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Chapter 1

Some basic notions about PDEs

1.1 ODEs and PDEs

Definition 1.1. A differential equation is a relationship involving a function u and (some of)
its derivatives. It is called an ordinary differential equation (ODE) if u depends on one single
variable, or a partial differential equation (PDE) if u depends on several variables.

Examples

� −u′′(x) + x2 u′(x)− xu(x) = sinx is an ODE.

�
∂2u

∂x2
(x, y, z) +

∂u

∂y
(x, y, z)

∂u

∂z
(x, y, z) = 0 is a PDE.

1.2 Usual partial differential operators

Definition 1.2. Let u : Ω ⊂ Rn → R. The directional (or Gâteaux) derivative of u at point
x ∈ Ω in direction d ∈ Rn is

∂u

∂d
(x) = lim

α→0

u(x + αd)− u(x)

α

Examples

� A partial derivative is a directional derivative in a direction belonging to the canonical basis.

� Let u(x, y) = x2− 2xy+ y and d = (1, 2). The directional derivative of u in direction d is

∂u

∂d
(x) = −2x− 2y + 2

1



CHAPTER 1. SOME BASIC NOTIONS ABOUT PDES

Definition 1.3. Let u : Ω ⊂ Rn → R. The gradient of u at point x is

grad u(x) = ∇u(x) =


∂u

∂x1

(x)

...
∂u

∂xn
(x)


Theorem 1.1. An important relation:

∂u

∂d
(x) = ∇u(x).d

Definition 1.4. Let u : Ω ⊂ Rn → Rn denoted by u(x) =

 u1(x1, . . . , xn)
...

un(x1, . . . , xn)

.

The divergence of u is: divu =
n∑
i=1

∂ui
∂xi

. It can also be denoted formally by ∇.u

Definition 1.5. Let u : Ω ⊂ R3 → R3. The curl of u is defined by:

curlu =



∂u3

∂x2

− ∂u2

∂x3

∂u1

∂x3

− ∂u3

∂x1

∂u2

∂x1

− ∂u1

∂x2


It can also be denoted formally by ∇∧ u.

Definition 1.6. Let u : Ω ⊂ Rn → R. The Laplacian of u is defined by ∆u =
n∑
i=1

∂2u

∂x2
i

It can also be defined for u : Ω ⊂ Rn → Rn by ∆u =

 ∆u1
...

∆un


∆u is sometimes denoted by ∇2u.

1.3 Green formulas

Let Ω an open bounded subset of Rn, with a piecewise smooth boundary ∂Ω. The external
normal vector to ∂Ω is denoted by n. So called Green formulas1 are actually particular cases

1e.g. Gauss (or Ostrogradsky, or divergence) theorem, Stokes theorem, Green-Riemann theorem...

2



1.4. SOME DEFINITIONS RELATED TO PDES

of integration by parts.

The basic Green formula reads:∫
Ω

∂u

∂xk
v dx = −

∫
Ω

u
∂v

∂xk
dx +

∫
∂Ω

u v (ek.n) ds

where ek is the unit vector in direction xk, and where u and v are continuously differentiable
functions on Ω.

All other formulas derive from it, like for instance:∫
Ω

∆u v dx = −
∫

Ω

∇u .∇v dx +

∫
∂Ω

∂u

∂n
v ds

∫
Ω

u divE dx = −
∫

Ω

∇u.E dx +

∫
∂Ω

u (E.n) ds

1.4 Some definitions related to PDEs

Definition 1.7. Like for ODEs, the order of a PDE is the highest degree of derivation that
appears in the PDE.

Definition 1.8. Like for ODEs, a PDE is linear iff the relation is linear w.r.t. u and its partial
derivatives. The PDE is said to be non linear otherwise.

Definition 1.9. Like for ODEs, a PDE is quasi linear if each nonlinear term is actually a nth

derivative multiplied by a coefficient which depends only on x, u and its derivatives up to order
n− 1.

Examples

� The inviscid Burgers equation
∂u

∂t
+ u

∂u

∂x
= f is a non linear first-order PDE. It is

actually a quasi linear PDE.

� The transport-diffusion equation
∂u

∂t
+ c .∇u− ν ∆u = f is a linear second-order PDE.

Definition 1.10. A PDE that involves the time variable is a time-dependent (or evolution)
equation. Otherwise it is a steady-state (or time-independent, or stationary) equation.

3



CHAPTER 1. SOME BASIC NOTIONS ABOUT PDES

Definition 1.11. PDEs are generally complemented with boundary conditions (BCs), pre-
scribed on the limits of the domain, and with an initial condition (generally the value of the
solution at the initial time) if the PDE is time-dependent.

Some usual boundary conditions are:

Dirichlet u = g on ∂Ω

Neumann
∂u

∂n
= g on ∂Ω

Robin (or Fourier)
∂u

∂n
+ r u = g on ∂Ω

Mixed Dirichlet-Neumann

{
u = g on Γ0

∂u

∂n
= h on Γ1

where Γ0 ∪ Γ1 = ∂Ω and Γ0 ∩ Γ1 = ∅

Definition 1.12. A steady-state PDE with boundary conditions is also called a boundary value
problem.
A time-dependent PDE with initial conditions is also called an initial value problem, or a
Cauchy problem.

Definition 1.13. A problem (PDE + initial and/or boundary conditions) is well-posed (in the
sense of Hadamard) iff it has a unique solution, that continuously depends on the “parame-
ters” of the problem (shape of the domain, coefficients in the equation, initial and/or boundary
conditions...). Otherwise the problem is said to be ill-posed.

This continuous dependence is a crucial property for numerical simulation, since numerical so-
lutions result from perturbations of the original problem. It is thus a necessary condition for
numerical solutions to hopefully be correct approximations of the true solution.

1.5 Classification of PDEs

Many PDEs can roughly be classified into three main categories, which can generally be loosely
described as follows:

� elliptic: time-independent, describing smooth equilibrium states

� parabolic: time-dependent and diffusive

� hyperbolic: time-dependent and wave-like, with finite speed of propagation

This classification can be made mathematically precise in particular for second-order linear PDEs.
Let consider such a PDE on Ω ⊂ Rn:

n∑
i=1

n∑
j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f (E)

4



1.6. SOME TOOLS FOR THE ANALYTICAL STUDY OF PDES

The quadratic form corresponding to its second-order part is

Qx(X1, . . . , Xn) =
n∑
i=1

n∑
j=1

aij(x)XiXj

(E) is said to be:

elliptic at point x iff Qx is definite (positive or negative)

parabolic at point x iff Qx is positive or negative, but not definite

hyperbolic at point x iff Qx is neither definite, nor positive or negative

Examples

� The wave equation
∂2u

∂t2
− c2 ∆u = 0 is a hyperbolic equation.

� The Laplace equation ∆u = 0 is an elliptic equation.

� The diffusion equation
∂u

∂t
− ν∆u = 0 is a parabolic equation.

� The equation x
∂2u

∂x2
+ y

∂2u

∂y2
= 0 is elliptic for xy > 0, parabolic for xy = 0, and

hyperbolic for xy < 0.

� The Schrödinger equation
∂u

∂t
− iν∆u = 0 does not fall in the preceding classes, due

to its non real coefficient.

We will study typical equations of each of these three categories in the following chapters.

1.6 Some tools for the analytical study of PDEs

For simple PDEs (e.g. linear, and/or with constant coefficients, and/or with a null right-hand
side), it may be possible to get the analytical expression of (some of) their solutions. Some basic
tools for such calculations are the following.

� Method of characteristics The analytical expression of the solutions of general linear
first-order PDEs:

n∑
k=1

ak(x1, . . . , xn)
∂u

∂xk
(x1, . . . , xn) + r(x1, . . . , xn)u(x1, . . . , xn) = f(x1, . . . , xn)

can be computed by the so-called method of characteristics described in §5.2.

5



CHAPTER 1. SOME BASIC NOTIONS ABOUT PDES

� Fourier transform A huge difficulty with PDEs is to deal with the different variables,
while it is easy to solve linear first-order ODEs, or linear second-order ODEs with constant
coefficients (see Appendix A for a reminder). Therefore a way to solve a linear PDE in Rn

may be to take its Fourier transform with respect to all variables except one. One then
obtains a linear ODE in the Fourier space with respect to the remaining variable, that can
easily be solved. An inverse Fourier transform, if simple enough, then leads to the solution
of the original PDE. See Appendix B for some reminders on Fourier series and Fourier
transforms.

Examples

– Let consider the PDE
∂u

∂x
(x, y) + a

∂2u

∂y2
(x, y) + b u(x, y) = 0 on R2. Its Fourier

transform with respect to y is the linear ODE
dû

dx
(x, ξ) + (b− 4aπ2ξ2) û(x, ξ) = 0.

Its solutions are û(x, ξ) = û(0, ξ) e(4aπ2ξ2−b)x. Hence by inverse Fourier transform:

u(x, y) = u(0, y) ∗ FT−1
(
e(4aπ2ξ2−b)x

)
= u(0, y) ∗ e−bx

2
√
aπ x

e
y2

4ax

i.e. u(x, y) =
e−bx

2
√
aπ x

∫
R
u(0, z) e

(y−z)2
4ax dz

We thus have the expression of the solution as a function of u at x = 0.

– Let consider now the Laplace equation ∆u(x1, . . . , xn) = 0. A Fourier transform with

respect to x2, . . . , xn leads to
d2û

dx2
1

(x1, ξ2, . . . , ξn)− 4π2

(
n∑
k=2

ξ2
k

)
û(x1, ξ2, . . . , ξn) = 0.

The solutions of this second-order ODE are the functions

û(x1, ξ2, . . . , ξn) = α e2π‖ξ‖x1 +β e−2π‖ξ‖x1 α, β ∈ R where ‖ξ‖ =

√√√√ n∑
k=2

ξ2
k

Hence the formal expression of the solutions:

u(x1, x2, . . . , xn) = α TF−1
(
e2π‖ξ‖x1

)
+ β TF−1

(
e−2π‖ξ‖x1

)
α, β ∈ R

However this inverse Fourier transform is quite complex and does not allow for a
simple expression of the solutions, which shows that this approach can fail.

� Separation of variables Solutions of a PDE can also be searched for under the particular
form of a product of several functions, each one depending on one single variable:

u(x1, . . . , xn) = u1(x1)u2(x2) . . . un(xn)

This approach can transform the PDE into a set of n ODEs.

6



1.7. FOURIER ANALYSIS OF CONTINUOUS OR DISCRETIZED PDES

Example Let consider again the Laplace equation ∆u(x1, . . . , xn) = 0. Introducing the
expression above leads to

u′′1(x1)u2(x2) . . . un(xn) + u1(x1)u′′2(x2) . . . un(xn) + · · ·+ u1(x1)u2(x2) . . . u′′n(xn) = 0

Assuming that those functions never vanish, one gets
u′′1(x1)

u1(x1)
+ · · ·+ u′′n(xn)

un(xn)
= 0 for all

values of x1, x2, . . . , xn. A simple reasoning then leads to the fact that there exists constants

λ1, . . . , λn with
n∑
k=1

λk = 0 such that ∀k = 1, . . . , n , ∀xk,
u′′k(xk)

uk(xk)
= λk. Hence the

expression of uk as a linear combination of simple sinus, cosinus or exponential functions
involving λk. The admissible values for the λks are linked to the boundary conditions
associated to the PDE.

This method is used for instance in §3.2.2 and §7.2.1.
For second-order PDEs with non-constant coefficients, the determination of the functions
uk is closely linked to the Sturm-Liouville theory.

1.7 Fourier analysis of continuous or discretized PDEs

As will be seen in these notes, Fourier (or spectral) analysis is a powerful tool for studying PDEs
and their approximations, and it will be frequently used in the following chapters. Its relevance
can be justified from several points of view.

� Plane-wave solutions The basic idea is that a linear homogeneous (i.e. with a null
right-hand side) PDE with constant coefficients admits plane-wave solutions of the form
u(x, t) = ei(p.x+χt), p ∈ Rn, χ ∈ C (or u(x) = eip.x if it is a steady-state equation). In

other words, one can observe that if an initial data u0(x) = eip.x is supplied to such a
time-dependent PDE, then it has a solution u(x, t) = eiχt u0(x) (where χ depends on p),
i.e. the initial condition multiplied by an oscillatory factor.

The relationship between χ and p is called the dispersion relation. Comparing this relation
with the ones corresponding to approximate equations obtained by numerical methods (such
as the finite difference method that is described in these notes) is a way to assess the quality
of these approximations.

Examples Making u(x, t) = ei(p.x+χt) in the equations introduced in Section 1.5 leads
to the following dispersion relations:

– wave equation: χ2 = c2 ‖p‖2

– diffusion equation: χ = iν ‖p‖2

– Schrödinger equation: χ = −ν ‖p‖2

7



CHAPTER 1. SOME BASIC NOTIONS ABOUT PDES

� Fourier decomposition Another point of view consists in considering that any regular
enough function can be seen as the superposition of single complex exponential functions
(via its inverse Fourier transform or its Fourier decomposition - see Appendix B). Therefore
the effect of a linear operator on this function is the superposition of its effect on single
complex exponential functions. A way to investigate some properties of linear PDEs and of
their approximation schemes is thus to compute their effect on single complex exponential
functions.

Fourier analysis will also lead to the notions of dissipation and dispersion errors, and numerical
stability, that will be introduced later.

1.8 Dimensional and non-dimensional PDEs

When representing a physical phenomenon, a PDE is considered as a dimensional equation, which
means that the function as well as the variables represent physical quantities (e.g. a concentration,
a temperature or a pressure for the function, time and/or space coordinates for the variables). For
instance, when dealing with the diffusion of heat in a material (see chapter 7), the PDE describes
the evolution of the temperature (in ◦K) with respect to space (in m) and time (in s). This
means that the unit for ∂u/∂t is K.s−1, and K.m−2 for ∆u. Those two quantities are linked in

the diffusion equation through a diffusion coefficient ν (in m2.s−1), such that
∂u

∂t
− ν ∆u = 0

makes sense in terms of units.

On the contrary, from a purely mathematical point of view, one may write PDEs which would not

make sense from a physical point of view, like
∂u

∂t
−∆u = 0. An implicit assumption is then

that the function and all variables are non dimensional (i.e. they have no units).

