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NUMERICAL MINIMIZATION OF EIGENMODES OF A MEMBRANE

WITH RESPECT TO THE DOMAIN

1Édouard OUDET

Abstract. In this paper we introduce a numerical approach adapted to the minimi-

zation of the eigenmodes of a membrane with respect to the domain. This method is

based on the combination of the Level Set method of S. Osher and J. A. Sethian with

the relaxed approach. This algorithm enables both changing the topology and working

on a fixed regular grid.

Résumé. Nous proposons dans cet article une approche numérique adaptée à la mini-

misation des modes propres d’une membrane par rapport au domaine. Cette méthode

repose sur la combinaison de la méthode des lignes de niveaux de S. Osher et J. A. Sethian

avec une approche de type relaxation. Elle présente entre autre intérêt celui d’autoriser

des changements de topologie tout en travaillant sur un maillage fixe régulier.
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1. Statement and historical summary

Let Ω be a bounded open set of RN and H1
0 (Ω) the Sobolev space defined as the closure of C∞

functions with compact support in Ω with respect to the norm

‖u‖H1 :=

(
∫

Ω

u(x)2 dx +

∫

Ω

|∇u(x)|2 dx

)1/2

.

The Laplace-Dirichlet operator on Ω being a self-adjoint operator with compact inverse, there is
a sequence of positive eigenvalues which tends to +∞ and an associated sequence of eigenvectors
that will be labelled 0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . . and u1, u2, u3, . . .. Thus, those sequences
solve the problems

{

−∆uk = λk(Ω)uk in Ω,
uk = 0 on ∂Ω.

(1)
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In any case, the eigenfunctions will be supposed to satisfy the condition

∫

Ω

uk(x)
2 dx = 1 . (2)

The eigenfunctions constitute an Hilbert base of L2(Ω). As a consequence of the hypo-analyticity of
the laplacien they are analytic in Ω. Moreover, we shall use the following variational formulation :

λ1(Ω) = inf
v∈H10 (Ω),v 6=0

∫

Ω
|∇v(x)|2 dx
∫

Ω
v(x)2 dx

. (3)

This infimum is reached when v = u1, the first eigenfunction of the Laplace-Dirichlet operator.
The investigations of the relations between the eigenmodes of the domain Ω, and specifically

the isoperimetric inequalities where they are involved, are an important issue both in the field of
partial differential equations and in differential geometry. In the beginning of the century, the first
result obtained in this topic was the proof of the Rayleigh conjecture by Faber [7] and Krahn [13].
They proved that the ball minimizes the first eigenvalue of the Laplace-Dirichlet operator under a
volume constraint. The domain which minimizes λ2 always with a volume constraint is the union
of two identical balls. This result was often attributed to P. Szegö as observed by G. Pòlya in [18],
but it seems that this result was already published in a paper of E. Krahn (see [14]). For k ≥ 3
fixed, the question to identify the open set of the plane which minimizes λk amongst the sets of
given area remains open today (see [9] for a survey on this subject).

In 1973, Troesch proposes in [23] some numerical values of resonant frequencies for several types
of convex membranes of R2. The following observations stands out from this experiments :

- the convex open set which minimizes the second eigenvalue of the Laplace-Dirichlet operator
under convexity and volume constraint displays two flat sections on its boundary,

- the stadium (see 1) .i.e. the convex hull of two tangent identical disks looks very close from
the optimal set.

Fig. 1. One stadium

In fact, as reported in [10] and [11], the stadium does not minimizes λ2 under convexity and
volume constraints. The aim of this work is to present a new technique enabling to approximate
numerically the solutions of such optimizations problems. More precisely we shall be interested in
the two following problems :

min{λ2(Ω),Ω ⊂ R2, Ω convex, |Ω| = 1} (4)

min{λk(Ω),Ω ⊂ R2, |Ω| = 1} for k ≥ 3. (5)
2
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The method we are presenting combines two approaches that were generated in the last twenty
years, respectively the homogeneization method and the level set methods. We shall start with a
short description of the three main numerical methods in shape optimization, namely the boundary
variation, homogeneization and the level set methods. For each of them we shall underline the
drawbacks when applying those techniques to minimize the eigenmodes of the Laplace operator.
In consequence we shall have to develop a new process.

