Emmanuelle Crépeau

Enseignante Chercheuse, HdR, Hors Classe
Section CNU 26

Contact :
Laboratoire Jean Kuntzmann,
150 place du Torrent
38400 Saint Martin d’Hères
Email :
emmanuelle.crepeau@univ-grenoble-alpes.fr
2019 - Présent
MCF, Laboratoire Jean Kuntzmann,
Université Grenoble-Alpes
2019
HDR
Université Paris-Saclay.
2013-2014
6 mois de délégation
CNRS
2011
6 mois de congé maternité
2008
3 mois de congé maternité
2006-2008
Détachée CR, projet Sisyphe
INRIA Rocquencourt
2005
3 mois de congé maternité
2004-2019
MCF, Laboratoire de Mathématiques
Université de Versailles
2003-2004
Post-Doc, projet SOSSO
INRIA Rocquencourt
2002
Doctorat, “Contrôlabilité exacte d’équations dispersives issues de la mécanique ”
sous la direction de J.M. Coron et L. Rosier
Université Paris 11-Orsay
1999
Agrégation externe de mathématiques
1996-2000
Élève Fonctionnaire Stagiaire
ENS Cachan

A l'UFR IM2AG

depuis 2023
Membre commission formation
2022-2026
Membre élue du conseil de l’UFR

Au laboratoire Jean Kuntzmann

2022/2023
Référente du LJK pour le parcours Kaléidoscope-recherche
depuis 2021
Directrice du département AMAC (Algorithmes, Modèles, Analyse et Calculs)
depuis 2019
Membre nommée au conseil de laboratoire
depuis 2019
Référente du LJK pour les doctorants

Articles

En cours de soumission

  1. H. Parada, E. Crépeau, C. Prieur, Stability of KdV equation on a network with bounded and unbounded lengths ,
    under submission, jan. 2024.
  2. L. Baudouin, M. de Buhan, E. Crépeau, J. Valein, Carleman-Based Reconstruction Algorithm on a wave Network,
    under submission, nov. 2023.

Publiés

  1. H. Parada, E. Crépeau, C. Prieur, Global well-posedness of KdV equation on a star-shaped network and stabilization by saturated controllers,
    SIAM J. Control Optim., 60(4), 2268-2296, (2022).
  2. H. Parada, E. Crépeau, C. Prieur, Delayed stabilization of the Korteweg-de Vries equation on a Star-shaped network,
    MCSS, (2022).
  3. E. Cerpa,E. Crépeau,J. Valein, Boundary controllability of the Korteweg-deVries equation on a tree-shaped network,
    Evolution Equations & Control Theory, 9(3), 673, (2020).
  4. N. Carreno, E. Cerpa, E. Crépeau, Internal null controllability of the generalized Hirota- Satsuma,
    ESAIM : COCV, 26 (75), (2020).
  5. E. Cerpa, E. Crépeau, C. Moreno, On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network,
    IMA Journal of Mathematical Control and Information, 37(1), 226-240, (2020).
  6. K. Ammari, E. Crépeau, Well-posedness and stabilization of the Benjamin-Bona-Mahony equation on star-shaped networks,
    Systems & Control Letters, Vol 127, 39-43, (2019).
  7. L. Baudouin, E. Crépeau, J. Valein, Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback,
    IEEE Transactions on Automatic Control, 64(4), 1403-1414, (2018).
  8. E. Cerpa, E. Crépeau, On the controllability of the Improved-Bousinesq equation,
    SIAM Journal on Control and Optimization, 56(4), 3035-3049, (2018).
  9. K. Ammari, E. Crépeau, Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a star-shaped network,
    SIAM J. Control Optim., 56(3), 1620-1639, (2018).
  10. E. Crépeau, Exact boundary controllability of the Korteweg-de Vries equation with a piecewise constant main coefficient,
    System & Control Letters, Vol 97, 157-162, (2016).
  11. L. Baudouin, E. Cerpa, E. Crépeau, A. Mercado,On the determination of the principal coefficient from boundary measurements in a KdV equation,
    J. Inverse Ill-Posed Probl., Vol. 22, No. 6, 819- 846, (2014).
  12. L. Baudouin, E. Cerpa, E. Crépeau, A. Mercado, Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation,
    Applicable Analysis, Vol. 92, no. 10, 2084-2102, (2013).
  13. T. M. Laleg Kirati, E. Crépeau, M. Sorine,Semi-classical signal analysis,
    Math. Control Signals Syst., Vol 25, 37-61 (2013).
  14. L. Baudouin, E. Crépeau, J. Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem,
    MCRF Journal, Vol 1, No. 3, 307-330, (2011).
  15. E. Crépeau, Motion planning of a nonlinear FitzHugh Nagumo system,
    JESA, Vol. 45, No.7-8- 9-10, . 631-643, (2011).
  16. E. Crépeau, C. Prieur, Discussion on : "Adaptive boundary control of the forced generalized Korteweg-de Vries-Burgers equation”.
    European Journal of Control, Elsevier, 16 (1), pp.85-87, (2010).
  17. E. Cerpa, E. Crépeau, Rapid stabilization for a linear Korteweg-de Vries equation,
    Discrete Contin. Dyn. Syst. Ser. B, Vol. 11, No. 3, 655-668, (2009).
  18. E. Cerpa, E. Crépeau, Boundary controlability for the non linear Korteweg-de Vries equation on any critical domain,
    Ann. Inst. H. Poincaré Anal. Non Linéaire, Vol. 26, No. 2, pp. 457-475, (2009).
  19. E. Crépeau, C. Prieur, Approximate controllability of a reaction-diffusion system,
    Systems & Control Letters, 57, 1048-1057 (2008).
  20. M. T. Laleg, E. Crépeau, M. Sorine, Separation of arterial pressure into a nonlinear superposition of solitary waves and a windkessel flow,
    Biomedical Signal Processing and Control Journal, 3, 163-170 (2007).
  21. E. Crépeau, M. Sorine, A reduced model of pulsatile flow in an arterial compartment,
    Chaos, Solitons and Fractals, 34, 594-605, (2007).
  22. E. Crépeau, C. Prieur, A clamped free beam controlled by a piezoelectric actuator,
    ESAIM : COCV, 12, 545-563, (2006).
  23. J-M. Coron, E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lenghts,
    J. Eur. Math. Soc. (JEMS) , 6, no. 3, 367–398, (2004).
  24. E. Crépeau, Exact controllability of the Boussinesq equation on a bounded domain,
    Diff. Int. Equations, 16, 303-326, (2003).
  25. E. Crépeau, Exact controllability of the Korteweg-de Vries equation around a non trivial stationnary solution,
    Int. J. Control, 74, 1096-1106, (2001).