Note also that any dimensional PDE can be transformed into a non dimensional one, by intro-
ducing physical scales (i.e. orders of magnitude) and performing changes of variables. Let denote
for instance L, T and U scales respectively for length, time and temperature. Let introduce
the new non dimensional variables x′ = x/L, t′ = t/T and the new non dimensional function
v(x′, t′) = u(x, t)/U . The dimensional equation

∂u

∂t
(x, t)− ν ∆u(x, t) = 0

then reads
U

T

∂v

∂t′
(x′, t′)− ν U

L2
∆v(x′, t′) = 0

i.e. the non dimensional PDE

∂v

∂t′
(x′, t′)− ν ′∆v(x′, t′) = 0

with ν ′ =
νT

L2
a non dimensional parameter.
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Chapter 2

Introduction to finite differences

The finite difference method provides a numerical approximation of the solutions of ODEs and
PDEs. It consists in

� defining a mesh, also called a grid, approximating the physical domain Ω where the equa-
tion is defined. For the finite difference method, contrary to the finite element method, this
grid is almost always structured. This means that the grid points (or nodes) are regularly
spaced (i.e. the space step is constant), or can be transformed into such a form by a
simple function (see Figure 2.1). If one deals with a time-dependent PDE, then a mesh of
the time interval is also defined (the time interval is divided into time steps, see Figure
2.2)

� looking for an approximation uni of the exact solution at each node i and at each time
step n (or more simply for an approximation ui of the exact solution at each node i if the
problem does not depend on time). This is achieved by replacing the exact equation at
each node i and at each time step n by an approximate equation involving only the ukj ,
j = . . . , i − 1, i, i + 1, . . . , k = . . . , n − 1, n, n + 1, . . . The basic tool for building this
approximation is the Taylor formula.

Figure 2.1: some examples of finite difference grids

9



CHAPTER 2. INTRODUCTION TO FINITE DIFFERENCES

Figure 2.2: Regular space-time discretization

2.1 1-D Taylor formulas

Taylor formulas provide local polynomial approximations of regular functions. Let us recall for
instance the Taylor-Lagrange formula for a function of one variable.

Theorem 2.1. Let u with Cn regularity on [a, b], and with a (n+ 1)th derivative on (a, b). Then
there exists ζ ∈ (a, b) such that

u(b) = u(a) + (b− a)u′(a) + · · ·+ (b− a)n

n!
u(n)(a) +

(b− a)n+1

(n+ 1)!
u(n+1)(ζ) (2.1)

This can be rewritten in the following way:

Theorem 2.2. Let u with Cn regularity in a neighborhood of x, and with a (n+ 1)th derivative
in this neighborhood. Then, for h sufficiently small:

u(x+ h) = u(x) + hu′(x) + · · ·+ hn

n!
u(n)(x) +O

(
hn+1

)
This leads to the well-known Taylor polynomials approximating common functions. The exact
meaning of the notation O is given in Appendix D.2.

This 1-D formula is sufficient in most cases to derive finite difference schemes, even for multi-
dimensional problems. However, for some specific schemes, multidimensional Taylor expansion
might be necessary. An example in the 2-D case is given in §2.6.

10



2.2. FINITE DIFFERENCE SCHEMES

2.2 Finite difference schemes

In this section, we will explain how finite difference schemes are built, and introduce usual schemes
for the approximation of first- and second-order derivatives. Then we will introduce a way to
analyze finite difference schemes.
We will only deal with 1-D functions, and will consider that functions are regular enough, so that
their high order derivatives exist and Taylor expansions make sense.

2.2.1 Approximation schemes

Let x0, x1, . . . , xq distinct points and p ∈ N. If we find real coefficients αj (j = 0, . . . , q) such
that

u(p)(x0) '
q∑
j=0

αj u(xj)

then this linear combination is called an approximation scheme, or a finite difference scheme,
for u(p)(x0).

This scheme is said to be consistent iff u(p)(x0)−
q∑
j=0

αju(xj) −→ 0 as h −→ 0, h being a

common order of magnitude for all the |xj − x0|.

The scheme is said to be kth-order accurate iff u(p)(x0) =

q∑
j=0

αj u(xj) +O(hk). k is the order

of accuracy of the scheme.

The grid points involved in a finite difference scheme form its so-called associated stencil.

2.2.2 A general method for deriving a finite difference scheme

Let x0, x1, . . . , xq distinct points, and hj = xj − x0 (j = 1, . . . , q). We intend to build a
consistent approximation scheme for u(p)(x0), for p ≤ q.

The Taylor-Lagrange formula applied to u at point xj (j = 1, . . . , q) at order q reads

u(xj) = u(x0) + hju
′(x0) + · · ·+

hqj
q!
u(q)(x0) +O(hq+1

j )

Let build an arbitrary linear combination of these expansions:

q∑
j=1

αju(xj) =

(
q∑
j=1

αj

)
u(x0)+

(
q∑
j=1

αjhj

)
u′(x0)+· · ·+ 1

q!

(
q∑
j=1

αjh
q
j

)
u(q)(x0)+

(
q∑
j=1

αjO(hq+1
j )

)
(2.2)

11
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This combination is an approximation scheme for u(p)(x0) as soon as the coefficients of u(k)(x0)
vanish for k = 1, . . . , q, k 6= p:

q∑
j=1

αjhj = 0

...
q∑
j=1

αjh
p−1
j = 0

q∑
j=1

αjh
p
j = p!

q∑
j=1

αjh
p+1
j = 0

...
q∑
j=1

αjh
q
j = 0

i.e.



h1 h2 · · · hq
...

...

hp−1
1 hp−1

2 · · · hp−1
q

hp1 hp2 · · · hpq
hp+1

1 hp+1
2 · · · hp+1

q
...

...
hq1 hq2 · · · hqq





α1
...

αp−1

αp
αp+1

...
αq


=



0
...
0
p!
0
...
0


(2.3)

This is a q×q linear system of Vandermonde type. Thus it has a unique solution α1, . . . , αq iff the
hjs are q distinct values, which is obviously the case since the xjs are distinct points. Moreover
the only non homogeneous equation in this system implies that αj = O(h−p), j = 1, . . . , q, where
h is a common order of magnitude for the hjs (for instance h can be taken as the minimum,
mean, or maximum value of the hjs).
The linear system (2.3) being satisfied, (2.2) becomes

q∑
j=1

αju(xj) =

(
q∑
j=1

αj

)
u(x0) + u(p)(x0) +O(hq+1−p)

i.e.

u(p)(x0) =

q∑
j=1

αju(xj)−

(
q∑
j=1

αj

)
u(x0) +O(hq+1−p) (2.4)

Theorem 2.3. Using q additional grid points x1, . . . , xq, one can build an approximation of
u(p)(x0) at order q + 1 − p. Moreover (2.2) proves that if p is even and if the scheme is
symmetric, this order of the approximation becomes q + 2− p.

Theorem 2.4. A direct consequence of the preceding result is that a kth-order scheme is exact
for any polynomial function u which degree is lower than or equal to k.

This is simply due to the fact that, following (2.1), the error term O(hq+1−p) in (2.4) is a
combination of (q+1)th-order derivatives of u. If the scheme is kth-order accurate, then q+1−p =
k, i.e. q + 1 = k + p > k. Given the fact that, for a polynomial of degree k, the derivatives of
order greater than k are zero, the error term is thus also zero.
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2.2.3 Usual schemes for the first- and second-order derivatives

Using the Taylor-Lagrange formula at points x+ h and x− h with a positive increment h leads
to the following usual schemes for the first-order derivative:

� u′(x) =
u(x+ h)− u(x)

h
+O(h) : first-order right-sided (or downstream) scheme

� u′(x) =
u(x)− u(x− h)

h
+O(h) : first-order left-sided (or upwind) scheme

� u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2) : second-order centered scheme

The two first-order schemes are said to be one-sided, since they involve grid points only on one
side of the current grid point of interest x, while the second-order scheme is said to be two-sided.

Similarly, the most usual scheme for the second derivative is the second-order centered scheme:

u′′(x) =
u(x− h)− 2u(x) + u(x+ h)

h2
+O(h2) (2.5)

We can see that the orders of accuracy of these schemes follow the rule described by Theorem
2.3. The order is indeed equal to q + 1− p for the schemes approximating u′ (p = 1, q = 1 for
the one-sided schemes and q = 2 for the two-sided scheme), and q + 2− p for the second-order
centered scheme for u′′ (p = q = 2).

2.2.4 Fourier analysis of finite difference schemes

As mentioned in §1.7, Fourier analysis is a powerful tool to study the properties and the quality
of approximation schemes. It consists in comparing the effect of a numerical scheme to the effect
of the exact continuous operator in the frequency space.
Since any regular function can be written as an integral or a series of complex exponential
functions (see Appendix B), we only need to consider the effect on a generic complex exponential
function uω(x) = eiωx, ω ∈ R.
Let then define the transfer function T of an operator S as S(uω) = T (ω) uω. Such a transfer
function exists for all derivation or integration operators, since uω are eigenfunctions of those
operators. And it also exists for all linear finite difference schemes, since uω(x+ h) = eiω(x+h) =
eiωheiωx = eiωh uω(x). For normalization purpose, it is defined taking h = 1, and ω ∈ [0, π] (to
fulfill the Nyquist-Shannon criterion1).

Example Let consider the derivation operator:

S : u −→ u′

1The Nyquist-Shannon criterion states that a sufficient condition for a sample to capture all the information
from a continuous signal is that the sample rate is larger than, or equal to, twice the maximum frequency contained
in the continuous signal. On a regular grid of step h, the sampling rate is equal to 1/h, i.e. 1 if we take h = 1
for the sake of normalization. The continuous signal eiωx is made of one single frequency ω/(2π). Then the
Nyquist-Shannon criterion reads: 1 ≥ 2ω/(2π), i.e. ω ≤ π.

13
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We have obviously S(uω)(x) = (eiωx)
′
= iω eiωx, i.e. S(uω) = iω uω. The transfer function cor-

responding to the first-order derivation is thus T (ω) = iω. Moreover, since iω eiωx = ω ei(ωx+π/2),
the derivation changes the amplitude of uω (by a factor of ω) and its phase (by adding a π/2
delay).
Let now consider the two following finite difference schemes approximating the first derivative:

S
(1)
h : u −→ u(.+ h)− u(.)

h
and S

(2)
h : u −→ u(.+ h)− u(.− h)

2h

S
(1)
1 (uω) = eiω(x+1)−eiωx and S

(2)
1 (uω) =

1

2

(
eiω(x+1) − eiω(x−1)

)
, which implies that their trans-

fer functions are respectively T (1)(ω) = eiω − 1 and T (2)(ω) = i sinω. They are compared with
the transfer function T (ω) = iω of the exact continuous derivation in Figure 2.3.

Figure 2.3: Real (left panel) and imaginary (right panel) parts of the transfer function for the exact

derivation operator (blue curves), and the S
(1)
h (red curves) and S

(2)
h (yellow curves) finite difference

schemes

An important aspect contributing to the quality of a finite difference scheme is its ability to
modify as few as possible the exact transfer function, nor its phase neither its amplitude. In the
present example, some simple algebra leads to

T (1)(ω) = sinc
(ω

2

)
eiω/2 T (ω) and T (2)(ω) = sinc (ω) T (ω)

where sinc(ω) =
sinω

ω
is the cardinal sine function (see Figure B.1 in Appendix B). Under this

form, it is clear that S(1) modifies both the amplitude and the phase w.r.t. S, while S(2) modifies
the amplitude but not the phase.

Definition 2.1. A scheme Sh that modifies the amplitude of Fourier components w.r.t. to the
exact operator S is said to be diffusive or dissipative. The modification of this amplitude is
called the diffusion error or dissipation error of the scheme.

14
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Definition 2.2. A scheme Sh that modifies the phase of Fourier components w.r.t. to the exact
operator S is said to be dispersive. The modification of this phase is called the dispersion
error of the scheme.

Both errors appear clearly by looking at the ratio of their transfer functions: there is a dissipation
error2 as soon as the amplitude of this ratio is not equal to 1, and a dispersion error as soon as
its phase is non zero (i.e. the ratio is not a real number).
As can be seen in the above example, these errors are not constant, but generally depend on the
wavenumber ω. For most schemes, the errors are small for small wavenumbers, and increase for
larger ones.

Some generic calculations facilitating the computation of transfer functions are given in Appendix
D.1.

2.3 The finite difference method: a simple example

Let now illustrate the principle of the finite difference method on the very simple example of the
ODE: −u′′(x) = f(x) for x ∈ (a, b), with boundary conditions u(a) = 0 and u(b) = 0.

The finite difference method consists in:

� building a mesh of the domain [a, b]. Let take here for instance the regular mesh defined
by xi = a+ ih (i = 0, . . . , N + 1) with h = (b− a)/(N + 1).

� considering the ODE on grid points only. The original ODE on (a, b) is replaced by{
−u′′(xi) = f(xi) i = 1, . . . , N
u(x0) = u(xN+1) = 0

� replacing the differential operator by a finite difference scheme. Here, we can use the
second-order scheme (2.5) seen previously, and the ODE at point xi reads − 1

h2
(u(xi−1)− 2u(xi) + u(xi+1)) + εi = f(xi) , i = 1, . . . , N with εi = O(h2)

u(x0) = u(xN+1) = 0
(2.6)

� neglecting the error terms εi, and then actually solving the remaining system. In the present
case, it is thus the simple linear system:{

−ui−1 + 2ui − ui+1 = h2 f(xi) , i = 1, . . . , N
u0 = uN+1 = 0

(2.7)

where ui is the approximation of u(xi).

2Note that one speaks about “dissipation error” even if the amplitude of Th/T is greater than 1.
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The preceding problem can of course be written in matrix form. Let

Ah =
1

h2


2 −1 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 2

 , F =

 f(x1)
...

f(xN)

 , E =

 ε1
...
εN



U =

 u(x1)
...

u(xN)

 , and Uh =

 u1
...
uN


Then (2.6) reads: Ah U + E = F , while (2.7) reads:

Ah Uh = F (2.8)

Before addressing the issues of the existence and uniqueness of Uh and of its convergence towards
U , let present some numerical results, for the particular case where the exact solution is u(x) =
e−x/8 sinx for x ∈ [0, 6π] (the right-hand side is then f(x) = −1

64
e−x/8 (63 sinx+ 16 cosx)).