In conclusion we shall report numerical results. On one side we improve the values published in
[24]and on the other side we propose a geometrical description of the ten first optimal sets.

2. Boundary variation, derivative with respect to the domain

The boundary variation method is the first we used for our study of the eigenvalues. This
allowed to obtain satisfying results when minimizing λ2 under volume and convexity constraints.
This approach turns out to be ineffective to investigate directly the minimization under volume
constraint only but unlike the technique that will be introduced it does not require to modify the
cost function.

2.1. General presentation

Many optimization methods are founded on the used of the so called first order optimality
conditions (as the gradient and quasi-Newton methods). These techniques are descent methods
which we try to converge to a local minimum of the cost function of the cost function. The question
which arises in shape optimization is the deficiency of a natural derivative in a space of shapes. To
bypass this difficulty we introduce for each vector field V (so called deformation field) of RN , the
derivative (if it does exist) of J in the direction V by

d (J (Ω)) (Ω, V ) = lim
t→0

J (Ωt)− J (Ω0)

t
,

where

Ωt = {(Id+ tV ) (x) , x ∈ Ω}

A function J which displays an extremum in Ω satisfies the relation

d (J (Ω)) (Ω, V ) = 0 (6)

for all vector field V.

Remark 1. Under some regularity assumptions it can been proved (see [21]) that

∃hΩ ∈ D
′(∂Ω) such that ∀V ∈ D(RN )

N
, d (J (Ω)) (Ω, V ) =< hΩ, V.n >D′(∂Ω)×D(Ω) .

This result expresses that the boundary derivative only takes into account the normal component
of the deformation field.

We shall now specify the relation (6) in the frame of eigenvalue problems. More precisely let us
report the following Hadamard’s theorem :

3
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Theorem 2. (Hadamard) Let Ω be an open set of class C2 and λk(Ω) be its kth eigenvalue of
the Laplace-Dirichlet operator. We assume that λk(Ω) is a simple eigenvalue. Then the function
t 7→ λk(Ωt) has a derivative at t = 0, which is given by

d (λk (Ω)) (Ω, V ) = −

∫

∂Ω

(

∂uk
∂n

)2

V.ndσ (7)

where uk is the kth eigenfunction associated to λk(Ω), normalized by
∫

Ω
u2k(x)dx = 1.

A complete proof of this result is reported in [21] or in [12]. Here we will only present a formal
proof of the relation (7). Let uk(t, x) and λk(Ωt) be the kth eigenfunction and eigenvalue of the
open set Ωt. We suppose that the derivative with respect to the real parameter t exists. Deriving
formally at t = 0 the relation

−4uk = λk(Ωt)uk, (8)

we obtain

−4u′k = λk(Ω)u
′
k + λ′k(Ω)uk in Ω. (9)

And the boundary condition

uk(t, (Id+ tV ) (x)) = 0 for all x ∈ ∂Ω

becomes

u′k +
N
∑

i=1

∂uk
∂xi

d (Id+ tV )i
dt

= u′k +
N
∑

i=1

∂uk
∂xi

Vi = 0.

Then

u′k = −
∂uk
∂n

V.n

since ∇uk = ∂uk

∂n .n (uk equals zero on the boundary). Multiplying (9) by uk and integrating on Ω
we obtain

−

∫

Ω

uk4u
′
kdx = λk(Ω)

∫

Ω

uku
′
kdx+ λ′k(Ω).