Conférences

  1. E. Crépeau, H. Parada, C. Prieur,Stability of linear KdV equation in a star shaped network with bounded and unbounded lengths.,
    62nd IEEE Conference on Decision and Control, Singapore, (2023)
  2. E. Crépeau, E. Cerpa, Rapid stabilization of a linear Korteweg de Vries equation,
    IFAC Work- shop on Control of Distributed Parameter Systems, Toulouse, (2009).
  3. E. Crépeau, C. Prieur, Motion planning of a reaction-diffusion system with a nontrivial dispersion matrix,
    MTNS 2008.
  4. T.M. Laleg, E. Crépeau, Y. Papelier, M. Sorine, Arterial Blood Pressure Analysis Based on Scattering Transform I,
    EMBC Sciences and Technologies for Health, Lyon, (2007).
  5. E. Crépeau, E. Cerpa, Controllability of the nonlinear Korteweg-de Vries equation for critical spatial lengths,
    CDPS Namur, (2007).
  6. C. Prieur, E. Crépeau, Motion planning of a reaction-diffusion system arising in combustion and electrophysiology,
    CDPS Namur, (2007).
  7. T.M. Laleg, E. Crépeau, M. Sorine, Travelling-wave analysis and identification : A scattering theory framework,
    ECC Greece, (2007).
  8. T.M. Laleg, E. Crépeau and M. Sorine, A Soliton-Based Signal Analysis Method,
    Conférence sur le Génie Electrique CGE’05, Algeirs, Algeria, (2007).
  9. T.M.Laleg,E.Crépeau,M.Sorine, Separation of arterial pressure into solitary waves and wind- kessel flow,
    IFAC Reims, (2006).
  10. T.M. Laleg, E. Crépeau, M. Sorine An Arterial Blood Pressure Model,
    SIAM Life Sciences, Ra- leigh, North Carolina State, (2006).
  11. E. Crépeau,T.M. Laleg, M. Sorine A Soliton-based analysis of the arterial blood pressure,
    PI- COF06, Nice, (2006).
  12. E. Crépeau, J.M. Coron, Exact boundary controllability of KdV equation with critical spatial lengths,
    IFAC CAO Cachan, (2006).
  13. T.M. Laleg, E. Crépeau, M. Sorine, Arterial pressure modeling by an integrable approximation of Navier-Stokes equations,
    Mathmod, Vienne (2006).
  14. E. Crépeau, M. Sorine, Identifiability of a reduced model of pulsatile flow in an arterial compartment,
    CDC-ECC'05, Séville (2005).
  15. E. Crépeau, C. Prieur, A clamped free beam controlled by a piezoelectric actuator,
    16th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2004).

Autres

  1. E. Crépeau, Quelques résultats sur le contrôle, la stabilisation et les problèmes inverses pour des équations aux dérivées partielles, Habilitation à diriger des recherches, 2019.
  2. E. Crépeau, Contrôlabilité exacte d’équations dispersives issues de la mécanique, thèse de doctorat, 2002.
Semestre 1, 2023/2024
  • PDEs and Numerical Analysis
    Ensimag 2A, M1 MSIAM, M1 Physique.
  • Optimal Control for PDEs
    M1 MISCIT.
  • Analyse
    L1 PCMM, DLST.
  • Calcul Différentiel
    L2 PCMM, DLST.
Semestre 2, 2023/2024
  • Math 207
    L1, Sciences pour l'ingénieur.