Figure 2.4 compares this exact solution u with the numerical approximation uh for several values
of h. It clearly illustrates the convergence of the finite difference solution towards the true solution
as h decreases. The rate of this convergence can be quantified by computing the norm of the error
‖ Uh − U‖ for the different values of h. This quantity is displayed in Figure 2.5 in log-log scale.
As can be seen, the error decreases almost linearly, with a slope which is very close to 2. This
means that the error behaves like C h2, which is coherent with the second-order discretization of
the numerical scheme.

Figure 2.4: u(x) (red curve) and uh(x) (blue curve) for N = 10, N = 20 and N = 30

2.4 Properties of the scheme and of the numerical solution

2.4.1 Consistence, stability and convergence

As seen before, when applied to an ODE or a PDE, the finite difference method leads (at least
for linear equations) to a linear system AhUh = F , while the exact equations are AhU +Eh = F .
At this stage, two questions arise naturally:

16
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Figure 2.5: ‖ Uh−U‖2 (blue curve) and ‖ Uh−U‖∞ (red curve) compared to the theoretical h2 slope
(yellow line)

� Is the problem well posed, i.e. does the system have a unique solution Uh ?

� If the problem is well posed, does its numerical solution Uh converge to the exact continuous
solution U as h tends to 0 ?

Definition 2.3. The scheme is said to be consistent iff Eh −→ 0 as h −→ 0.

Definition 2.4. The error of the numerical solution is ‖Uh − U‖ = ‖A−1
h Eh‖ ≤ ‖A−1

h ‖ ‖Eh‖.
The fact that ‖A−1

h ‖ is bounded independently of h is called stability.

Theorem 2.5. Stability and consistency lead obviously to convergence: Uh −→ U as h −→ 0.
This is even an equivalence for simple linear problems.

Example In the preceding example, Ah is invertible, since it is a symmetric positive definite
matrix. Therefore (2.8) is well posed.
Given its expression, Eh obviously tends to 0 as h tends to 0: the numerical scheme is consistent.
To get the convergence of the approximation method, we have thus to show that ‖A−1

h ‖ is
bounded independently of h. Note that this is not obvious at all, since Ah is a N × N matrix,
with N tending to infinity as h tends to 0. In the present case, it can be shown for instance that

‖A−1
h ‖ ≤ max

(
1,

2(b− a)2

π2

)
for h sufficiently small.

2.4.2 Equivalent equation

Associated to convergence properties is the notion of equivalent equation. As a matter of
fact, using Taylor expansion, the numerical scheme can be reformulated as a series (w.r.t. h),
the first term of which (i.e. corresponding to h0) is the original equation (iff the discretization
is consistent). This expression is the so-called equivalent equation associated to the numerical
scheme. However the most interesting term in the error is the one corresponding to the lowest
power of h, also called dominant error term, which may give an indication on the way the
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numerical scheme modifies the true solution. That is why, by extension, the term equivalent
equation is also frequently employed to indicate the original equation with only the dominant
error term in addition.

Example Coming back to the preceding example, we have:

u(x+ h)− 2u(x) + u(x− h)

h2
= u′′(x) +

h2

12
u(4)(x) +

h4

360
u(6)(x) + . . .

Therefore the finite difference method actually solves the equivalent equation

−u′′(x)− h2

12
u(4)(x)− h4

360
u(6)(x)− . . . = f(x)

The dominant error term is: −h
2

12
u(4)(x), and the equation with this additional term only

−u′′(x)− h2

12
u(4)(x) = f(x)

is also called the equivalent equation.

Some generic calculations facilitating the computation of equivalent PDEs are given in Appendix
D.3 and a general result allowing for the interpretation of its dominant error term is given in
Appendix D.4.

2.4.3 Other properties

Additional issues may also be of interest. For instance, it might be important that Uh also
satisfies some specific mathematical or physical properties satisfied by U (e.g. conservation laws,
symmetry, positivity...). Such properties are called mimetic properties of the numerical scheme.

Example Let consider the homogeneous ODE −u′′(x) = 0 on (a, b), with Dirichlet boundary

conditions u(a) = α and u(b) = β. The exact solution is obviously u(x) = α +
x− a
b− a

(β − α).

This function satisfies a so-called “maximum principle” (we will come back on this notion in
the following chapters) in the sense that the extrema of the function are reached only on the
boundary of the domain (for x = a and x = b).

Following the discretization used previously, the corresponding finite difference solution satisfies:{
−ui−1 + 2ui − ui+1 = 0 , i = 1, . . . , N
u0 = α , uN+1 = β

Remarking that ui = 1
2

(ui−1 +ui+1), a simple proof by contradiction shows that the approximate
solution also reaches its extrema for x = a and x = b. This is a mimetic property of the numerical
scheme.
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2.5 Considering boundary conditions

Until this point, we did not detail the management of boundary conditions in the finite difference
method. This aspect was also hidden in the example of §2.3, due to the fact that we had
homogeneous Dirichlet conditions u(a) = u(b) = 0.

The way boundary conditions must be accounted for depends on each particular case. One must
check that the finite difference schemes are still valid in the vicinity of the boundary and, if it is
not the case, locally use other schemes. Moreover, boundary conditions must be integrated in
the system of discretized equations.

2.5.1 Validity of finite difference schemes near boundaries

Numerical schemes often cannot be used in the vicinity of the boundary. As an example, with
the same notations as in section 2.3, if one approximates u′′(x) by

u′′(xi) =
−ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2

12h2
+O(h4)

this scheme cannot be used for grid points x1 and xN , since x−1 and xN+2 do not exist. Other
schemes must be considered, for instance the usual centered scheme:

u′′(x1) ' u0 − 2u1 + u2

h2
and u′′(xN) ' uN−1 − 2uN + uN+1

h2

However, as seen before, this scheme is only second-order accurate. Discretization errors will
then be larger at these two points than elsewhere, which may corrupt the overall quality of the
numerical solution. To avoid this, another possibility consists in using one-sided fourth-order
schemes, the price to pay being a larger stencil.

2.5.2 Dirichlet conditions

Non homogeneous Dirichlet boundary conditions can be easily integrated within numerical schemes.
For instance, if one replaces the homogeneous Dirichlet conditions u(a) = u(b) = 0 by non ho-
mogeneous ones u(a) = α and u(b) = β in the example of §2.3, system (2.8) becomes

1

h2


1 0 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 0 1




u0

u1
...
uN
uN+1

 =


α/h2

f(x1)
...

f(xN)
β/h2


or, if directly eliminating u0 and uN+1:

1

h2


2 −1 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 2




u1
...

...
uN

 =


f(x1) +

α

h2

...

...

f(xN) +
β

h2


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2.5.3 Neumann conditions

In case of a Neumann boundary condition, the derivative must of course also be approximated by
a finite difference scheme. For instance, if one replaces the Dirichlet condition u(a) = α by the
Neumann condition u′(a) = α in the previous example, one can use the first-order approximation:

u1 − u0

h
= α

which leads to the system

1

h2


−h h 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 0 1




u0

u1
...
uN
uN+1

 =


α

f(x1)
...

f(xN)
β


One could also use the second-order scheme

−3u0 + 4u1 − u2

2h
= α

leading in that case to

1

h2


−3h 4h −h 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 0 1




u0

u1
...
uN
uN+1

 =


2α
f(x1)

...
f(xN)
β


2.6 The n-D case

Most PDEs involve more than one space variable. However, even in n-D with n > 1, the dis-
cretization of differential operators very often requires 1-D finite difference schemes only, since it
can be done in each direction independently.

Example Let consider the 2-D Laplacian operator ∆u(x, y) =
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y). Using

the usual second-order centered approximation (2.5) for the second derivative, one gets immedi-
ately:

u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
+
u(x, y + k)− 2u(x, y) + u(x, y − k)

k2
= ∆u(x, y)+O(h2+k2)

or, taking h = k:

u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y)

h2
= ∆u(x, y) +O(h2) (2.9)
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However, if one considers a more complex stencil involving other grid points, it may be necessary
to use a multi-dimensional Taylor formula to build the finite difference scheme. For instance, in
2-D:

Theorem 2.6. The Taylor formula in two real variables reads:

u(x+ h, y + k) = u(x, y) + h
∂u

∂x
(x, y) + k

∂u

∂y
(x, y)

+
h2

2

∂2u

∂x2
(x, y) + hk

∂2u

∂x∂y
(x, y) +

k2

2

∂2u

∂y2
(x, y)

...

+
n∑
p=0

hpkn−p

p! (n− p)!
∂nu

∂xp∂yn−p
(x, y)

+ O(hn+1 + kn+1)

Example Coming back to the 2-D Laplacian operator, the preceding Taylor formula can be used
to prove that

u(x+ h, y + h) + u(x− h, y + h) + u(x+ h, y − h) + u(x− h, y − h)− 4u(x, y)

2h2
= ∆u(x, y)+O(h2)

More precisely:

u(x+ h, y + h) + u(x− h, y + h) + u(x+ h, y − h) + u(x− h, y − h)− 4u(x, y)

2h2
=

∆u(x, y) +
h2

12

(
∂4u

∂x4
(x, y) + 6

∂4u

∂x2 ∂y2
(x, y) +

∂4u

∂y4
(x, y)

)
+ o(h2)

while the more usual scheme (2.9) satisfies

u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 4u(x, y)

h2
=

∆u(x, y) +
h2

12

(
∂4u

∂x4
(x, y) +

∂4u

∂y4
(x, y)

)
+ o(h2)

Note however that a multidimensional Taylor formula is a direct consequence of the 1-D Taylor
formula. For example, the preceding Taylor formula in two variables can easily be proved by
performing a 1-D Taylor expansion in the x-direction w.r.t. (x, y + k) and then several 1-D
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Taylor expansions in the y-direction w.r.t. (x, y):

u(x+ h, y + k) = u(x, y + k) + h
∂u

∂x
(x, y + k) +

h2

2

∂2u

∂x2
(x, y + k) + . . .

= u(x, y) + k
∂u

∂y
(x, y) +

k2

2

∂2u

∂y2
(x, y) + . . .

+h

(
∂u

∂x
(x, y) + k

∂2u

∂x∂y
(x, y) + . . .

)
+
h2

2

(
∂2u

∂x2
(x, y) + . . .

)
+ . . .

= u(x, y) + h
∂u

∂x
(x, y) + k

∂u

∂y
(x, y) +

h2

2

∂2u

∂x2
(x, y) + hk

∂2u

∂x∂y
(x, y) +

k2

2

∂2u

∂y2
(x, y) + . . .
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Chapter 3

Laplace and Poisson problems

3.1 Some vocabulary

The steady-state solution of a physical phenomenon governed by diffusion satisfies

−div (ν(x)∇u(x)) = f

where u is the state variable (temperature, chemical concentration...), ν is the diffusion coefficient
and f the forcing term (source/sink).

If k is actually a constant, the PDE becomes −ν ∆u = f , called a Poisson equation.

Moreover, if f is equal to zero, the PDE becomes ∆u = 0, called a Laplace equation. The
solutions of Laplace equation are called harmonic functions.

3.2 Some general remarks on harmonic functions

3.2.1 Harmonic functions in R2

Examples of harmonic functions in R2 are:

� u(x, y) = a(x2 − y2) + bxy + cx+ dy + e

�

{
u1
λ(x, y) = (a cosλx+ b sinλx)(ceλy + de−λy)

u2
λ(x, y) = (aeλx + be−λx)(c cosλy + d sinλy)

∀λ ∈ R,∀a, b, c, d ∈ R

� In polar coordinates:
u0(r, θ) = c0 ln r + d0

un(r, θ) = (an cosnθ + bn sinnθ)

(
cnr

n +
dn
rn

)
∀n ∈ N∗

for r 6= 0, ∀an, bn, cn, dn ∈ R

Moreover, ∆ being a linear operator, any linear combination of harmonic functions is also an
harmonic function.
Therefore there are “many” harmonic functions since Span {u1

λ, u
2
λ, λ ∈ R}, which is a space of

uncountable infinite dimension, is included in the set of harmonic functions in R2.
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3.2.2 Harmonic functions in bounded domains in R2

PDEs are often defined on bounded domains, rather than on Rn. Analytical solutions can be
found in some cases, in particular for domains with simple geometries, like rectangles or disks in
R2. This is the case for the Laplace equation, where preceding elementary harmonic functions
can be combined to get solutions on particular domains. For instance:

� The solution to the Laplace equation in Ω = (0, Lx) × (0, Ly) with Dirichlet boundary
conditions may be obtained by a separation of variables technique and a superposition
principle. For instance, for u(0, y) = h(y), u(Lx, y) = u(x, 0) = u(x, Ly) = 0, the solution
reads

u(x, y) =
∑
k≥1

αk
(
eλkx − eλk(2Lx−x)

)
sin(λky)

where λk =
kπ

Ly
and αk =

2

Ly (1− e2λkLx)

∫ Ly

0

h(y) sin(λky) dy.

� The solution to the Laplace equation on the open disk Ω of center (0, 0) and radius R with
Dirichlet boundary conditions u = g(θ) is

u(r, θ) = K(r, θ)∗g(θ) =
1

2π

∫ 2π

0

K(r, θ−α)g(α) dα where K(r, θ) =
R2 − r2

R2 + r2 − 2rR cos θ

Note that this result can actually be extended to any dimension n:

u(x) =
R2 − ‖x‖2

R |∂B(O, 1)|

∫
∂B(O,R)

g(y)

‖x− y‖n
dS(y)

where B(O,R) is the ball of center (0, . . . , 0) and radius R in Rn.

3.2.3 Some properties of harmonic functions

The harmonic functions share a number of properties. For an open set Ω ⊂ Rn:

� Global influence of boundary values: u changes everywhere in Ω as soon as the Dirichlet
boundary data changes somewhere on ∂Ω.

� Regularity: If the Dirichlet boundary data g ∈ C0(∂Ω) then u ∈ C∞(Ω).

� Mean value property: Let B(x, r) denote the ball of center x and radius r. For each
closed ball B(x, r) ⊂ Ω:

u(x) =
1

|B(x, r)|

∫
B(x,r)

u(y) dy =
1

|∂B(x, r)|

∫
∂B(x,r)

u(σ) dσ

This means that the value of a harmonic function at point x is the average of its values
over every ball and every sphere which center is x and which is contained in the domain.
One can even prove that, if u is a C2 function that satisfies the mean value property, then
u is a harmonic function.

