Mo (x0)) — y(8)|13
i=0

> If H and/or M are nonlinear then J, is no longer quadratic.
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

N
1 1
J(x0) = Jo(x0) + Jo(%0) = 5 IIxo = xb[[F+ 5 D IHi(Mo-se,(x0)) —y(t) 13
i=0

> If H and/or M are nonlinear then J, is no longer quadratic.
Example: the Lorenz system (1963)
dx

E:a(y—x)
j—};:ﬁx—y—xz
dz 24 x

Edward Lorenz
(1917-2008)

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?

(139th meeting of the American Association for the Advancement of Science, 1972)

e
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

N
1 1
J(x0) = Jp(x0) + Jo(x0) = 7 [Ix0 — x|+ 5 > I Hi(Moot,(x0)) — y ()13
i=0

» If H and/or M are nonlinear then J, is no longer quadratic.

Example: the Lorenz system (1963)
dx

E:a(y—x)

d
d—};zﬂx—y—xz
dz n
— = vz +x
dt Y y

E. Blayo - Variational approach to data assimilation



Definition and minimization of the cost function

Least squares problems

wdt) = pge — G (G5
Fwit) = pg, — %

o (5 + 5y
+w?) = pg. —

Dy

dp 92w 22w P
8- T H (,7.’3 + oyZ +

)2
922

universice A
Grenoble Alpes
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

J(x0) = Jp(x0) +Jo(x0) = 3 IIXO xsl5+ 5 Z 1Hi (Mo, (x0)) — y(t:)l13
=0
> If H and/or M are nonlmear then J, is ho longer quadratic.

Example: the Lorenz system (1963)

j—);=a(y—><)
dy—,@’x— — xz
dz__ 74 x
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Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

J(x0) = Jp(x0) +Jo(x0) = 3 IIXO xsl5+ 5 Z 1Hi (Mo, (x0)) — y(t:)l13
=0
> If H and/or M are nonlmear then J, is ho longer quadratic.

Example: the Lorenz system (1963)

j—);=a(y—><)
dy —,BX— — xz
dz

-— = —YZ+Xxy




Definition and minimization of the cost function Least squares problems

Uniqueness of the minimum 7

N
J(x0) = Jo(x0) + Jofxc) = 3 o= xoll3 + 5 D (Moo (x0)) — ¥(&)3

i=0
» If H and/or M are nonlinear then J, is no longer quadratic.

time = 1 time = 2
35000)
oo 30000/ \\\
6000 25000, \
8 20000
4000} 15000
2000 10000 \
Jo (}/0) = 5000 \
%% 15 10 05 00 05 10 15 20 9% 15 10 05 00 05 10 15 20
Y(0) error Y(0) error
t 2 dt 20000 Assimilation time = 4 250000, Assimilation time = 10
2 2 : x(t) — ()
( 1 ObS w0000 |
70000, 200000
woo] " ’V“le.« m M'
Y 150000 I
’ : “‘"vf*“"lﬂ it I b AU
£ 40000 2 T \ Jy “ A V i
| 100000) 0 Wl .\lw A
30000 th ﬂﬁ W W\‘ | \.l‘( M‘((‘, Y\ \,.\
20000 T s0000
10000 =
955 o @5 o0 o5 To 15 20 Y151 o150

¥(0) error

5 00 05
Y(0) error
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Definition and minimization of the cost function

Uniqueness of the minimum 7

J(x0)

» If H and/or M are nonlinear then J, is

10000

Jo(v0) = 2000

7Z(x ti)

(1)° dt

obs

35

> Adding J, makes it “more quadratic” (Jp is a regularization term),

__ Assimilation time =1 __

15 40 05 _ 00 05
Y(0) error

Assimilation time = 4

15 10 05 _00 05
¥(0) error

0

15

Least squares problems

no longer quadratic.

4000 Assimilation time =2

2s000]
20000
25000
% 20000]
1000]
10000

5000

9515 10 05 _00 05 10
Y(0) error

250000 Assimilation time = 10

200000

mmmﬂ mu u,‘ \M

= 10000q

il W \‘

L
| """“w (i “F‘“

50000,

90 A5 10 05 _00 05 10
Y(0) error

but J = J, + J» may however have several (local) minima.