Hence by Green’s formula,

−

∫

∂Ω

∂u′k
∂n

ukdσ +

∫

∂Ω

∂uk
∂n

u′kdσ −

∫

Ω

u′k4ukdx = λk(Ω)

∫

Ω

uku
′
kdx+ λ′k(Ω). (10)

Moreover multiplying (8) at t = 0 by u′k and integrating on Ω, we get the new relation

−

∫

Ω

u′k4ukdx = λk(Ω)

∫

Ω

uku
′
kdx. (11)

From (??), (10), (11), we conclude that

d (J (Ω)) (Ω, V ) = λ′k(Ω) = −

∫

∂Ω

(

∂uk
∂n

)2

V.ndσ.

4
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Remark 3. According to the formula λk (lΩ) = λk(Ω)
l2 (for l > 0), we can neglect the volume

constraint in the problems (4) and (5). We have :

min
|Ω|=1, Ω open

λk (Ω) = min
Ω open

|Ω|λk (Ω) .

To estimate the derivative of |Ω|λk (Ω) ,we have to compute the derivative of the volume with respect
to a boundary variation. Such a result is easily obtained (see as an example [12]) going back to a
fix domain by Green’s formula. Then

d (|Ω|) (Ω, V ) =

∫

∂Ω

V.ndσ. (12)

Thanks to this derivative we are able to describe the different steps of a boundary optimization
algorithm designed to minimize the kth eigenvalue under volume constraint :

• Discretization of the boundary : let Ω0 be a given initial shape ; n control points on ∂Ω0
are selected and referred to as Pi i = 1, ..., n .

• Computation of the shape derivative : let n(Pi) be the exterior normal vector at the
point Pi. Thanks to (7) and (12), for each i = 1, ..., n, we compute the derivative di of the
function of one variable

t 7→ lim
t→0

J(Ωit)− J (Ω0)

t
where

{

J(Ω) = |Ω|λk (Ω) ,

Ωit =
{

(Id+ tVi) (x) , x ∈ IRN
}

,

for Vi = vi(x)n(x) where vi is a smooth real valued function equal to 1 at Pi and zero on
all other control points. Therefore we make use of the approach reported for example in [17]
about the problem of electromagnetic shaping.

• Exit criterium : if the norm of the vector (di)i=1,...,n is small enough we stop the algorithm.

• Boundary variation : Each control point is moved along the exterior normal vector accor-
ding to the opposite of the derivative di. Precisely, Pi is translated from a vector αdin(Pi)
for an adaptive choice of α > 0. In this context the quasi-Newton method can also be carried
out (see [17]).

• Evaluation of the cost function : After having verified that the new control points
(Pi)i=1,...,n still generates a non crossing polygon, the value of the cost function for this
new shape is evaluated. Then the descent step α is adjusted exactly the same way as in the
finite dimension case for a classical gradient algorithm. An iteration takes end by going back
to the step of derivative computation.

This method has been carried out in numerous situations different from the minimization of
eigenvalues. However, it displays three major drawbacks that are respectively :

– no change of the topology,
5
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A stadium

Initial shape : a circle

Initial shape : a square

Fig. 2. Optimization obtained for several initial shapes

– the risk to get a local minimum,
– a major computational cost due to the remeshing process for each iteration.
However this method was shown to be efficient for the investigation of the second eigenvalue

under convexity and volume constraints.

2.2. Application to the problem of the stadium

Let’s go back to the problem (4). In [11] we could prove that the shape optimization problem

min
Ω ”convex”, |Ω|=1

λ2(Ω) = min
Ω ”convex”

λ2(Ω) |Ω|

is well posed and that the stadium does not realize this minimum. Moreover we have shown that
the optimal set has exactly two parallel segments on its boundary.

Here we wish to report a computational description of the optimal shape using the boundary
variation method. The only difficulty we still have to deal with is taking into account the convexity
constraint. Therefore the boundary variation algorithm is applied to the penalized function

J(Ω) := λ2(Ω) |Ω|+ p(|Co(Ω)| − |Ω|)2

where Co(Ω) is the convex hull of Ω and p is a positive penalization number. In figures 2 and 3 we
present the results obtained with two distinct initial shapes. We observe the close similarity between
a stadium and an optimal shape both from the geometrical viewpoint and their eigenvalues (see
the table below where j0 ' 2.4048256 and j1 ' 3.8317060 are respectively the first zeros of the
Bessel functions J0 and J1).