� Maximum principle: If u ∈ C2(Ω) and u ∈ C0(Ω), then u has no extreme values in Ω.
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3.3 Poisson equation in R2 and R3

In R2, the Laplacian operator in polar coordinates reads ∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

The corresponding radial harmonic functions, defined on R2 r {(0, 0)}, are

u(r, θ) = u(r) = a ln r + b ∀a, b ∈ R

In R3, the Laplacian operator in spherical coordinates reads

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sinφ

∂2u

∂θ2
+

1

r2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
The corresponding radial harmonic functions, defined on R3 r {(0, 0, 0)}, are

u(r, θ, φ) = u(r) =
a

r
+ b ∀a, b ∈ R

The function

K(r) =


1

2π
ln r in R2 r {(0, 0)}

−1

4πr
in R3 r {(0, 0, 0)}

which corresponds to particular cases of the preceding radial harmonic functions, is called Pois-
son kernel in R2 or R3.

Theorem 3.1. Let consider the Poisson problem ∆u(x) = f(x) in Rn (n = 2 or 3), with
‖u‖ → 0 as ‖x‖ → ∞. Then u = K ∗ f is a solution to this problem.
Moreover, if f ∈ C2 and is zero far away from 0, then u ∈ C2.

The proof of this theorem implies the use of the so-called distribution theory. This result can
also be extended to bounded domains.

3.4 Generalization to any linear operator on Rn

The proof of theorem 3.1 can actually easily be extended to any linear operator in Rn. This leads
to the following result:

Theorem 3.2. Let consider the PDE Lu(x) = f(x) in Rn, where L is a linear partial differential
operator. If K(x) is a distribution that satisfies LK = δ where δ is the Dirac distribution, then
u = K ∗ f is a solution to the PDE.

K is the kernel associated to L on Rn.
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CHAPTER 3. LAPLACE AND POISSON PROBLEMS

3.5 Companion equations and operators

Several other operators are close to, or derived from, the Laplacian operator. Some well-known
ones are:

� the Helmholtz operator ∆ + λ2 Id. ∆u+ λ2 u = 0 is the Helmholtz equation. It
appears for instance in acoustics, seismology, electromagnetic radiation..., and actually for
every problem linked to the diffusion equation or to the wave equation. As a matter of
fact, as will be discussed later (see §6.2.4, §7.2.1 and Appendix C), solving the Helmholtz
equation corresponds to looking for the eigenvalues and eigenfunctions of the Laplacian
operator, which are fundamental components of the solutions of these equations.

� the biharmonic operator ∆2: ∆2u = ∆(∆u). It appears for instance in continuum
mechanics. A famous example is also the Chladni figures, where an experimental device
(sand on vibrating plates) highlights the zero isolines of its eigenfunctions.

� and more generally the iterated Laplacian operators ∆p (p ∈ N). They appear in particular
in the parameterization of dissipation processes in fluid mechanics.

3.6 Finite difference schemes

As seen in Chapter 2, the usual discretization scheme for the second-order derivative is given by
(2.5):

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2)

Hence the usual second-order finite difference scheme for the Laplacian:

∆ui1,i2,...,iN =
ui1−1,i2,...,iN − 2ui1,i2,...,iN + ui1+1,i2,...,iN

h2
1

+· · ·+ui1,i2,...,iN−1 − 2ui1,i2,...,iN + ui1,i2,...,iN+1

h2
N

+O(h2)

with the convention h2 =
N∑
i=1

h2
i .

In the particular case N = 2, it reads:

∆ui,j =
ui−1,j − 2ui,j + ui+1,j

h2
x

+
ui,j−1 − 2uij + ui,j+1

h2
y

+O(h2) ,

which reduces to the well-known five-point scheme if hx = hy:

∆ui,j =
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij

h2
+O(h2)

The discretization of the Laplace equation with these second-order schemes leads to a numerical
solution that obviously satisfies the maximum principle, since ui1,i2,...,iN appears as a weighted
average, with positive weights, of neighboring points.

Some properties of this scheme, and of an alternative 9-point scheme, are given in the exercise
sheet.
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Chapter 4

Dealing with the time variable

This chapter focuses time-dependent PDEs, and in particular on aspects related to their finite
difference discretization.

Compared to other variables, time is quite specific. Indeed, time is running forward, and the very
large majority of time-dependent problems are seeking for the evolution in time of a system, given
its initial state. Time has also its own vocabulary: as seen in Definition 1.12, solving a time-
dependent PDE with initial conditions is called an initial value problem, or a Cauchy problem,
while solving more generally a steady-state PDE with boundary conditions is called a boundary
value problem.

4.1 Some basic behaviors of solutions of first-order in time
PDEs

Let consider the generic equation
∂u

∂t
= F (u) where F is a partial differential operator involving

only derivatives with respect to space coordinates. Simple cases are F (u) = −r(x, t)u (re-
action equation), or F (u) = −c(x, t).∇u (transport equation — see Chapter 5), or F (u) =
div(k(x, t)∇u) (diffusion equation — see Chapter 7). Since many PDEs involve such terms, it
is quite interesting to know a priori, at least in a qualitative way, what is the individual effect of
each of these terms on the solution. In more complex cases mixing these different aspects, the
behavior of the solution will also be a mix of these elementary behaviors.

As will be seen in the following chapters, the expressions of the elementary solutions on Rn in
the case of constant coefficients are the following:

Reaction
∂u

∂t
(x, t) + r u(x, t) = 0 u(x, t) = u(x, 0) e−rt

Transport
∂u

∂t
(x, t) + c.∇u(x, t) = 0 u(x, t) = u(x− ct, 0)

Diffusion
∂u

∂t
(x, t)− ν ∆u(x, t) = 0 u(x, t) = (u(., 0) ∗K(., t)) (x)

with K(x, t) =
(

2
√
πνt
)−n

e−
‖x‖2
4νt

An illustration of their behavior in the 1-D case is given in Figure 4.1.
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CHAPTER 4. DEALING WITH THE TIME VARIABLE

Figure 4.1: Schematic view of the behavior of the solutions of reaction, transport, and diffusion
equations, in the 1-D case with constant coefficients.

4.2 Discretization of ∂u
∂t

The most usual schemes for the time derivative are:

� Euler forward:
∂u

∂t
(x, t) =

u(x, t+ δt)− u(x, t)

δt
+O(δt)

� Euler backward:
∂u

∂t
(x, t) =

u(x, t)− u(x, t− δt)
δt

+O(δt)

� Leap-frog:
∂u

∂t
(x, t) =

u(x, t+ δt)− u(x, t− δt)
2δt

+O(δt2)

Euler schemes are obviously first-order accurate, while the leap-frog scheme is second-order ac-
curate.

These schemes are widely used, mostly because of their simplicity. However many other time
integration schemes are available, some of them being given in §4.5.

4.3 Time discretization of F (u)

When discretizing in time the equation
∂u

∂t
= F (u), several choices can be made for the evaluation

of F (u).

� If it is evaluated at time t, the scheme is said to be explicit, since u(x, t + δt) can be
explicitly expressed from the values of u at previous time steps.
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Example Euler forward + explicit scheme

u(x, t+ δt)− u(x, t)

δt
' F (u(x, t)) −→ u(x, t+ δt) ' u(x, t) + δt F (u(x, t))

� On the opposite, if F (u) is evaluated at time t + δt, the scheme is said to be implicit,
since it is necessary to solve an equation to deduce u(x, t + δt) from the values of u at
previous time steps.

Example Euler forward + implicit scheme

u(x, t+ δt)− u(x, t)

δt
' F (u(x, t+δt)) −→ u(x, t+δt)−δt F (u(x, t+δt)) ' u(x, t)

� A combination of both approaches is also possible:

αF (u(x, t+ δt)) + (1− α)F (u(x, t)), with 0 ≤ α ≤ 1

α = 0 corresponds to the explicit scheme and α = 1 to the implicit one. For 0 < α < 1,
the scheme is said to be semi-implicit.

� The particular case α = 0.5 is called the Crank-Nicolson scheme. One of its main
interests comes from the fact that an Euler forward scheme associated with a Crank-
Nicolson discretization of F (u) corresponds actually to a second-order approximation of
∂u

∂t
= F (u) at point (x, t+ δt/2) (and not only to an obvious first-order approximation of

this equation at point (x, t)).

An explicit scheme is simpler and generally requires less calculations at each time step than an
implicit scheme. But an implicit scheme is often more stable (see §4.4) and allows larger time
steps than an explicit scheme.

4.4 Stability

4.4.1 Numerical stability

The finite difference method leads to an approximation of the solution of a differential equation,
the main error source being the truncation error, related to the approximation of derivatives by
numerical schemes1. This error can be reduced by decreasing the values of the time and space
steps, and/or by using higher-order schemes. However, nothing ensures that a small initial error
will not grow up into a large error after a number of time steps.

Definition 4.1. A finite difference scheme for a time dependent differential equation is said to
be stable iff errors remain bounded during the computations. This implies that the numerical
solution remains bounded (whenever the exact solution is bounded, of course).

1The other error sources are the error associated to the resolution of linear systems, if any, and (to a much
lesser extent) the rounding error, due to the representation of real numbers in a computer.
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This notion of (in)stability can be illustrated for instance by considering the ODE
∂u

∂t
= −λu

(λ > 0), with the initial condition u(0) = 1. Its exact solution is u(t) = exp(−λt).

An explicit forward Euler discretization reads:
un+1 − un

δt
= −λ un where un is an approximation

of u(nδt). This leads to un = (1− λδt)un−1 = · · · = (1− λδt)nu0. Choosing a time step δt
such that |1 − λδt| > 1, i.e. δt > 2/λ, will thus make un tend to infinity. This phenomenon is
called a numerical blow-up. On the contrary, choosing δt ≤ 2/λ ensures that the un’s remain

bounded. Hence the stability condition: δt ≤ 2

λ
.

Thus the stability of numerical schemes must be investigated when discretizing a time
dependent differential equation.

Warning Numerical stability does not imply convergence towards the exact solution, but only
ensures that no numerical blow-up will occur (to be convinced, choose for instance δt = 2/λ in
the preceding example).

4.4.2 Investigating the stability: the Fourier method

As mentioned in §1.7, the Fourier method, also called Von Neumann method, is the most
common approach for investigating the stability of a numerical scheme discretizing a linear PDE.
It consists in considering the expansion into Fourier series (see Appendix B) of the initial condition
u(x, 0):

u(x, 0) =
+∞∑

k=−∞

ck e
2iπ kx
L (4.1)

The numerical scheme is stable iff it is stable for any individual component. Let un(x) the
numerical approximation of the exact solution u at time nδt. For linear schemes, it can easily be
proved by recurrence that, if u0(x) = eipx (p ∈ R), then un(x) = ξneipx, where ξ is a complex
number that depends on p and on the numerical scheme (in particular on the time and space
steps). The Fourier stability criterion then consists in imposing that |ξ| ≤ 1 for any p, which
implies constraints on the time and space steps.

Example Let consider the 1D transport equation
∂u

∂t
+ c

∂u

∂x
= 0 for x ∈ [0, L], t > 0, with

c > 0, and with the initial condition u(x, 0) = u0(x) and some boundary condition at x = 0.
Let a regular mesh of [0, L], with δx the mesh step. Let also δt the time step, and unj the
approximation of the exact solution at time n δt at grid point j. Let consider the discretization
scheme:

un+1
j − unj
δt

+ c
unj − unj−1

δx
= 0

Replacing unj by ξneipjδx leads to
ξ − 1

δt
+ c

1− e−ipδx

δx
= 0 i.e. ξ = 1− c δt

δx

(
1− e−ipδx

)
.

The modulus of ξ is thus:

|ξ|2 = 1 + 2 (1− cos(pδx))C(C − 1) with C = c
δt

δx
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The stability condition |ξ| ≤ 1,∀p ∈ R, is thus equivalent to C ≤ 1, i.e.
δx

δt
≥ c. This condition

is called the Courant-Friedrichs-Lewy (or CFL) condition. The dimensionless quantity c
δt

δx
is called the Courant (or CFL) number.

Remarks

� The coefficient ξ is of course closely linked to the transfer functions (see §2.2.4) of the
different individual time and space schemes involved in the finite difference approximation
of the PDE.

� Note that stability must be investigated considering the homogeneous equation (i.e. without
any right-hand side). As a matter of fact, a source or sink term would continuously inject or
consume energy, which could make the solution blow up or remain bounded independently
of the intrinsic properties of the numerical scheme.

� For this approach and the expansion (4.1) to be rigorous, the PDE and the numerical
scheme must be linear, with constant coefficients. However this Fourier/Von Neumann
method is actually used for much more general cases (by linearizing the equation and/or
freezing the coefficients), and it generally provides a good guess at the possible constraints
on the time and space steps.

� In the same way, this approach is usually applied to the PDE on all space with no boundaries
(x ∈ R). It can also be used to study the stability of problems with periodic boundary
conditions. But studying the stability of problems with more general boundary conditions
can be quite difficult: Von Neumann analysis actually addresses the issue of stability of the
PDE discretization alone.

� This method can be generalized to 2D and 3D cases.

Some generic calculations facilitating the computation of stability criteria are given in Appendix
D.1.

4.4.3 Other methods for investigating stability issues

Other methods are available to study the stability properties of finite difference schemes.

� The eigenvalue method consists in writing the matrix form of the scheme:

Un+1 = MUn with Un =

 un1
...
unJ


We have then obviously Un = MnU0. A stability condition is thus that the spectral radius
of M (i.e. the maximum of the moduli of its eigenvalues) be less or equal to 1. One has
thus to study the eigenvalues of M .
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� Stability can be also be directly assessed by the energy method. Let define the energy

of the discrete solution as En =
J∑
j=1

(unj )2. The goal is then to prove that this quantity

remains bounded independently of n, as n tends to infinity.
Note that, thanks to the Parseval’s theorem (see Appendix B), this corresponds to the
Fourier method, but in the real space.

� These three methods (Fourier, eigenvalue, energy) aim at proving the L2 stability of the
scheme, i.e. the fact that the L2 norm of the numerical solution remains bounded inde-
pendently of the time. Other stability criteria may also be used, like for instance the L∞

stability (i.e. working on the L∞ norm of the numerical solution).

4.5 Some time discretization schemes

Numerous time integration schemes are available for ODEs and PDEs. Without looking for
exhaustiveness, let us mention a few.

Let the differential equation
∂u

∂t
= F (u, t) with the initial condition u(0) = u0. Let δt the time

step, tn = n δt and un the approximation of u(tn).