N
1 1
= Jb(x0) + Jo(x0) = 5 [Ixo —xp[5+ 5 > IHi (Mo (x0)) — y(:)|12
i=0

15

Al

20

-
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Definition and minimization of the cost function Least squares problems

A fundamental remark before going into minimization
aspects

Once J is defined (i.e. once all the ingredients are chosen: control
variables, norms, observations. .. ), the problem is entirely defined.
Hence its solution.

The “physical” (i.e. the most important) part of
data assimilation lies in the definition of J.

The rest of the job, i.e. minimizing J, is “only” technical work.
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Definition and minimization of the cost function  Linear (time independent) problems
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Definition and minimization of the cost function  Linear (time independent) problems

Reminder: norms and scalar products

u
€R"

Un

n
lul? =uTu=3"uf
i=1
n

Associated scalar product: (u,v) = u'v= g u;v;
i=1

let M a symmetric positive definite matrix
n n

M-norm: |jul|3y =u’Mu= sz’l u;uj

i=1 j=1

n

n
Associated scalar product: (u,v)y =u’M v = Z Z mjj u;v;

i=1 j=1
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Definition and minimization of the cost function  Linear (time independent) problems

Reminder: norms and scalar products

u: QcR" —R
X — u(x)

ue L}(Q)

Jal = | O

Associated scalar product: (u,v) = / u(x) v(x) dx
Ja
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Definition and minimization of the cost function  Linear (time independent) problems

Reminder: derivatives and gradients

f:E—R (E being of finite or infinite dimension)

of f at point x € E in direction

of 2 . f(x+ad) - f(x)
gq ) = Fixl(d) = lim, a

of

Example: partial derivatives — are directional derivatives in the direction of
Xi

the members of the canonical basis (d = ;)
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Definition and minimization of the cost function  Linear (time independent) problems

Reminder: derivatives and gradients

f:E—R (E being of finite or infinite dimension)

: E being an Hilbert space, f is
Fréchet differentiable at point x € E iff

dp € E such that f(x + h) = f(x) + (p, h) + o(||h]|]) VheE

p is the or of f at point x, denoted f'(x) or
Vi(x).

h — (p(x), h) is a function, called
or of f at point x
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Definition and minimization of the cost function  Linear (time independent) problems

Reminder: derivatives and gradients

f:E—R (E being of finite or infinite dimension)

: E being an Hilbert space, f is
Fréchet differentiable at point x € E iff

dp € E such that f(x + h) = f(x) + (p, h) + o(||h]|]) VheE

p is the or of f at point x, denoted f'(x) or
Vi(x).

h — (p(x), h) is a function, called
or of f at point x
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Definition and minimization of the cost function Linear (time independent) problems

Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse

Let M a p x n matrix, with rank n, and b € R?.  (hence p > n)
Let J(x) = [Mx — b||> = (Mx — b)" (Mx — b).

J is minimum for X = M*b , where MT = (M"M)~IM7
(generalized, or Moore-Penrose, inverse).
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Definition and minimization of the cost function Linear (time independent) problems

Minimum of a quadratic function in finite dimension

Theorem: Generalized (or Moore-Penrose) inverse

Let M a p X n matrix, with rank n, and b € RP. (hence p > n)
Let J(x) = [Mx — b||> = (Mx — b)" (Mx — b).

J is minimum for X = M*b , where MT = (M"M)~IM7
(generalized, or Moore-Penrose, inverse).

Corollary: with a generalized norm

Let N a p X p symmetric definite positive matrix.

Let J1(x) = [|[Mx — b||%3 = (Mx — b)"N (Mx — b).

J1 is minimum for £ = (MTNM)"IM"Nb.




Definition and minimization of the cost function Linear (time independent) problems

Link with data assimilation

This gives the solution to the problem
in Jo(x) = 5 [ Hx — yI
min Jo(x) = = ||[Hx —
TR o 5 Yllo

in the case of a linear observation operator H.