6
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_____   A stadium
− − −    Shape obtained from a square

Fig. 3. A test of superposition

Domain Exact value Computed value
Square 5π2 49.348
Ball j21π 46.124
Best rectangle 4π2 39.478
Best ellipse 39.317
The stadium 38.001
The best convex domain1 37.980
Two balls2 2j20π 36.336

2.3. Remarks and precisions

In the previous computations, the boundary was discretized by 40 control points. We use classical
finite element method to approximate the eigenvalues of the laplacian. Since we need a good
approximation of the gradient of the eigenfunction on the boundary, we used a P2 finite element
method with about 4000 triangles. In the cases of the disc or of the square, convergence takes place
in less than 40 iterations.

Alternatively, we attempted to change the penalization approach for a projection method. At
each iteration the new open set was replaced by its convex hull. Definitely this process was rather
unefficient. The main reason is the following : taking the convex hull introduces segment on the
boundary. Now, in many cases, the boundary variation method would like to push the nodes on
the segment inside : then taking again the convex hull will restore the initial domain. At this point
the method is stationary.

1that we have obtained with our algorithm.
2best domain (without constraint)

7
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3. The relaxed approach

3.1. Introduction

We are now presenting a relaxed method by homogeneization which was very successful during
this last years both for obtaining existence results in shape optimization and developing numerical
algorithms.

Numerous optimization shape problems have no solution in the natural space of investigation
(typically the open subsets of a compact domain). As weak solutions have been introduced in the
field of partial differential equations, we are led to enlarge the space of shapes in order to obtain the
existence of an optimal generalized shape. This process was applied namely in elastic structures
(see [1], [3], [4]), where the expected domain is deduced from the homogenized solution after a
screening technique.

3.2. The relaxed approach for eigenmodes

Let D be a bounded regular open set of RN and Ω an open set of D. Let k ∈ N∗, we consider
uΩ ∈ H

1
0 (Ω), the k

th eigenvalue of the laplacien. Therefore uΩ is a solution of

{

−∆uΩ = λk(Ω)uΩ in Ω,
uΩ = 0 on ∂Ω.

We are interested in the shape optimization problem

min{λk(Ω),Ω ⊂ R2, |Ω| = 1} for k ≥ 3.

Apart from k = 1 and 2, it is not yet established whether such a problem has an open set solution.
An important result in this field was obtained by Buttazzo and Dal Maso (see [5]) who proved that
a quasi open set solution of (5) does exist.

Hereunder we will introduce a relaxed approached adapted to the problem (5). For each µ a
non-negative Borel measure on D we consider the new eigenvalue problem as follows :

{

−∆u+ µu = λ(µ)u in D,
u = 0 on ∂D.

(13)

By analogy with the classical weak solution of partial differential equations we shall define a solution
(λ, u) of (13) as a set which satisfies

{

∀v ∈ V 0µ ,
∫

D
∇u(x)∇v(x)dx+

∫

D
u(x)v(x)dµ = λ(µ)

∫

D
u(x)v(x)dx

with λ ∈ R and u ∈ V 0µ ,
(14)

where V 0µ = H1
0 (D) ∩ L2µ(D) and L2µ(D) is the set of measurable functions whose square value

admit a finite integral with respect to µ. It is easily shown that for each µ ∈ M0(D) (the set of
non-negative Borel measure on D) there are sequences of eigenvectors and eigenvalues satisfying
(14).Let us now develop how to associate for each open set an element of M0(D). Therefore we
consider the capacity measure on D defined for all E ∈ P(D) by :

capD(E) = inf

{
∫

D

|∇u|
2
(x) dx : u ∈ C∞0 (D), u ≥ 1 in a neighborhood of E

}

. (15)

For each Ω, we introduce µΩ ∈M0(D) by
8
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µΩ(B) =

{

0 if capD(B\Ω) = 0,
+∞ if capD(B\Ω) > 0

(16)

for each borelian set B of D.So a natural injection of the open sets of D into M0(D) is built. We
still have to define the volume of an element of M0(D). Let us define for each µ ∈ M0(D)

|µ| = |{x ∈ D, wµ(x) > 0}| (17)

where wµ is the weak solution of

{

−∆wµ + µwµ = 1 in D,
wµ ∈ H

1
0 (D).