4.5.1 One step methods

One step methods are integration schemes determining the value at the next time step using only
the value at the current time step. The simplest one is the already mentioned Euler method. Let
cite also the midpoint method (second order):

k1 = δt F (un, tn)

k2 = δt F (un +
k1

2
, tn +

δt

2
)

un+1 = un + k2

and more generally the Runge-Kutta methods, the most famous one being probably the fourth-
order scheme:

k1 = δt F (un, tn)

k2 = δt F (un +
k1

2
, tn +

δt

2
)

k3 = δt F (un +
k2

2
, tn +

δt

2
)

k4 = δt F (un + k3, tn + δt)

un+1 = un +
k1

6
+
k2

3
+
k3

3
+
k4

6
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4.5.2 Multi-step methods

Contrary to one-step methods, the value at the next time step is obtained using values at several
preceding time steps. Let cite Adams-Bashforth explicit methods (kth-order):

k = 1 un+1 = un + δt F (un, tn) (i.e. explicit Euler scheme)

k = 2 un+2 = un+1 +
δt

2
[3F (un+1, tn+1)− F (un, tn)]

k = 3 un+3 = un+2 +
δt

12
[23F (un+2, tn+2)− 16F (un+1, tn+1) + 5F (un, tn)]

k = 4 un+4 = un+3 +
δt

24
[55F (un+3, tn+3)− 59F (un+2, tn+2) + 37F (un+1, tn+1)− 9F (un, tn)]

and the Adams-Moulton implicit methods (kth-order):

k = 1 un+1 = un + δt F (un+1, tn+1) (i.e. implicit Euler scheme)

k = 2 un+1 = un +
δt

2
[F (un+1, tn+1) + F (un, tn)]

k = 3 un+2 = un+1 +
δt

12
[5F (un+2, tn+2) + 8F (un+1, tn+1)− F (un, tn)]

k = 4 un+3 = un+2 +
δt

24
[9F (un+3, tn+3) + 19F (un+2, tn+2)− 5F (un+1, tn+1) + F (un, tn)]

4.5.3 Predictor-corrector schemes

The idea underlying this approach is to get performances close to implicit schemes without their
major drawback, i.e. without solving a linear system. It is decomposed in two stages:

� Prediction: use an explicit scheme to get a first approximation ũn+1.

� Correction: use an implicit scheme, but replacing un+1 by its approximation ũn+1 in the
implicit part of the equation.

Example Prediction with an explicit Euler scheme and correction with an implicit Euler scheme
reads:

Prediction: ũn+1 = un + δt F (un, tn).

Correction: un+1 = un + δt F (ũn+1, tn+1).
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Chapter 5

The transport equation and first-order
linear PDEs

This chapter focuses on the transport equation
∂u

∂t
(x, t) + c(x, t).∇u(x, t) = 0, and more

generally on linear first-order PDEs:
∂u

∂t
(x, t) + c(x, t).∇u(x, t) + r(x, t)u(x, t) = f(x, t).

5.1 Some generalities

5.1.1 Physical interpretation

Let consider a scalar quantity u(x, t) transported by a given velocity field c(x, t) in a domain
Ω ⊂ Rn (e.g. the concentration of some chemical species in a fluid, an oil spill in the ocean...).
In case of a pure transport, i.e. without any interaction of the quantity with the surrounding
medium, the behavior of u is governed by the equation

∂u

∂t
(x, t) + c(x, t).∇u(x, t) = 0

i.e.
∂u

∂t
(x, t) +

n∑
i=1

ci(x, t)
∂u

∂xi
(x, t) = 0

This can easily be proved by stating that, for an infinitesimal interval of time δt, u(x+c(x, t) δt, t+
δt) = u(x, t), then developing the first term using a Taylor expansion, and making δt tend to
zero.

5.1.2 Boundary conditions

The basic principle regarding boundary conditions is that, for the transport equation to be well-
posed, information is required at the boundary where and when the transport field is incoming,
but not where and when it is outgoing. Denoting n(x) the outward normal vector for x ∈ ∂Ω,
this incoming portion of the boundary is ∂Ω−(t) = {x ∈ ∂Ω / c(x, t).n(x) < 0}.
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5.2 Analytical resolution: the method of characteristics

5.2.1 Eulerian vs Lagrangian representations

In the context of continuum mechanics (fluid mechanics, solid mechanics), the system state can
be described using either an Eulerian or a Lagrangian point of view. The Eulerian point of view
consists in quantifying the properties of the medium (mass, velocity, temperature...) at every
time t for any given location x. On the other hand, in the Lagrangian point of view, the observer
follows a specific material particle all along its motion.

We will use in the following the notation X(s;x, t) to indicate the location at time s of the
material particle that is located at point x at time t. x is the Eulerian coordinate, while X is the
Lagrangian one.

5.2.2 Method of characteristics: general principle

Let consider the general linear first-order PDE in Rn:
∂u

∂t
(x, t) + c(x, t).∇u(x, t) + r(x, t)u(x, t) = f(x, t) x ∈ Rn, t > 0

u(x, 0) = u0(x)

with: c(x, t) : Rn × R+ → Rn a continuous function, Lipschitz continuous w.r.t. t
r(x, t) and f(x, t): Rn × R+ → R continuous functions
u0(x) : Rn → R a continuous function.

The method of characteristics to solve this PDE consists in the following steps:

� Let (x, t) fixed.

� Solve the differential system (n equations, n unknowns): X ′(s) = c(X(s), s)

X(t) = x

Its solution is denoted X(s), or X(s;x, t). It is called the characteristic curve or char-
acteristic function related to (x, t). It corresponds to the trajectory that the material
particle would follow in the pure transport case (i.e. r = f = 0).

We have then
d

ds
u(X(s), s) = f(X(s), s)− r(X(s), s) u(X(s), s), which means that Z(s) =

u(X(s), s) satisfies Z ′(s) = f(X(s), s)− r(X(s), s) Z(s).

� Solve the ODE:  Z ′(s) + r(X(s), s) Z(s) = f(X(s), s) s > 0

Z(0) = u(X(0), 0) = u0(X(0;x, t))

� Then: u(x, t) = u(X(t), t) = Z(t;x, t)
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Example Let consider the PDE
∂u

∂t
+ x

∂u

∂x
+ y

∂u

∂y
− 3u = 0 (x, y) ∈ R2, t > 0

u(x, y, 0) = x+ y

With previous notations, c(x, t) = (c1(x, y, t), c2(x, y, t)) = (x, y), r(x, t) = −3 and f(x, t) = 0.
For fixed (x, y, t), the first step consists in solving X ′1(s) = c1(X(s), s) = X1(s)

X1(t) = x
and

 X ′2(s) = c2(X(s), s) = X2(s)

X2(t) = y

This leads to X1(s) = x es−t and X2(s) = y es−t.

The second step consists then in solving Z ′(s)− 3Z(s) = 0 s > 0

Z(0) = u(X(0), 0) = u0(X(0;x, y, t)) = u0(x e−t, y e−t) = (x+ y) e−t

which leads to Z(s) = (x+ y) e3s−t. Hence the solution u(x, y, t) = Z(t;x, y, t) = (x+ y) e2t.

5.2.3 Case of a pure transport equation

The particular case where r(x, t) = f(x, t) = 0 corresponds to a pure transport equation:
∂u

∂t
(x, t) + c(x, t).∇u(x, t) = 0

u(x, 0) = u0(x)

The previous methodology leads to the solution u(x, t) = u0(X(0;x, t)), which becomes u0(x−
ct) in the particular case of a constant c.

5.2.4 Case of a bounded domain

If the PDE is defined on a bounded domain Ω ⊂ Rn, the computation of X(0;x, t) may become
impossible, since the trajectory s −→ X(s;x, t) may be out of Ω for s < τin, with τin > 0.
Let thus τin(x, t) = inf {s ∈ [0, t]/X(s;x, t) ∈ Ω} (τin exists since the set is not empty and has
0 as a lower bound).

� If τin(x, t) > 0, then X(τin(x, t);x, t) is located on ∂Ω and one has thus to modify the
initial condition in the ODE for Z, which becomes Z ′(s) + r(X(s), s) Z(s) = f(X(s), s) s > τin(x, t)

Z(τin(x, t)) = u(X(τin(x, t)), τin(x, t)) = a value given by the boundary condition
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� If τin(x, t) = 0, then X(τin(x, t);x, t) is not necessarily located on ∂Ω, but X(ε;x, t) ∈
Ω, ∀ε > 0. Some additional regularity conditions are thus required to go back in time up
to s = 0 and use u0(X(0);x, t) again as the initial condition.

5.3 Numerical schemes for the 1D transport equation

Let consider the 1D transport equation
∂u

∂t
+ c

∂u

∂x
= 0 x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R
with c > 0

Its exact solution is u(x, t) = u0(x − c t). The characteristic curves are straight lines x − c t =
constant.

5.3.1 Euler one-sided explicit schemes

Let consider the two following first-order finite difference schemes (with usual notations):

� Downstream scheme:
un+1
j − unj
δt

+ c
unj+1 − unj

δx
= 0

� Upwind scheme:
un+1
j − unj
δt

+ c
unj − unj−1

δx
= 0

A Fourier stability analysis (see §4.4.2) proves that the downstream scheme is unconditionally

unstable, while the upwind scheme is stable for C ≤ 1, where C = c
δt

δx
is the Courant number.

Interpretation in terms of domain of dependence The true value for u(jδx, (n+ 1)δt) is
equal to u(jδx− c δt, n δt) (see Figure 5.1).

� The downstream scheme can be rewritten as

un+1
j = unj − C (unj+1 − unj ) = (1 + C)unj − C unj+1

However the true location jδx− c δt does not lie in the interval [j δx; (j + 1) δx] whatever
the value of δt (see Figure 5.1), which gives some rationale to the fact that this scheme is
unstable.

� The upwind scheme can be rewritten as

un+1
j = unj − C (unj − unj−1) = (1− C)unj + C unj−1

This means that, if C ≤ 1, un+1
j is a convex combination of unj−1 and unj , while the true

location jδx− c δt is indeed in the interval [(j − 1) δx; j δx] (see Figure 5.1).
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Figure 5.1: Schematic view of the transport from time t to time t + δt w.r.t. the discretization grid.
The dotted and dashed lines are characteristic lines, respectively for C > 1 and C < 1.

Interpretation in terms of equivalent PDE A Taylor expansion of the Euler scheme (see
also Appendix D.3) leads to

u(j δx, (n+ 1)δt)− u(j δx, n δt)

δt
=
∂u

∂t
(j δx, n δt) +

δt

2

∂2u

∂t2
(j δx, n δt) + . . .

Moreover:
∂2u

∂t2
=

∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
−c ∂u

∂x

)
= −c ∂

∂x

(
∂u

∂t

)
= c2 ∂

2u

∂x2

which leads to:

u(j δx, (n+ 1)δt)− u(j δx, n δt)

δt
=
∂u

∂t
(j δx, n δt) + c2 δt

2

∂2u

∂x2
(j δx, n δt) + . . .

The leading order term of the error, c2 δt

2

∂2u

∂x2
, is thus an antidiffusive term, which continuously

injects energy in the numerical solution (see Chapter 7 and Appendix D.4), and may thus lead
to numerical instability. In order for the numerical scheme to be stable, the discretization of the
spatial derivative must therefore compensate for this antidiffusive term.

Taylor expansions applied to the the downstream and upwind schemes (see also Appendix D.3)
lead to:

u((j + 1) δx, n δt)− u(j δx, n δt)

δx
=
∂u

∂x
(j δx, n δt) +

δx

2

∂2u

∂x2
(j δx, n δt) + . . .

u(j δx, n δt)− u((j − 1) δx, n δt)

δx
=
∂u

∂x
(j δx, n δt)− δx

2

∂2u

∂x2
(j δx, n δt) + . . .

which implies the following equivalent PDEs:

downstream scheme:
∂u

∂t
+ c

∂u

∂x
+

(
c2 δt

2
+ c

δx

2

)
︸ ︷︷ ︸

>0

∂2u

∂x2
+ . . . = 0

upwind scheme:
∂u

∂t
+ c

∂u

∂x
+

(
c2 δt

2
− cδx

2

)
︸ ︷︷ ︸
≤ 0 for C ≤ 1

∂2u

∂x2
+ . . . = 0
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The leading order term of the error is thus of antidiffusive nature for the downstream scheme,
which is coherent with the fact that this scheme is unconditionnaly unstable.

The leading order term of the error is of diffusive nature for the upwind scheme iff C ≤ 1,
which is also coherent with the stability condition found previously. The upwind scheme is then
said to be a diffusive scheme, which means that the main effect of its error is to smooth and
damp out the solution (see also Definition 2.1 and Appendix D.4: the exact plane wave solution
exp(ip(x− ct)) becomes exp(ip(x− ct)) exp(−νp2t) with ν = c(δx− cδt)/2 = cδx(1−C)/2,
and ν ≥ 0 since C ≤ 1).

5.3.2 Lax-Wendroff scheme

The preceding upwind scheme is only first-order accurate. A way to increase the accuracy is to
use a two-sided scheme for the space derivative. However

u((j + 1) δx, n δt)− u((j − 1) δx, n δt)

2 δx
=
∂u

∂x
(j δx, n δt) +

δx2

6

∂3u

∂x3
(j δx, n δt) + . . .

Such a discretization cannot therefore compensate for the leading error term c2 δt

2

∂2u

∂x2
in the

Euler scheme. The idea of the so-called Lax-Wendroff scheme is thus to compensate almost
exactly for this term by introducing an artificial additional term. It reads:

un+1
j − unj
δt

+ c
unj+1 − unj−1

2δx
− c2 δt

2

unj+1 − 2unj + unj−1

δx2
= 0

Its equivalent PDE (see also Appendix D.3) then reads

∂u

∂t
+ c

∂u

∂x
+
δt2

6

∂3u

∂t3
+ c

δx2

6

∂3u

∂x3
+ . . . = 0

which proves that the scheme is second-order accurate in time and space.

A Fourier stability analysis (see §4.4.2) proves that this scheme is stable iff C ≤ 1.

Since
∂3u

∂t3
= −c3∂

3u

∂x3
, the leading error term in the equivalent PDE can be rewritten as

c

6

(
δx2 − c2 δt2

) ∂3u

∂x3
. The Lax-Wendroff scheme is thus said to be a dispersive scheme,

since the main effect of its error is to modify the transport velocity (see also Definition 2.2 and
Appendix D.4: the exact plane wave solution exp(ip(x− ct)) becomes exp (ip [x− (c− p2µ)t])
with µ = c(δx2−c2δt2)/6). Since C ≤ 1 for stability reasons, µ ≥ 0 and the numerical transport
is slower than the exact continuous one.