1
Jo(x) = §(Hx—y)TR—l(Hx—y) — %= (H'RIH)"'H'R 'y
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Definition and minimization of the cost function  Linear (time independent) problems

Link with data assimilation
Similarly:
J(x) = Jp(x)+ Jo(x)
1 1
= %Hx_bu% + 3 IIH(X)l— y|2
= E(X_xb)TB_l(x_xb)+§(HX_Y)TR_1(HX_Y)
1

1
= ~(Mx—b)"N(Mx—b) = 5 IMx — b||3,

e () v () % (37 20)

N |
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Definition and minimization of the cost function Linear (time independent) problems

Link with data assimilation

Similarly:
S = S0
= %IIX—Xbllzb + 2IIH(X)l—yllﬁ
= (%) B x—xs) + (Hx—y) TR (Hx—y)

1 1
= ~(Mx—b)"N(Mx—b) = 5 IMx — b||3,

() o= (3) w572

which leads to

N |

$=xp+ (B 1+HTRIH)'H'R™!  (y — Hx))

N
gain matrix innovation vector

Remark: The gain matrix also reads BH” (HBH™ + R)™!

Sherman-Morrison-Woodbury formula
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Definition and minimization of the cost function  Linear (time independent) problems

Link with data assimilation

Hess(J) =B~ + HTR™*H = [Cov(X)]*
N—— N———
convexity accuracy

(cf BLUE)
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Definition and minimization of the cost function  Linear (time independent) problems

Remark

Given the size of n and p, it is generally impossible to handle
explicitly H, B and R. So the direct computation of the gain
matrix is impossible.

» even in the linear case (for which we have an explicit expression
for X), the computation of X is performed using an optimization
algorithm.
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The adjoint method
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The adjoint method
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The adjoint method Rationale

Outline

The adjoint method
Rationale
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The adjoint method Rationale

Descent methods

Descent methods for minimizing the cost function require the knowledge
of (an estimate of) its gradient.

iso-J curves

Xk+1 = Xk + o di

—VJ(xk) gradient method
— [Hess(J)(x)] " VI(xk) Newton method
with dy = { —Bx VJ(xx) quasi-Newton methods (BFGS, ...)
2
—VJ(xk) + %dk,l conjugate gradient
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The adjoint method Rationale

(O
The computation of VJ(x,) may be difficult if the dependency of J with
regard to the control variable x is not direct.

Example:
> u(x) solution of an ODE
> K(x) a coefficient of this ODE

> u°*(x) an observation of u(x)

> J(K) = 5 o) — ()P
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The adjoint method Rationale

(O
The computation of VJ(x,) may be difficult if the dependency of J with
regard to the control variable x is not direct.

Example:

v

u(x) solution of an ODE
K(x) a coefficient of this ODE

v

v

u°*(x) an observation of u(x)

v

JK) = 5 lu(x) — ()P

JIKI(k) = (VI(K), k) =< @1, u — v >

o Ou o UKjpak — UK
with & = SL(K) = lim SCrak— 6
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The adjoint method Rationale

It is often difficult (or even impossible) to obtain the gradient through
the computation of growth rates.

Example:
dx(t U
{ # = M(x(t)) tel0,T] with u =
x(t=0)=u U
1 [T
J(u) = > /0 lIx(t) — x°*=(t)|? — requires one model run
oJ
S U(u+ae) - J(u)] Ja
VJ(u) = : ~ :
3(2(”) [J(u+ aey) — J(u)] /o
uy

— N + 1 model runs

E. Blayo - Variational approach to data assimilation
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The adjoint method Rationale

In most actual applications, N = [u] is large (or even very large: e.g.
N = O(108 — 10°%) in meteorology) ~— this method cannot be used.

Alternatively, the adjoint method provides a very efficient way to
compute VJ.
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The adjoint method Rationale

In most actual applications, N = [u] is large (or even very large: e.g.
N = O(108 — 10°%) in meteorology) ~— this method cannot be used.

Alternatively, the adjoint method provides a very efficient way to
compute VJ.

On the contrary, do not forget that, if the size of the
control variable is very small (< 10 — 20), VJ can be
easily estimated by the computation of growth rates.
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The adjoint method Rationale

Reminder: adjoint operator

Let X and Y two prehilbertian spaces (i.e. vector spaces with scalar
products).