Remark 4. The expected equality |µΩ| = |Ω| is deduced from the maximum principle and the
definition (16). Indeed the function wµΩ is formally zero outside Ω and sub-harmonic inside.

The following theorem can thus be established (see [8] or [12]) :

Theorem 5. (Dal Maso-Mosco) The set {µ ∈M0(D), |µ| ≤ 1} is the completion for the γ-
convergence of the family of open sets of D whose volume are less than 1. Moreover, M0(D) is
compact for this topology.

Having proven the continuity of the eigenvalues with respect to the γ-convergence, we prove
that the following problem

inf
µ∈M0(D), |µ|≤1

λk(µ) (18)

does admit a solution.

3.3. Numerical approximation

In this chapter we shall show how the relaxed formulation (13) is well suited for finding an opti-
mal shape. This method however exhibits an important practical difficulty : in such a context the
volume of a measure appears to be non differentiable under its variation. A first application of this
method for the minimization of eigenvalues was reported in [8]. In this paper the author bypasses
this difficulty by a smoothing process. Unfortunately such a method requires the introduction in
the algorithm of parameters whose adjustment proved to be delicate. For this reason we did not
apply this method directly and preferred a mixed method that will be described in the following
paragraph.

Let (Th)h=1,...,l be a triangulation of D. We aim to approximate the measure solution of (18) by
a sequence of absolute continuous measures with respect to the Lebesgue measure whose densities
are constant on each Th. Having applied the algorithm we expect a measure of type (16), i.e. a zero
or ”infinity” value measure on each triangle. Let (mh)h=1,...,l ∈ Rl

+ be the measure whose density
is given by

l
∑

h=1

mhχTh

where χ
Th

is characteristic function of the triangle Th. Let us recall from [8] the following (this

formula can be obtained exactly as in section 2)
9
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Proposition 1. Let µ ∈M0(D) with density (mh)h=1,...,l and k ∈ N∗. Let λk(µ), the kth eigenvalue
of the operator −∆+ µI be a simple eigenvalue and uk its eigenfunction. Then

∂λk
∂mh

=

∫

Th

(uk)
2(x)dx

Having computed this derivative, the aim is to apply a classical gradient algorithm to the
sequence (mh)h=1,...,l (exactly the same way we optimized the positions of control points here
above). As it has been mentioned, the volume of a measure µ is not differentiable with respect to
mh. This problem is cancelled when the level set method is carried out as follows. Moreover, this
level set method allows us to consider measure which takes only the values 0 and ”infinity” (i.e. a
large value M , see below).

4. The level set method and the relaxed formulation

4.1. Introduction

The method that will be reported is adapted from a paper of S. Osher and F. Santosa on
problems of not degenerated densities (see [15]). A level set method exhibits several advantages.
Particulary it does not imply any topological restrictions and enables working on a fixed regular
mesh. Before detailing the different steps, let us recall the principle of a level set method. Let
Ω ⊂ D be an initial shape. The first step will be to parametrize Ω by a Φ function so called level
set function that must satisfy







Φ(x) < 0 if x ∈ Ω,
Φ(x) > 0 if x ∈ D\Ω,
Φ(x) = 0 if x ∈ ∂Ω.

Next, as suggested in [16], such a function will be initialized with the signed distance which is

{

Φ(x) = dist(x, ∂Ω) if x ∈ Ω,
Φ(x) = −dist(x, ∂Ω) if x ∈ D\Ω.