5.3.3 Other schemes

Many other schemes are of course available for this transport equation, several of them being
detailed in the corresponding exercise sheet.
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Chapter 6

The wave equation

This chapter focuses on the wave equation
∂2u

∂t2
(x, t)− c2∆u(x, t) = 0 (c > 0), which is a

prototype for linear hyperbolic second-order PDEs.

6.1 Some properties

6.1.1 Conservation of energy

Following some physical reasoning, the kinetic and potential energies of the solution are defined
respectively by

KE(t) =
1

2

∫
Ω

(
∂u

∂t
(x, t)

)2

dx and PE(t) =
c2

2

∫
Ω

‖∇u(x, t)‖2 dx

If the domain Ω = Rn, or if it is bounded with either homogeneous Neumann boundary conditions
∂u

∂n
= 0 or steady-state Dirichlet conditions u(x, t) = g(x) ∀t, then the total energy E(t) =

KE(t) + PE(t) is conserved.

6.1.2 Initial conditions

Since the wave equation involves a second-order time derivative, two initial conditions are required
for the problem to be well-posed. Typically the values of the solution and of its time derivative
at initial time will be provided:

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = v0(x) ∀x ∈ Ω

with u0 ∈ C2(Ω) and v0 ∈ C1(Ω).

6.2 Analytical solutions

The wave equation can be solved analytically, at least in 1-D, by several techniques.
The first technique presented in this section relies on a change of variables, and is rather specific
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to the wave equation. The two other techniques are widely used for computing analytical solutions
of time-dependent linear PDEs: separation of variables, in the case where the domain is bounded
(already seen for the Laplace equation), and Fourier transform w.r.t. space variables, in the case
where the domain is Rn.

6.2.1 1-D solution: change of variables

The 1-D wave equation reads
∂2u

∂t2
(x, t)− c2 ∂

2u

∂x2
(x, t) = 0.

Let p(x, t) =
1

c

∂u

∂t
and q(x, t) =

∂u

∂x
. The wave equation can then be rewritten as

∂p

∂t
− c ∂q

∂x
= 0 (6.1)

while the link between p and q is:
∂q

∂t
− c ∂p

∂x
= 0 (6.2)

Adding and substracting (6.1) and (6.2) leads to the two following transport equations:
∂(p− q)

∂t
+ c

∂(p− q)
∂x

= 0

∂(p+ q)

∂t
− c ∂(p+ q)

∂x
= 0

Hence, following §5.2.3, (p+ q)(x, t) = A(x+ ct) and (p− q)(x, t) = B(x− ct). This leads to
p(x, t) =

1

c

∂u

∂t
=

1

2
[A(x+ ct) +B(x− ct)]

q(x, t) =
∂u

∂x
=

1

2
[A(x+ ct)−B(x− ct)]

which yields

u(x, t) = F (x+ ct) +G(x− ct) with F,G ∈ C2 (6.3)

This means that the solution is made of the superposition of two travelling waves, one propagating
to the right at velocity c and the other one to the left at velocity −c (cf Figure 6.1). Similarly
to linear first-order PDEs, lines x− ct = constant and x+ ct = constant, where F (x+ ct) and
G(x− ct) are constant, are called characteristic lines.

Note that the same result can be obtained by the change of variables X = x + ct, Y = x − ct,

which transforms the wave equation into
∂2U

∂X ∂Y
(X, Y ) = 0, where U(X, Y ) = u(x, t).
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+	c- c

Figure 6.1: A solution of the 1-D wave equation. Green curve: initial condition; red curve: solution a
while later.

6.2.2 1-D d’Alembert solution

Let complement the 1-D wave equation in R with initial conditions:
∂2u

∂t2
(x, t)− c2 ∂

2u

∂x2
(x, t) = 0 x ∈ R, t > 0

u(x, 0) = u0(x) u0 ∈ C2(R)

∂u

∂t
(x, 0) = v0(x) v0 ∈ C1(R)

Thus, since u(x, t) = F (x+ ct) +G(x− ct) (from (6.3)), the initial conditions yield F (x) +
G(x) = u0(x) and c(F ′(x) − G′(x)) = v0(x). Integrating the last equation and combining it
with the first one provides the expressions for F and G. Hence the so-called d’Alembert solution:

u(x, t) =
1

2
[u0(x+ ct) + u0(x− ct)] +

1

2c

∫ x+ct

x−ct
v0(s) ds (6.4)

This expression clearly shows that the domain of dependence of u(x, t) is the whole interval
[x− ct;x+ ct] (i.e. u(x, t) depends on the initial conditions on [x− ct;x+ ct]).

The same kind of approach can be generalized to higher dimensions, but leading to much more
complex analytical expressions for u(x, t).

6.2.3 Analytical solutions through Fourier transform

Let now go back to the n-D case in Rn with initial conditions
∂2u

∂t2
(x, t)− c2 ∆u(x, t) = 0 x in Rn, t > 0

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0(x) x in Rn

(6.5)
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with x → u(x, t) ∈ L2(Rn) ∀t. A Fourier transform (see §B.2) of this problem in all spatial
variables directly leads to the ODE

∂2û

∂t2
(ξ, t) + 4π2c2 ‖ξ‖2û(ξ, t) = 0 ξ in Rn, t > 0

û(ξ, 0) = û0(ξ) ,
∂û

∂t
(ξ, 0) = v̂0(ξ) ξ in Rn

which solution is û(ξ, t) = A(ξ) e2iπc‖ξ‖t +B(ξ) e−2iπc‖ξ‖t. A(ξ) and B(ξ) are obtained thanks
to the initial conditions: 

A(ξ) =
û0(ξ)

2
+

v̂0(ξ)

4iπc ‖ξ‖
B(ξ) =

û0(ξ)

2
− v̂0(ξ)

4iπc ‖ξ‖

Hence the solution by inverse Fourier transform.

In the 1-D case, one retrieves of course the d’Alembert solution (6.4).

6.2.4 Case of a bounded domain: separation of variables

We consider now the wave equation in a bounded domain Ω ⊂ Rn. As seen previously, if the
domain is of infinite size, the solution u(x, t) depends on the initial conditions in the ball B(x, ct).
However, if the domain is bounded, this ball no longer entirely belongs to Ω for t sufficiently large.
Moreover, additional boundary conditions are required.

A way to get the analytical solution in this case, at least for domains with simple geometry, is
to use a separation of variables technique. Let the wave equation with null Dirichlet boundary
conditions. The initial conditions will be provided later. This problem reads:

∂2u

∂t2
(x, t)− c2 ∆u(x, t) = 0 x in Ω, t > 0

u(x, t) = 0 x on ∂Ω, t > 0

(6.6)

Looking for a solution under the form u(x, t) = X(x)T (t) leads to
1

c2

T ′′(t)

T (t)
=

∆X(x)

X(x)
= λ ∀x in Ω,∀t > 0

X(x) = 0 x on ∂Ω

The possible values for λ are thus the eigenvalues of the Laplacian operator on Ω with null
Dirichlet boundary conditions. As explained in Appendix C, there is a countable set of such
eigenvalues, which are all negative, and denoted −ω2

k, k ∈ N. The associated eigenfunctions Xk

form an orthonormal basis of L2(Ω).

For a given k, the corresponding function Tk(t) satisfies T ′′k (t) + c2ω2
k Tk(t) = 0, i.e. Tk(t) =

αk cos(c ωkt) + βk sin(c ωkt). We have thus built a family of functions Xk(x)Tk(t) which are

44



6.3. DISCRETIZATION SCHEMES

elementary solutions of (6.6). This PDE being linear, any linear combination of these elementary
solutions is also a solution. Therefore a general solution of (6.6) reads:

u(x, t) =
∑
k

Xk(x) [ αk cos(c ωkt) + βk sin(c ωkt)]

Adding initial conditions will then determine the αks and βks.

Let apply this technique in the 1-D case, for Ω = (0, L). The equation reads:
∂2u

∂t2
(x, t)− c2 ∂

2u

∂x2
(x, t) = 0 x ∈ (0, L), t > 0

u(0, t) = u(L, t) = 0 t > 0

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x) x ∈ (0, L)

The separation of variables yields X ′′k (x) + ω2
kXk(x) = 0 with Xk(0) = Xk(L) = 0. Hence

Xk(x) = sin
kπx

L
, and u(x, t) =

∞∑
k=1

sin
kπx

L

[
αk cos

kπct

L
+ βk sin

kπct

L

]
.

The initial conditions imply u0(x) =
∞∑
k=1

αk sin
kπx

L
and v0(x) =

∞∑
k=1

βk
kπc

L
sin

kπx

L
. These

expressions can be identified with expansions into Fourier series of 2L-periodic odd functions
coinciding with u0 and v0 on (0, L). Hence

αk =
2

L

∫ L

0

uo(x) sin
kπx

L
and βk =

2

kπc

∫ L

0

vo(x) sin
kπx

L
k = 1, 2, . . .

6.3 Discretization schemes

6.3.1 Second-order standard explicit scheme

A simple standard explicit scheme for the 1-D wave equation is the following:

un+1
j − 2unj + un−1

j

δt2
− c2

unj+1 − 2unj + unj−1

δx2
= 0 (6.7)

It is obviously second-order accurate both in time and space. Its stability condition can be easily

computed by the Fourier method, and is of CFL type: |c| δt
δx
≤ 1.

The equivalent PDE of (6.7) (see Appendix D.3) is

∂2u

∂t2
− c2 ∂

2u

∂x2
+
c2 δx2

12

(
c2 δt

2

δx2
− 1

)
∂4u

∂x4
+ . . . = 0

The stability condition corresponds to a negative coefficient for the dominant error term, which
effect is mainly to slow down the wave propagation for low frequencies, but also to modify their
amplitude for high frequencies (see equations (D.4)-(D.5)).
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6.3.2 Lax-Wendroff scheme

One can also use the structure of (6.1) and (6.2), and apply a Lax-Wendroff discretization to
both (cf §5.3.2). This reads

pn+1
j − pnj
δt

− c
qnj+1 − qnj−1

2δx
− δt

2
c2
pnj+1 − 2pnj + pnj−1

δx2
= 0

qn+1
j − qnj
δt

− c
pnj+1 − pnj−1

2δx
− δt

2
c2
qnj+1 − 2qnj + qnj−1

δx2
= 0

(6.8)

These schemes are second-order accurate both in time and space. Then unj can be obtained,
with the same accuracy, for instance by defining

pnj =
1

c

un+1
j − un−1

j

2δt

Hence un+1
j = un−1

j + 2c δt pnj .

The stability of (6.8) can be investigated by a Fourier analysis. Let pnj = Pne
ipj δx and qnj = Qne

ipj δx.
Then (6.8) reads(

pn+1
j

qn+1
j

)
=

(
1− C2(1− cos(pδx)) iC sin(pδx)

iC sin(pδx) 1− C2(1− cos(pδx))

)(
pnj

qnj

)

which implies that(
pnj

qnj

)
= An

(
p0
j

q0
j

)
with A =

(
1− C2(1− cos(pδx)) iC sin(pδx)

iC sin(pδx) 1− C2(1− cos(pδx))

)

Thus the scheme is stable iff the spectral radius of A is less or equal to 1, which leads after a

few calculations to the same stability condition as the previous scheme: |c| δt
δx
≤ 1.

46



Chapter 7

The diffusion equation

This chapter focuses on the diffusion equation
∂u

∂t
(x, t)− div (ν(x, t)∇u(x, t)) = f(x, t),

which is a prototype for linear parabolic second-order PDEs.

7.1 Physical interpretation

Let a scalar quantity (heat, mass of some given chemical species. . . ). Its conservation in a domain
ω reads

d

dt

∫
ω

u(x, t) dx =

∫
ω

f(x, t) dx︸ ︷︷ ︸
internal sources/sinks

+

∫
∂ω

φ(σ, t) dσ︸ ︷︷ ︸
input/output fluxes

where u is its corresponding volumetric variable (volumetric enthalpy, in J.m−3, for heat, volu-
metric mass, in Kg.m−3...).
A common physical assumption (Fourier’s law in the context of heat conservation, Fick’s law in
the context of the conservation of a chemical species) states that φ = ν∇u.n where n is the
outward normal vector to ∂ω. ν is called diffusivity or diffusion coefficient, and has positive
values. Using this assumption, performing an integration by parts, and making the size of ω tend
to zero leads to

∂u

∂t
(x, t)− div (ν(x, t)∇u(x, t)) = f(x, t)

In the particular case where ν is a constant, this equation reduces to

∂u

∂t
(x, t)− ν ∆u(x, t) = f(x, t)

7.2 Analytical solutions in n-D

The diffusion equation can be solved analytically, at least for simple domain geometries. This
allows for highlighting some properties of the solution, which are actually more general. As already
seen in the case of the wave equation, two techniques are widely used for computing analytical
solutions of time-dependent linear PDEs. The first one is the separation of variables, in the case
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CHAPTER 7. THE DIFFUSION EQUATION

where the domaine is bounded. The second one is the Fourier transform w.r.t. spatial variables,
in the case where the domain is Rn.

7.2.1 Diffusion in a bounded domain Ω ⊂ Rn

Let Ω ⊂ Rn a bounded domain, and consider the diffusion equation with constant diffusivity, no
right-hand side, and null Dirichlet boundary conditions. The initial conditions will be added later.
This problem reads: 

∂u

∂t
(x, t)− ν ∆u(x, t) = 0 x in Ω, t > 0

u(x, t) = 0 x on ∂Ω, t > 0
(7.1)

Looking for a solution under the form u(x, t) = X(x)T (t) leads to
1

ν

T ′(t)

T (t)
=

∆X(x)

X(x)
= λ ∀x in Ω,∀t > 0

X(x) = 0 x on ∂Ω

The possible values for λ are thus the eigenvalues of the Laplacian operator on Ω with null
Dirichlet boundary conditions. As explained in Appendix C, there is a countable set of such
eigenvalues, which are all negative, and denoted −ω2

k, k ∈ N. The associated eigenfunctions Xk

form an orthonormal basis of L2(Ω).

For a given k, the corresponding function Tk(t) satisfies T ′k(t)+ν ω
2
k T (t) = 0, i.e. Tk(t) = αke

−νω2
k t.