Let A: X — Y an operator.

The adjoint operator A* : J) — X is defined by:

In the case where X' and ) are Hilbert spaces and A is linear, then
A* always exists (and is unique).
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The adjoint method Rationale

Reminder: adjoint operator

Let X and Y two prehilbertian spaces (i.e. vector spaces with scalar
products).

Let A: X — Y an operator.

The adjoint operator A* : J) — X is defined by:

In the case where X' and ) are Hilbert spaces and A is linear, then
A* always exists (and is unique).

A:R" — R" a linear operator (i.e. a matrix). Then its adjoint
operator A* (w.r. to Euclidian norms) is AT.
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The adjoint method A simple example
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The adjoint method A simple example

The continuous case

The assimilation problem

» { —u"(x) + c(x) v'(x) = f(x) x €]0,1]
u(0) = u(1) = 0

> c(x) is unknown

> u°(x) an observation of u(x)

» Cost function: J(c) = —/0 (u(x) — u°"s(x))2 dx

E. Blayo - Variational approach to data assimilation
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The adjoint method A simple example

The continuous case

The assimilation problem

. —u"(x) + c(x) u'(x) = f(x) x €]0, 1] 5
{ u(0) = u(1) =0 f e L5(10,1[)

> c(x) is unknown
> u°(x) an observation of u(x)

1
> Cost function: J(c) = %/ (u(x) — u°"s(x))2 dx
0
VJ — Gateaux-derivative: J[c](dc) =< VJ(c),dc >
J[e](be) = /1 o(x) (u(x) - u°bs(><)) dx  with o = lim Jetade — te
0 [e3

—0 «

What is the equation satisfied by & 7
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The adjoint method A simple example

0 vvvvvvvvvvvvvvvvvvvvv—
{ —0"(x) + c(x) ¥’ (x) = —de(x) u'(x) x €]0,1[  tangent

o(0)=a(1)=0 linear model
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The adjoint method A simple example

0 vvvvvvvvvvvvvvvvvvvvv—
{ —0"(x) + c(x) ¥’ (x) = —de(x) u'(x) x €]0,1[  tangent
o(0)=a(1)=0 linear model

Going back to J: scalar product of the TLM with a variable p

1 1 1
—/ ﬁ”p—i—/ ct'p= —/ dcu'p
0 0 0
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The adjoint method A simple example

0 vvvvvvvvvvvvvvvvvvvvv—
{ —0"(x) + c(x) ¥’ (x) = —de(x) u'(x) x €]0,1[  tangent
o(0)=a(1)=0 linear model

Going back to J: scalar product of the TLM with a variable p

1 1 1
—/ ﬁ”p—i—/ ct'p= —/ dcu'p
0 0 0

Integration by parts:

1 1
| e = () = 0 0)p(1) - 2(Op(0) ~ [ scup
0 0
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The adjoint method A simple example

A
{ —0"(x) + c(x) ¥’ (x) = —de(x) u'(x) x €]0,1[  tangent
o(0)=a(1)=0 linear model

Going back to J: scalar product of the TLM with a variable p

1 1 1
—/ ﬁ”p—i—/ ct'p= —/ dcu'p
0 0 0

Integration by parts:

1 1
| e = () = 0 0)p(1) - 2(Op(0) ~ [ scup
0 0

A
{ —p"(x) = (c(x) p(x))" = u(x) — v*™(x)  x €]0,1[ adjoint

p(0) =p(1)=0 model
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The adjoint method A simple example

A
{ —0"(x) + c(x) ¥’ (x) = —de(x) u'(x) x €]0,1[  tangent
o(0)=a(1)=0 linear model

Going back to J: scalar product of the TLM with a variable p

1 1 1
—/ ﬁ”p—i—/ ct'p= —/ dcu'p
0 0 0

Integration by parts:

1 1
| e = () = 0 0)p(1) - 2(Op(0) ~ [ scup
0 0

{ —p"(x) = (c(x) p(x))" = u(x) — v*™(x)  x €]0,1[ adjoint
p(0) = p(1) =0 model

Then  VJ(c(x)) = —u'(x) p(x)
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The adjoint method A simple example

Remark

Formally, we just made
(TLM(@), p) = (&, TLM"(p))

We indeed computed the adjoint of the tangent linear model.
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The adjoint method A simple example

Formally, we just made
(TLM(@), p) = (&, TLM"(p))

We indeed computed the adjoint of the tangent linear model.