Let us observe that the constructed distance is generally not easily computed and often requires
a specific attention (see [19]). As far as we are concerned, the initial shapes have been estimated
thanks to genetic techniques (see 4.4). We choose an approximate signed-distance function which
is constant on each triangle of the mesh. Its value in the triangle T is computed by evaluating the
distance between the center of mass of T and the other centers of mass.

Once Φ defined, let the level set 0 (i.e. ∂Ω) fluctuate with time under the vector field vn (where
v is a real value function). In other words, if x(t) describes the evolution of a point on ∂Ω under
such a transformation, it has to verify

Φ(t, x(t)) = 0 for all t.

Differentiating this expression, we obtain

∂Φ

∂t
(t, x(t)) +

dx

dt
(t)∇xΦ(t, (t, x(t)) =

∂Φ

∂t
(t, x(t)) + v(x(t))n(x(t)).∇xΦ(t, x(t)) = 0. (19)

Now the normal to a level set in a non stationary point is given by
10



TITLE WILL BE SET BY THE PUBLISHER

n =
∇xΦ

|∇xΦ|
(t, x(t)).

Hence according to (19),

∂Φ

∂t
(t, x(t)) + v(x(t)) |∇xΦ| (t, x(t)) = 0. (20)

In order to compute the evolution of Φ, we thus have to solve a Hamilton-Jacobi’s equation. It
has to be mentioned that the computation we have presented only concerns the level set 0. But
usually the vector field vn has a natural extension on a D,thus we solve the equation (20) in the
whole set D.

A major difficulty that we did not yet mentioned and which will be treated in the next paragraph
is the computation of a good speed field vn for the shape optimization problem under investigation.
For this purpose, a very natural approach has been introduced in [2] : consisting in choosing the
vector field as the field obtained by boundary variation.

Before going into details, let us summarize the different steps of the level set optimization :

1. initialization of Φ by the signed distance,

2. computation of the speed field and checking an exit criterion,

3. propagation of the level set solving Hamilton-Jacobi’s equation,

4. evaluation of the cost function,

5. redefinition of Φ and adjustment of the time step,

6. eventually, reinitialization of Φ with the signed distance. Back to step 2.

4.2. Computation of the derivative

We here report the computation of the variation of the eigenvalue with respect to Φ. Here again,
we only justify formally the derivative. We refer to [12] and [21] for a rigorous proof.

Let µ be a density on D having only 0 orM values.We notice that forM large enough, the value
of λk(µ) is closed of λk(Ω) where Ω = {x ∈ D : µ(x) = 0} . We have to estimate the derivative of
λk(µ) with respect to a variation of its level set subjected to a normal vector field vn. Let k ∈ N∗
and uµ the solution of

{

−∆uµ + µuµ = λk(µ)uµ in D,
uµ = 0 on ∂D

(21)

according to the preceding paragraph. Let uµ,t verifying

{

−∆uµ,t + µtuµ,t = λk(µt)uµ,t in D,
uµ,t = 0 on ∂D

(22)

for each x ∈ D,

µt(x) =

{

0 for x ∈ {(Id+ tvn) (y) : µ(y) = 0}
M otherwise.

11
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The derivability of λk(µt) and uµ,t with respect to vn can be proved as in [21] and [12]. Once
this derivability admitted, let us establish the formula of the derivative.

After multiplying (22) by a test function of C∞0 (D) and by integrating it using Green’s formula
we obtain the weak formulation

∫

D

∇uµ,t∇w dx+

∫

D

uµ,tw dµt = λk(µt)

∫

D

uµ,tw dx (23)

for each w ∈ C∞0 (D). Hence

∫

D

∇uµ,t∇w dx+M

∫

ωt

uµ,tw dx = λk(µt)

∫

D

uµ,tw dx

where

ωt = {x ∈ D : µt(x) =M} .