We have thus built a family of functions Xk(x)Tk(t) which are elementary solutions of (7.1).
This PDE being linear, any linear combination of these elementary solutions is also a solution.
Therefore a general solution of (7.1) reads

u(x, t) =
∑
k

αkXk(x) e−νω
2
k t

Adding an initial condition will then determine the αks. See §7.3.1 for the application of this
technique in the 1-D case.

7.2.2 Diffusion in Rn

Let look now for solutions of
∂u

∂t
(x, t)− ν ∆u(x, t) = 0 x in Rn, t > 0

u(x, 0) = u0(x) x in Rn
(7.2)

with x → u(x, t) ∈ L2(Rn) ∀t. A Fourier transform (see §B.2) of this problem in all spatial
variables directly leads to

∂û

∂t
(ξ, t) + 4π2ν ‖ξ‖2 û(ξ, t) = 0 ξ in Rn, t > 0

û(ξ, 0) = û0(ξ) ξ in Rn
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7.3. ANALYTICAL SOLUTIONS IN 1-D

which solution is û(ξ, t) = û0(ξ) e−4π2‖ξ‖2νt. Hence the solution by inverse Fourier transform:

u(x, t) = (u0(.) ∗K(., t)) (x) with K(x, t) = FT−1
(
e−4π2‖ξ‖2νt

)
=
(

2
√
πνt
)−n

e−
‖x‖2
4νt

See §7.3.2 for the application of this technique in the 1-D case.

7.3 Analytical solutions in 1-D

7.3.1 1-D diffusion in a bounded interval

We consider here the case where the domain of interest is an interval (0, L). As explained in
§7.2.1, the problem 

∂u

∂t
(x, t)− ν ∂

2u

∂x2
(x, t) = 0 x ∈ (0, L), t > 0

u(0, t) = u(L, t) = 0 t > 0

u(x, 0) = u0(x) x ∈ (0, L)

can be solved by a separation of variables technique, i.e. looking for u(x, t) = X(x)T (t). This
leads, after some algebra and a Fourier series expansion (see §B.1) of u0, to

u(x, t) =
∑
k≥1

αk e
−k

2π2νt

L2 sin
kπx

L
with αk =

2

L

∫ L

0

u0(x) sin
kπx

L
dx

7.3.2 1-D diffusion in R
The problem is now 

∂u

∂t
(x, t)− ν ∂

2u

∂x2
(x, t) = 0 x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R
If we assume that the Fourier transform of u(x, t) w.r.t.x exists for all t, then this PDE is
transformed, as in §7.2.2, into the ODE

∂û

∂t
(ξ, t) + 4π2ξ2ν û(ξ, t) = 0 t > 0

û(ξ, 0) = û0(ξ)

which solution is û(ξ, t) = û0(ξ) e−4π2ξ2ν t. An inverse Fourier transform thus yields u(x, t) =

(u0(.)∗K(., t))(x) where K(x, t) =
1

2
√
πν t

e−x
2/4ν t is the kernel of the 1-D heat equa-

tion. Hence

u(x, t) =
1

2
√
πν t

∫
R
u0(s) e

−(x− s)2

4ν t ds

Note however that this solution is not unique without further conditions on u, like a boundedness
assumption for instance. Other solutions may indeed exist, for which a Fourier transform is not
allowed (which implies that the preceding calculations do not hold in such cases).
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7.3.3 Some properties of the 1-D solution in R
Let work in this paragraph with this preceding 1-D solution in R. It actually illustrates some
general properties of solutions of diffusion equations, even if their exact formulations may vary,
depending of course of the nature and of the regularity of the diffusivity ν(x, t), of the initial
condition u0(x, t) and of the physical domain Ω ⊂ Rn. Adding a forcing term f(x, t) may also
obviously change some of these properties.

Damping of the solution If u0 ∈ L1(R), then |u(x, t)| ≤ 1

2
√
πν t
‖u0‖L1 . Thus it is clear

that u(x, t)→ 0 as t→∞.

Maximum principle If u0 ∈ L∞(R), i.e. ‖u0‖∞ = sup
x∈R
|u0(x) | < +∞, then |u(x, t)| ≤ ‖u0‖∞.

The extreme values of u(x, t) thus necessarily occur at the initial time, since diffusion progressively
damps out the solution.

Positivity If u0(x) ≥ 0 (resp. ≤ 0) ∀x ∈ R , then u(x, t) ≥ 0 (resp. ≤ 0) ∀x ∈ R,∀t > 0.

Regularity If u0 ∈ C0(R), then u(., t) ∈ C∞(R) ∀t > 0 (regularizing character of the diffusion
equation).

Dependence on initial conditions and propagation speed As can be seen from the analyt-
ical expression of u(x, t), any change (even very local) in u0 results in a change in u(x, t), ∀x, t.
In other words, the information is immediately transmitted everywhere: its propagation speed is
infinite.
Note also that, since an infinite speed does not exist in the real world, this property highlights a
limitation in the mathematical diffusion model.

7.3.4 Adding a source term

Let now the problem
∂u

∂t
(x, t)− ν ∂

2u

∂x2
(x, t) = f(x, t) x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R

Using again the Fourier transform, we have to solve the ODE
∂û

∂t
(ξ, t) + 4π2ξ2ν û(ξ, t) = f̂(ξ, t) t > 0

û(ξ, 0) = û0(ξ)

This is a linear first-order non homogeneous ODE. Its solution is thus the sum of the general
solution of the corresponding homogeneous ODE with a particular solution of the full ODE (see

§A.1). The solution of the corresponding homogeneous equation is ûh(ξ, t) = C(ξ) e−4π2ξ2ν t (see
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§7.3.2). A particular solution of the ODE with its right-hand side can be obtained by the variation

of constants method, looking for a solution that reads: ûp(ξ, t) = C(ξ, t) e−4π2ξ2ν t. One gets

C(ξ, t) =

∫ t

0

f̂(ξ, τ) e4π2ξ2ν τ dτ . Hence ûp(ξ, t) =

∫ t

0

f̂(ξ, τ) e−4π2ξ2ν (t−τ) dτ . Since û(ξ, t) =

ûh(ξ, t) + ûp(ξ, t), and given the initial condition, one finally gets û(ξ, t) = û0(ξ) e−4π2ξ2ν t +
ûp(ξ, t). This leads, by inverse Fourier transform, to:

u(x, t) = (u0(.) ∗K(., t))(x) +

∫ t

0

(f(., τ) ∗K(., t− τ))(x) dτ

= (u0(.) ∗K(., t))(x) +

∫ t

0

∫
R
f(s, τ)K(x− s, t− τ) ds dτ

7.3.5 Energy of the solution

Let consider here the more general formulation in Ω ⊂ Rn

∂u

∂t
(x, t)− div (ν(x, t)∇u(x, t)) = f(x, t)

where ν(x, t) ≥ 0. Let E(t) =
1

2

∫
Ω

u2(x, t) dx the energy of the solution. Assuming that u is

regular enough, then

dE(t)

dt
=

1

2

∫
Ω

∂u2

∂t
(x, t) dx =

1

2

∫
Ω

u(x, t) div (ν(x, t)∇u(x, t)) dx +
1

2

∫
Ω

u(x, t) f(x, t) dx

= −1

2

∫
Ω

ν(x, t) ‖∇u(x, t)‖2 dx +
1

2

∫
∂Ω

ν(σ, t)u(σ, t)
∂u

∂n
(σ, t) dσ +

1

2

∫
Ω

u(x, t) f(x, t) dx

Therefore it is clear that, if there is no energy source in the domain (f = 0) nor at the boundary
(u = 0 or ∂u/∂n = 0 on ∂Ω), then the energy of the solution continuously decreases as time
increases.

7.4 Numerical schemes for the diffusion equation

7.4.1 Usual Euler explicit scheme

The simplest discretization of the 1D diffusion equation reads

un+1
j − unj
δt

− ν
unj+1 − 2unj + unj−1

δx2
= 0

It can be rewritten as

un+1
j = λunj−1 + (1− 2λ)unj + λunj+1 with λ = ν

δt

δx2
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� Stability A Fourier stability analysis shows that this scheme is stable for λ ≤ 1

2
. Stability

can also be assessed by studying the spectral radius of the matrix of the system (see §4.4.3),
which reads for example :

1− 2λ λ 0 · · · 0

λ 1− 2λ λ
...

0
. . . . . . . . . 0

...
. . . . . . λ

0 · · · 0 λ 1− 2λ


in the case of null boundary conditions.

� Accuracy and equivalent PDE Its equivalent PDE is

∂u

∂t
− ν ∂

2u

∂x2
+

(
ν2 δt

2
− ν δx

2

12

)
∂4u

∂x4
+ . . . = 0

This scheme is first-order accurate in time and second-order accurate in space.

Since η = ν2 δt

2
− ν δx

2

12
=
ν δx2

2

(
λ− 1

6

)
> 0 iff λ > 1/6, then, using the analysis pre-

sented in Appendix D.4, the main effect of the numerical error is to amplify the solution if
0 < λ < 1/6 and to damp the solution if 1/6 < λ < 1/2.

� Positivity If λ ≤ 1/2, then un+1
j is a convex weighted average of unj−1, unj and unj+1.

Thus, if u0(x) ≥ 0 ∀x, then unj ≥ 0 ∀j, n. The positivity property of the exact solution is
also satisfied by the numerical solution.

� Maximum principle If λ ≤ 1/2, then |un+1
j | ≤ λ |unj−1|+ (1− 2λ) |unj |+ λ |unj+1|.

Thus |un+1
j | ≤ (λ+ (1− 2λ) + λ)‖un‖∞ = ‖un‖∞.

Hence ‖un+1‖∞ ≤ ‖un‖∞ ≤ . . . ≤ ‖u0‖∞.
The maximum principle satisfied by the exact solution is also satisfied by the numerical
solution.

� Dependence w.r.t. initial conditions In the exact solution, any local change in u0(x)
instantaneously affects the whole solution. This property can obviously not be satisfied
with such an explicit scheme. Here, unj only depends on u0

l , l = j − n, . . . , j + n.

7.4.2 Other schemes

Many other schemes are of course available for this diffusion equation, either in 1D or in 2D.
Several of them are detailed in the corresponding exercise sheet.
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Appendix A

Reminder on linear ODEs

A.1 First-order linear ODEs

Let consider the general linear first-order ordinary differential equation (ODE):

a(x)u′(x) + b(x)u(x) = c(x)

on an interval I ⊂ R where the functions a(x), b(x) and c(x) are continuous, and where a(x)
does not cancel. Dividing by a(x), the equation becomes

u′(x) + α(x)u(x) = β(x) x ∈ I (E)

Its so-called associated homogeneous equation is u′0(x) + α(x)u0(x) = 0 (E0).

Theorem A.1. (Principle of superposition)
Let up(x) a particular solution of (E). The solutions of (E) are the functions u(x) = up(x) +
u0(x), where u0 represents the solutions of (E0).
In other words, the set of solutions of (E) on I is S = up + S0, where S0 denotes the set of
solutions of (E0).

Theorem A.2. (Solutions of the homogeneous equation)
The solutions of (E0) on I are the functions u0(x) = K e−A(x), K ∈ R, where A(x) is a primitive
of α(x).

Proof Let A(x) a primitive of α(x).

Multiplying (E0) by eA(x), one gets u′0(x) eA(x) + α(x) eA(x) u0(x) = 0, i.e.
(
u0(x) eA(x)

)′
= 0.

This is equivalent to u0(x) eA(x) = K, K ∈ R, i.e. u0(x) = K e−A(x), K ∈ R. �

Regarding up, a particular solution of (E), it can be obtained either by analogy or by the method
of variation of constants:

� Analogy If the right-hand side β(x) is a polynomial, or a linear combination of ex-
ponentials, or a linear combination of sine and cosine functions, and if α(x) is constant or
of similar nature as β(x), then it may exist a particular solution up(x) in a form similar to
that of β(x). This method does not work systematically, but in general it is worth trying,
since it is very simple.
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� Variation of constants Contrary to the approach by analogy, this method always
works, but is a little bit more demanding in terms of calculations. It consists in looking for
up under the form up(x) = K(x) e−A(x). One then gets K ′(x) = β(x) eA(x). Hence K(x)
by integration, and then up(x).

A.2 Second-order linear ODEs with constant coefficients

We consider here the equation

au′′(x) + bu′(x) + cu(x) = f(x) (E)

with a, b, c ∈ R and a 6= 0.

The principle of superposition still holds. So the set of solutions of (E) is S = up+S0, where up(x)
is a particular solution of (E) and S0 denotes the set of solutions of the associated homogeneous
equation (E0).

The so-called characteristic polynomial associated to (E0) is aX2 + bX + c. Let denote ∆ =
b2 − 4ac its discriminant. Then:

� if ∆ > 0, u0(x) = Aer1x +Ber2x A,B ∈ R, where r1 = −b−
√

∆
2a

and r2 = −b+
√

∆
2a

are
the two real roots of the characteristic polynomial.

� if ∆ = 0, u0(x) = (Ax+B)erx A,B ∈ R, where r = −b
2a

is the unique root of the
characteristic polynomial.

� if ∆ < 0, u0(x) = (A cosαx+B sinαx)eβx A,B ∈ R, where α =
√
−∆
2a

and β = −b
2a

.

Similarly to the case of first-order equations, a particular solution up can be obtained either by
analogy with the right-hand side (if simple), or by the method of variation of constants (i.e.
replacing the constants A and B, or only one of them, by a function of x).
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Reminder on Fourier series and Fourier
transforms

B.1 Fourier series expansion

Let f a integrable and periodic function, with period L. One can then define:

F (x) = a0 +
∑
k≥1

(
ak cos

2πkx

L
+ bk sin

2πkx

L

)

with a0 =
1

L

∫ L

0

f(x) dx , ak =
2

L

∫ L

0

f(x) cos
2πkx

L
dx , bk =

2

L

∫ L

0

f(x) sin
2πkx

L
dx

F is the so-called Fourier series expansion of f .