Actual calculations

» Solve the direct model

{ —u"(x) + c(x) v'(x) = f(x) x €]0,1[
u(0)=u(l)=0

» Then solve the adjoint model

{ —p" (x) = (c(x) p(x))" = u(x) = v™(x)  x€]0,1]
p(0) = p(1) =0

» Hence the gradient:  VJ(c(x)) = —v'(x) p(x)
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The adjoint method A simple example

The discrete case

Model
—u"(x) + c(x) U'(x) = f(x) x €]0,1]
u(0)=u(1)=0
uiy1 — 2uj + uj— Uiy1 — Uj )
*>{I+ h2’ —+q ,Hh L=f i=1...N
up =uny1 =0

Cost function

J(c) = %/01 (u(x) — u°b5(x))2 dx — % i (Ui B u?b5)2

Gateaux derivative:

1) = [ 800 (46 07 00) > ()




The adjoint method A simple example

Tangent linear model

—b"(x) + c(x) 0 (x) = —8c(x) v'(x) x €]0,1[
8(0) = 8(1) = 0
_ Dip1 — 20 + 01 te bipy1 — b — _sc Uit — Uj 1 N
R h h
g =tyns1 =0
Adjoint model
{ —p"(x) = (c(x) p(x))" = u(x) —u°*(x)  x€]0,1]
p(0) = p(1) = 0
_ Piy1 —2pitpi-1 Gipi— Ci-1Pi-1 — b i1 N
h2 h !
po=pn+1 =0
Gradient
V() = o () pl) o | U
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The adjoint method A simple example

Remark: with matrix notations

What we do when determining the adjoint model is simply transposing
the matrix which defines the tangent linear model

(MO,P) = (0,M7 P)

In the preceding example:

20— B —a+p 0 0
—a 20 = B2 —a+ B

MU=F with M= o
. —a 2a = By—1  —a+ By
0 0 o 20 — By

a =1/, B =c/h
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The adjoint method A simple example

Remark: with matrix notations

What we do when determining the adjoint model is simply transposing
the matrix which defines the tangent linear model

(MO,P) = (0,M7 P)

In the preceding example:

20— B —a+p 0 0
—a 20 = B2 —a+ B
MU=F with M= o
. —a 2a = By—1  —a+ By
0 0 o 20 — By

a =1/, B =c/h

But M is generally not explicitly built in actual complex models...




The adjoint method A more complex (but still linear) example
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The adjoint method A more complex (but still linear) example

Control of the coefficient of a 1-D diffusion equation

ou _ < =f(x,t)  x€]o,L[,t€]o, T]

8t
u(L,t) 0 tel0,T]
( ) up(x) x €10,L]

||><

> K(x) is unknown

> u°*(x, t) an available observation of u(x, t)

Minimize J(K(x / / u(x, t) — u™(x, t)) dx dt
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The adjoint method A more complex (but still linear) example

7ol
JIK](k) = / / o(x, t) (u(x, t) — u*™(x, t)) dxdt
o Jo
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The adjoint method A more complex (but still linear) example

Gateaux derivative

Tl
J[K](k) :/0 /o o(x, t) (u(x, t) — u™™(x,t)) dxdt

Tangent linear model

8(0,t) = o(L,t) =0  tel0,T]
0(x,00=0  xeo,1]
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The adjoint method A more complex (but still linear) example

Gateaux derivative

T L
JIK] (k) = /0 /O (x, t) (u(x, t) — u®*(x, t)) dxdt

Tangent linear model

on 0 ol 0 ou

8(0,t) =o(L,t)=0 tel0,T]
i(x,00=0 xe[0,L]