Deriving this latter identity with respect to t and using classical identities, we have

∫

D

∇u′µ∇w dx+M(

∫

ω

u′µw dx−

∫

∂ω

uµwv dx) = λ′k(µ)

∫

D

uµw dx+ λk(µ)

∫

D

u′µw dx. (24)

In order to eliminate u′µ we evaluate (23) when t = 0 and w = u′µ and we deduce

∫

D

∇uµ∇u
′
µ dx+

∫

D

uµu
′
µ dµ = λk(µ)

∫

D

uµu
′
µ dx. (25)

Combining (24) with w = uµ and (25), we get

λ′k(µ)

∫

D

u2µ dx = −M

∫

∂ω

u2µv dx

so

λ′k(µ) = −
M
∫

∂ω
u2µv dx

∫

D
u2µ dx

= −M

∫

∂ω

u2µv dx

for a normalized function uµ.
Exactly in the same way as under boundary variation, the derivative of the measure’s volume

can be evaluated as :

|µ|
′
=

∫

∂ω

v(x) dx.

4.3. Computing a numerical solution of Hamilton-Jacobi’s equation

Now, the problem is to determine amongst the weak solutions the one that corresponds to the
physical state under investigation. Introducing the concept of viscosity solution, in 1983 M. G.
Crandall and P. L. Lions (see [6]), brought a satisfying answer to the global existence problem
for Hamilton-Jacobi’s equations. We shall not go into technical details for the definition of such a
weak solution (we refer to [6] or [19]).

Our description will be limited to an algorithm reported in [16] designed to approached the
weak viscosity solution of our problem.

12
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4.3.1. The numerical scheme of S. Osher and J. A. Sethian

Let us consider the first order Cauchy’s system :

{

∂Φ
∂t (t, x)− F (x) |∇Φ(t, x)| = 0 in R+ ×D,
Φ(0, x) = u0(x) in Ω,

where Ω is a bounded rectangle of RN and u0 and v are given functions. Hereunder we shall use
the classical notations for finite difference schemes on regular meshes of points indexed by i, j. Let
us define Φ at the initial time by Φ(0, x) = u0(x).Then the evolution of Φ after one time step ∆t
is given by

Φn+1ij = Φnij −∆t(max(Fij , 0)∇
+Φ+min(Fij , 0)∇

−Φ)

where

∇+Φ =
[

max(D−xij Φ, 0)2 +min(D+xij Φ, 0)2 +max(D−yij Φ, 0)2 +min(D+yij Φ, 0)2
]1/2

and

∇−Φ =
[

max(D+xij Φ, 0)2 +min(D−xij Φ, 0)2 +max(D+yij Φ, 0)2 +min(D−yij Φ, 0)2
]1/2

,

where

D+xij Φ =
Φi+1,j − Φi,j

∆x

for a space step equal to ∆x. The quantities D−xij Φ, D+yij Φ and D−yij Φ are easily deduced. Finally,
to define completely our problem we add the following boundary condition :

∂∇Φ(t, x)

∂n
= 0 on ∂Ω.

4.4. Initialization of the method

In this kind of minimization problem, the choice of the initial shape can be very important. For
example, if we use this level set method for λ3 starting from an ellipse with eccentricity greater than√
3
2 , the method converges to the union of 3 identical discs which is a local minimum. Therefore, it
seems important to start not too far of the global minimum. It is the reason why we have chosen
to use a genetic algorithm as a preprocessor. This genetic algorithm is inspired from the ideas
developed by M. Schoenauer see e.g. [20]. We refer to [22] for more details.

4.5. Handling non simple eigenvalues

One difficulty we met applying our method was the emergence of multiple eigenvalues. In such
estimation, eigenvalues are well known to loose their derivability with respect to a boundary varia-
tion as well as in the context of the relaxed approach. From a numerical viewpoint, an oscillatory
behavior has been observed in the case of multiple eigenvalues.