This expansion also reads

F (x) =
+∞∑

k=−∞

ck e
2iπkx
L with ck =

1

L

∫ L

0

f(x) e−
2iπkx
L dx

� If f is an even function, bk = 0 ∀k ≥ 1 (i.e. ck = c−k ∀k)

� If f is an odd function, ak = 0 ∀k ≥ 0 (i.e. ck = −c−k ∀k)

Theorem B.1. (Pointwise convergence)
If f is C1(0, L), then F = f (note that some similar results exist which require less regularity
for f)

Theorem B.2. (Parseval’s equality, or conservation of energy)
If f ∈ L2(0, L), then

1

L

∫ L

0

|f(x)|2 dx = a2
0 +

1

2

+∞∑
k=1

(a2
k + b2

k) =
+∞∑

k=−∞

|ck|2
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B.2 Fourier transform

Let f integrable on R. The Fourier transform of f is

FT [f ](ξ) = f̂(ξ) =

∫
R
f(x) e−2iπξx dx

and the inverse Fourier transform of f̂ is

FT−1[f̂ ](x) =

∫
R
f̂(ξ) e2iπξx dξ

Some properties of the Fourier transfom

� If f ∈ C1(R) and if f̂ is L1(R), then FT−1[f̂ ] = f (reciprocity of the Fourier transform)

� f̂ ĝ = f̂ ∗ g Reminder: convolution product (a ∗ b)(x) =

∫
R
a(y) b(x− y) dy

� f̂ ∗ ĝ = f̂ g

� f̂ ′(ξ) = 2iπξ f̂(ξ)

� If g(x) = f(x− x0), then ĝ(ξ) = e−2iπx0ξ f̂(ξ)

� The Fourier transform of the Gaussian function exp(−παx2) is the Gaussian function
1√
α

exp
(
−π
α
ξ2
)

� The Fourier transform of the gate function Π(x) = 1 for x ∈ (−1/2; 1/2) and 0 elsewhere
is sinc(πξ) where sinc is the cardinal sine function defined by sinc a = (sin a)/a.

Figure B.1: Plot of the cardinal sine function sincu =
sinu

u

Theorem B.3. (Parseval’s equality, or conservation of energy)
If f ∈ L2(R), then ∫

R
|f(x)|2 dx =

∫
R

∣∣∣f̂(ξ)
∣∣∣2 dξ

These definitions and properties of the Fourier transform in R can be directly generalized to Rn.
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Appendix C

The Laplacian operator and its spectrum

C.1 General results

Let Ω ⊂ Rn a bounded domain, and consider the following eigenvalue problem: ∆X(x) =
n∑
i=1

∂2X

∂x2
i

(x1, . . . , xn) = λX(x1, . . . , xn) x ∈ Ω

X(x) = 0 on ∂Ω

Theorem C.1. There is a countable set of eigenvalues, all of them being negative: λk = −ω2
k.

The corresponding eigenfunctions Xk(x) form an orthonormal basis of L2(Ω).

The proof of this theorem can be found for instance in Evans (1998). It is quite long and
technical, and is out of the scope of these notes, but note that two aspects at least are obvious:

� All eigenvalues are negative:

(∆X − λX = 0) =⇒
∫

Ω

X∆X = −
∫

Ω

‖∇X‖2 = λ

∫
Ω

X2

Hence

λ = −
∫

Ω
‖∇X‖2∫
Ω
X2

≤ 0

� Eigenfunctions associated to different eigenvalues are orthogonal:

Let Xk and Xl two eigenfunctions associated to two different eigenvalues −ω2
k and −ω2

l .{
∆Xk + ω2

kXk = 0 =⇒
∫

Ω
∆XkXl + ω2

k

∫
Ω
XkXl = −

∫
Ω
∇Xk∇Xl + ω2

k

∫
Ω
XkXl = 0

∆Xl + ω2
lXl = 0 =⇒

∫
Ω

∆XlXk + ω2
l

∫
Ω
XlXk = −

∫
Ω
∇Xl∇Xk + ω2

l

∫
Ω
XlXk = 0

Making the difference between those two equations yields (ω2
k − ω2

l )

∫
Ω

XlXk = 0, hence∫
Ω

XlXk = 0. Note that this also implies

∫
Ω

∇Xl∇Xk = 0. Xk and Xl are orthogonal

both in L2(Ω) and in H1(Ω).
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APPENDIX C. THE LAPLACIAN OPERATOR AND ITS SPECTRUM

C.2 The 1-D case

In the 1-D case, let consider Ω = (0, L). The eigenvalue problem reads{
X ′′(x) = λX(x) x ∈ (0, L)

X(0) = X(L) = 0

As previously, λ is negative and can be written λ = −ω2. Hence X ′′(x) + ω2X(x) = 0,
which yields X(x) = α sinωx + β cosωx. X(0) = 0 implies β = 0, while X(L) = 0 implies
α sinωL = 0. Non zero solutions are then obtained for

ωk =
kπ

L
and Xk(x) = sin

kπx

L
, k ∈ N
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Appendix D

Some generic calculations related to
finite difference schemes

D.1 Fourier analysis: computation of transfer functions
and stability studies

Computing both transfer functions (§2.2.4) and stability criteria (§4.4.2) requires some repetitive
calculations involving complex exponentials. Some generic formula are given below, in order to
facilitate these computations.

Transfer functions With the same notations as in §2.2.4:

Scheme Transfer function

u(x− h) + u(x+ h)

2
cosω

u(x+ h)− u(x)

h
eiω − 1 = eiω/2 2i sin(ω/2)

u(x)− u(x− h)

h
1− e−iω = e−iω/2 2i sin(ω/2)

u(x+ h)− u(x− h)

2h
i sinω

u(x+ h)− 2u(x) + u(x− h)

h2
2 (cosω − 1)

Note that these results can be easily adapted to slightly different schemes. For instance,

if the scheme Sh = ...
hp has a transfer function T (ω), then the transfer function of Sλh is

1

λp
T (λω). This is useful typically for λ = 2 or λ = 1/2.

59



APPENDIX D. SOME GENERIC CALCULATIONS RELATED TO FINITE
DIFFERENCE SCHEMES

Amplification factors With usual notations, replacing unj by ξneipjδx in a numerical scheme,
one will obtain this term ξneipjδx multiplied by an amplification factor.

Scheme Amplification factor

un−1
j + un+1

j

2

1/ξ + ξ

2
=
ξ2 + 1

2 ξ

un+1
j − unj
δt

ξ − 1

δt

un+1
j − un−1

j

2 δt

ξ − 1/ξ

2 δt
=
ξ2 − 1

2 ξ δt

un+1
j − 2unj + un−1

j

δt2
ξ − 2 + 1/ξ

δt2
=

(ξ − 1)2

ξ δt2

unj−1 + unj+1

2
cos(p δx)

unj+1 − unj
δx

eip δx − 1

δx
= eip δx/2

2i sin(pδx/2)

δx

unj − unj−1

δx

1− e−ip δx

δx
= e−ip δx/2

2i sin(pδx/2)

δx

unj+1 − unj−1

2 δx

i sin(p δx)

δx

unj+1 − 2unj + unj−1

δx2
2

cos(p δx)− 1

δx2

Note that these results can be easily adapted to slightly different schemes, for instance

by multiplying the amplification factor by ξ if the scheme is at time n+1 instead of n, or

by replacing δx by 2δx if the scheme involves j − 2 and j +2 instead of j − 1 and j +1.

Examples Below are two applications of the previous tables.

� Let consider the Dufort-Frankel scheme for the 1-D diffusion equation:

un+1
j − un−1

j

2δt
− ν

unj+1 − 2
un−1
j + un+1

j

2
+ unj−1

δx2
= 0

Using the tables, replacing unj by ξneipjδx immediatly leads to:

ξ2 − 1

2 ξ δt
− ν

δx2

(
2 cos(p δx)− 2

ξ2 + 1

2 ξ

)
= 0
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D.2. SMALL O AND BIG O

i.e.

(2λ+ 1)ξ2 − 4λ cos(p δx) ξ + (2λ− 1) = 0 with λ =
ν δt

δx2

One has then to study the modulus of ξ to prove the stability of the scheme.

� Let consider the following scheme for the 1-D transport equation:

un+1
j − un−1

j

2δt
+ c

(
4

3

un+1
j+1 − un+1

j−1

2 δx
− 1

3

unj+2 − unj−2

4 δx

)
= 0

Using the tables, replacing unj by ξneipjδx directly leads to:

ξ2 − 1

2 ξ δt
+ c ξ

(
4

3

i sin(p δx)

δx
− 1

3

i sin(2p δx)

2δx

)
= 0

Hence ξ2 =

[
1 + i

2c δt

3 δx

(
4 sin(p δx)− 1

2
sin(2p δx)

)]−1

which implies that |ξ| ≤ 1.

D.2 Small o and big O

Definition D.1. f(x) = o(xp) (pronounce small o) in the vicinity of 0 iff f(x) = xp ε(x) with
ε(x)→ 0 as x→ 0. In other words, f(x) is negligible w.r.t. xp in the vicinity of 0.

Definition D.2. f(x) = O(xp) (pronounce big o) in the vicinity of 0 iff there exists two positive
constants α and β such that α|x|p ≤ |f(x)| ≤ β|x|p in a neighborhood of 0. In other words,
f(x) is of the same order as xp in the vicinity of 0.

D.3 Computation of equivalent PDEs

Computing equivalent PDEs requires linear combinations of Taylor expansions. Some formulas
corresponding to frequently used schemes are given below, in order to facilitate these computa-
tions.
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APPENDIX D. SOME GENERIC CALCULATIONS RELATED TO FINITE
DIFFERENCE SCHEMES

u(x, t+ δt) + u(x, t− δt)
2

= u(x, t) +
δt2

2

∂2u

∂t2
(x, t) +

δt4

24

∂4u

∂t4
(x, t) +O(δt6)

u(x, t+ δt)− u(x, t)

δt
=
∂u

∂t
(x, t) +

δt

2

∂2u

∂t2
(x, t) +

δt2

6

∂3u

∂t3
(x, t) +O(δt3)

u(x, t)− u(x, t− δt)
δt

=
∂u

∂t
(x, t)− δt

2

∂2u

∂t2
(x, t) +

δt2

6

∂3u

∂t3
(x, t) +O(δt3)

u(x, t+ δt)− u(x, t− δt)
2 δt

=
∂u

∂t
(x, t) +

δt2

6

∂3u

∂t3
(x, t) +

δt4

120

∂5u

∂t5
(x, t) +O(δt6)

u(x, t+ δt)− 2u(x, t) + u(x, t− δt)
δt2

=
∂2u

∂t2
(x, t) +

δt2

12

∂4u

∂t4
(x, t) +

δt4

360

∂6u

∂t6
(x, t) +O(δt6)

u(x+ δx, t) + u(x− δx, t)
2

= u(x, t) +
δx2

2

∂2u

∂x2
(x, t) +

δx4

24

∂4u

∂x4
(x, t) +O(δx6)

u(x+ δx, t)− u(x, t)

δx
=
∂u

∂x
(x, t) +

δx

2

∂2u

∂x2
(x, t) +

δx2

6

∂3u

∂x3
(x, t) +O(δx3)

u(x, t)− u(x− δx, t)
δx

=
∂u

∂x
(x, t)− δx

2

∂2u

∂x2
(x, t) +

δx2

6

∂3u

∂x3
(x, t) +O(δx3)

u(x+ δx, t)− u(x− δx, t)
2 δx

=
∂u

∂x
(x, t) +

δx2

6

∂3u

∂x3
(x, t) +

δx4

120

∂5u

∂x5
(x, t) +O(δx6)

u(x+ δx, t)− 2u(x, t) + u(x− δx, t)
δx2

=
∂2u

∂x2
(x, t) +

δx2

12

∂4u

∂x4
(x, t) +

δx4

360

∂6u

∂x6
(x, t) +O(δx6)

Example Let consider the following explicit scheme for the 1-D diffusion equation:

un+1
j − unj
δt

− ν
unj+1 − 2unj + +unj−1

δx2
= 0

Using the previous table, its equivalent PDE follows:

∂u

∂t
(x, t) +

δt

2

∂2u

∂t2
(x, t) +O(δt2)− ν

(
∂2u

∂x2
(x, t) +

δx2

12

∂4u

∂x4
(x, t) +O(δx4)

)
= 0

Since
∂2u

∂t2
=

∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
ν
∂2u

∂x2

)
= ν

∂2

∂x2

(
∂u

∂t

)
= ν2 ∂

4u

∂x4
, it becomes:

∂u

∂t
(x, t)− ν ∂

2u

∂x2
(x, t) +

(
ν2 δt

2
− ν δx

2

12

)
∂4u

∂x4
(x, t) +O(δt2) +O(δx4) = 0 (D.1)

Once an equivalent PDE has been computed, its dominant error term can be interpreted thanks
to the following section.
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D.4. INTERPRETATION OF THE EFFECT OF THE DOMINANT ERROR TERM

D.4 Interpretation of the effect of the dominant error term

Let consider the generic 1-D PDE
∂u

∂t
+ c1

∂u

∂x
+ c2

∂2u

∂x2
+ c3

∂3u

∂x3
+ c4

∂4u

∂x4
= 0 x ∈ R, t > 0

u0(x) = eipx x ∈ R
(D.2)

Looking for a plane wave solution u(x, t) = ei(px+χt) leads almost directly to

u(x, t) = exp

i p [x− (c1 − p2c3)t
]︸ ︷︷ ︸

phase

 exp
([
c2 − c4p

2
]
p2t
)︸ ︷︷ ︸

amplitude

(D.3)

This general expression can then be used to interpret the effect of the dominant error term of
equivalent PDEs of finite difference schemes. As indicated in §2.2.4, a scheme will be said

� dissipative if it modifies the amplitude of the wave

� dispersive if it modifies the phase (i.e. the velocity) of the wave

Example Coming back to the preceding example, the equivalent PDE is given by (D.1). It thus

corresponds to c1 = c3 = 0, c2 = −ν and c4 = ν2 δt

2
− ν δx

2

12
in (D.2). Looking now to (D.3),

it appears that the dominant error term creates the artificial multiplicative factor exp(−c4p
4t)

with respect to the exact solution. It will thus result in an artificial damping or amplification of
the solution, depending on the sign of c4, i.e. depending on whether νδt/δx2 is greater or larger
than 1/6.

If we consider similarly the second-order in time equation (relevant to study the effect of dominant
error terms in finite difference approximations of the wave equation)

∂2u

∂t2
− c2∂

2u

∂x2
+ η

∂4u

∂x4
= 0 x ∈ R, t > 0

u0(x) = eipx x ∈ R
(D.4)

its plane wave solutions are

u(x, t) = A exp
(
ip
[
x− (c2 + ηp2)1/2t

])
+B exp

(
ip
[
x+ (c2 + ηp2)1/2t

])
(D.5)
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