Adjoint model

8p 9 ap _ obs
B + B (K(x)a—x =u—u x €]0, L[, t €]0, T[
P(O, t) = ,D(L, t) =0 te [O’ T]

p(x, T)=0 xe€][0,L] final condition !! — backward integration

E. Blayo - Variational approach to data assimilation



The adjoint method A more complex (but still linear) example

Gateaux derivative of J
JKIk) = / / 8, £) (u(x, £) — 62%(x, 1)) dx dt

_ / / i )@@d dt
Gradient of J

T du ap :
VJ(x) = X( ) t)a—x(x, t) dt function of x
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The adjoint method A more complex (but still linear) example

Discrete version:

N
same as for the preceding ODE, but with Z Zu,”
n=0 i=1

Matrix interpretation: M is much more complex than previously !!
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The adjoint method Control of the initial condition

Outline

The adjoint method

Control of the initial condition
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The adjoint method Control of the initial condition

General formal derivation

» Model { %:M(X(th)) (Xat)EQX[O, T]
X(,0) = U(x)

> Observations Y  with observation operator H: H(X) =Y

-
» Cost function J(U) = %/o |H(X) - Y]?
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The adjoint method Control of the initial condition

General formal derivation

dX(x,t
-+ Model { 058 M) (0 €@ x[0,T]
X(x,0) = U(x)
> Observations Y  with observation operator H: H(X) =Y
T
» Cost function J(U) = %/ |H(X) - Y]?
0

GAateaux derivative of J

a—0 o

A T < < XU+au _XU
JU(w) :/ <X H(HX=Y)> with X = lim 2Urev = XU
0

where H* is the adjoint of H, the tangent linear operator of H.

E. Blayo - Variational approach to data assimilation



The adjoint method Control of the initial condition

Tangent linear model

dX(x, t) PP
— = M(X) (x,t) e Qx[0, T]

X(x,0) = u(x)

where M is the tangent linear operator of M.
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The adjoint method Control of the initial condition

Tangent linear model

% =M(X) (x,t) € Qx[0,T]
X(x,0) = u(x)

where M is the tangent linear operator of M.

Adjoint model

{ dPx, 1) +M*(P)=H"(HX-Y) (x,t)eQx][0,T]
P(x, T)=0 backward integration
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The adjoint method Control of the initial condition

Tangent linear model

% =M(X) (x,t) € Qx[0,T]
X(x,0) = u(x)

where M is the tangent linear operator of M.

Adjoint model

{ dPx, 1) +M*(P)=H"(HX-Y) (x,t)eQx][0,T]
P(x, T)=0 backward integration

VJ(U) = —P(.,0) function of x
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The adjoint method Control of the initial condition

Example: the Burgers' equation

The assimilation problem

2
a“ a“ ya—;’:f x €]0, L[, t € [0, T]
(

0, t) wl(t) e, T]
u(L,t) = o(t) te [0, T]
u(x,0) = up(x) x € [0, L]

> up(x) is unknown

> u°*(x, t) an observation of u(x, t)

> Cost function: J(up) / / u(x, t) — u™(x, t)) dx dt
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The adjoint method Control of the initial condition

T L
3uo](ho) = / / 8(x, £) (u(x, t) — 6*(x, 1)) dx dt
0 0
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The adjoint method Control of the initial condition

T L
3uo](ho) = / / 8(x, £) (u(x, t) — 6*(x, 1)) dx dt
0 0

Tangent linear model
aa o(ui)  0%n
] =0 x¢€]0,L[,te]0,T]
a(
I
]

Ox
0,t)=0 t € [0, T]
Lt
(x,0) = ho(x) x € [0, L]

ty=0 telo,T]
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The adjoint method Control of the initial condition

GAateaux derivative

T L
3uo](ho) = /0 /O 8(x, £) (u(x, t) — 6*(x, 1)) dx dt

Tangent linear model
A ~ 2~
on  oub) O o go,uft e o, T]

ot Ox X2
50,6)=0 telo,T]
o(L,t)=0 tel0,T]
i(x,0) = ho(x) x € [0, L]

Adjoint model

op = Op  O%p obs
E+U6—X+Vﬁ:(u_ub) XG]O,L[,tE[O,T]
p(0,t)=0 tel0,T]

pLL)=0 teo,T]

p(x,T)=0 x € [0, L] final condition !! — backward integration

.J|
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The adjoint method Control of the initial condition

Gateaux derivative of J
T L
Juo](ho) / / b(x, t) (u(x, t) — u®*(x, t)) dxdt
0 LO
—/ ho(x)p(x,0) dx
0

Gradient of J

VJ=—p(.,0) function of x
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The adjoint method The adjoint method as a constrained minimization

Outline

The adjoint method

The adjoint method as a constrained minimization
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The adjoint method The adjoint method as a constrained minimization

Minimization with equality constraints

Optimization problem

» J: R” — R differentiable

» K = {x € R" such that h;(x) = ... = hy(x) = 0}, where the
functions h; : R” — R are continuously differentiable.

Find the solution of the constrained minimization problem mi}rg J(x)
xe

Theorem

If x* € K is a local minimum of J in K, and if the vectors V h;(x*)
(i=1,...,p) are linearly independent,
then there exists \* = (A},...,A5) € R” such that

P
VI(x*)+ Y A Vhi(x*) =0

i=1
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The adjoint method The adjoint method as a constrained minimization

Let  L(x;A\) = J(x)+ Zp: Aihi(x)

i=1
> )\;'s: Lagrange multipliers associated to the constraints.

» L: Lagrangian function associated to J.

Then minimizing J in K is equivalent to solving V£ =0 in R" x R,

P
Vil =VJ+Y AVh
i=1
VaL =h  i=1...p

since

This is a saddle point problem.
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The adjoint method The adjoint method as a constrained minimization

The adjoint method as a constrained minimization

The adjoint method can be interpreted as a minimization of J(x) under
the constraint that the model equations must be satisfied.

From this point of view, the adjoint variable corresponds to a Lagrange
multiplier.
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Example: control of the initial condition of the Burgers’
equation

» Model:

%4-”%—1/%:1" XE]O,L[,tG[OaT]
u(0,t) =n(t)  te[o,T]
u(L,t) =14o(t) te[0,T]
u(x,0) = up(x) x € [0, L]

> Full observation field u°*(x, t)

» Cost function: J(ug) = 5/ / (u(x, t) — u*>(x, t))2 dx dt
o Jo
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The adjoint method The adjoint method as a constrained minimization

Example: control of the initial condition of the Burgers’
equation

» Model:

ou Ou 0%u
+u——yﬁ:f x €]0,L[,t €0, T]

ot Ox

6(0,6) = in(t) e e (o, 7]
u(lt) = alt) te[0,T]
u(x,0) = w(x)  xe [0,

> Full observation field u°*(x, t)

e
» Cost function: J(ug) = 5/ / (u(x, t) — u*>(x, t))2 dx dt
o Jo

A
We will consider here that J is a function of ug and v, and will minimize
J(uo, u) under the constraint of the model equations.
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Lagrangian function

L(uo, u; p) = J(Uo,U) +//( aj—ugzz—f)p

data ass cost functlon

model

Remark: no additional term (i.e. no Lagrange multipliers) for the initial condition nor
for the boundary conditions: their values are fixed.

By integration by parts, £ can also be written:
2
L(uo,u;p) = J(uo, u) / / (f —p — %u2 g)’: VU% - fp)
+ [ 1wt met D - mpton+ [ [Lp% p(L) — 203 o )|
o [T 2 pe ) - 80,9900, + 02 22 v 20, )]
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The adjoint method

Saddle point:
T /L
> (VoL hp) (8u
o Jo \Ot
T /L
> (VuL, h) (
0

The adjoint method as a constrained minimization

82u
n s,

o o o,
ot Yox Vox2) M

obs

oh,
520,600,
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The adjoint method The adjoint method as a constrained minimization

VL = (VpL,VuL, VL) =0

2
_ X X
ViL=0 p(x, T)=0 Vx

Optimality system

This set of equations (direct model, adjoint model, Euler equation) is
called the optimality system. It gathers all the information of the data

assimilation problem.
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Thank you !

UGA

universite
Grenoble Alpes
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