In order to slow down the convergence to such a shape, we modify our algorithm the following
way. Every time we estimated the eigenvalue λm too close from λm−1 (i.e. |Ω| (λm − λm−1) ≤ 1),
we modified the descent direction by favoring the minimization of λm + λm−1 as compared with

λm. In other words we replaced the vector field −u2mn by −(
u2m+u

2
m−1

2 )n.
13
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Fig. 4. Evolution of λ3 and λ4

In figure 4, the evolution of λ4 et λ3 is presented step by step during the minimization of λ4. A
posteriori, it can be observed that all the computed optimal shapes in fact generate at least double
eigenvalues. The author believes that this is a generic property (but was unable to prove it) :

Open problem : let Ω∗k the minimizer of the problem (5), then λk−1(Ω∗k) = λk(Ω
∗
k) (let us recall

from [10] that we always have λk+1(Ω
∗
k) 6= λk(Ω

∗
k).

4.6. The volume constraint

In order to preserve the volume of µ during iterations, we used the Lagrange’s multiplier technic
reported in [15], which consists in applying the optimization algorithm to the function

L(Φ, ν) = λk(µΦ) + ν |µΦ| ,

where µΦ is the measure density associated to Φ by the relation

µΦ(x) =

{

0 if Φ(x) > 0,
M otherwise.

where M is a fixed positive constant. According to the derivative computed in the paragraph 4.2,
the level set function Φ satisfies the Hamilton-Jacobi’s equation

∂Φ

∂t
(t, x)− (−Mu2k(t, x) + ν) |∇Φ(t, x)| = 0 in R+ × Ω

where uk(t, .) is the eigenfunction associated to λk(µΦ(t,.)). As suggested by S. Osher and F. Santosa
in [15], at each iteration we adapted our Lagrange multiplier ν to preserve the volume constraint.

4.7. Parameters of the numerical experiments

In all our experiments on eigenvalues, we used a regular mesh of size ∆x = ∆y = 1/80. The
system (22) is solved by a classic P1 finite element method. The parameter M (the maximum of
the density µ) was fixed to the value 800. Usually the algorithm found the minimum in less than
100 iterations (see figure 4.5).

14
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5. Results and conclusion

The shapes obtained following the combination of the genetic algorithm reported in [20] and
the topological optimization by the mixed relaxation/level set method are presented on figures 6,
7, 8, 9 and 10. The quality of the results generated with the two first eigenvalues is particulary
satisfying.
For λ3, it has been conjecture by G. Szegö (see [24]) that the minimum should be a disc. It is in
accordance with our numerical results.
For λ4, the conjecture states that the minimum is the union of 2 balls whose radii are in the ratio

of
j0,1

j1,1
(where j0,1 and j1,1 are the first zeros of the Bessel function J0 and J1). Our method seems

to confirm this conjecture.
G. Szegö asked the question to know whether the minimum was always to be chosen amongst

discs or union of discs. The unexpected result obtained for the minimization of λ5 has to be pointed
out. As reported by S. A. Wolf and J. B. Keller in [24], union of balls do not account for the only
optimal shapes. It is noteworthy that this occurs as soon as the 5th eigenvalue (the values reported
in table 5 being in fact upper bounds).

On the other hand , let us point out the limit of the process. As already mentioned, the major
difficulty we met is the non differentiability of multiple eigenvalues. The strategy proposed in the
paragraph 4.5 requires to choose arbitrarily the moment when the vector field has to be modified.

For λ7, this approach did not allow to identify the shape presented in table 5 (see the shape
obtained by our method in the figure 9). Indeed we obtain it using the following theorem of S. A.
Wolf et J. B. Keller : let k ∈ N∗, and for j = 1, ..., k we define λ∗j = min|Ω|=1 λj(Ω) = λj(Ω

∗
j ).

Theorem 6. (Wolf and Keller) Let Ω∗k be a non convex open set of RN , which minimizes λk
among open sets of volume 1. Then :

(λk(Ω
∗
k))

N/2 = min
1≤j≤(k−1)/2

((λ∗j )
N/2 + (λ∗k−j)

N/2)

and

Ω∗k =

[

(

λ∗i
λ∗k

)1/2

Ω∗i

]

∪

[

(

λ∗k−i
λ∗k

)1/2

Ω∗k−i

]

.

So once known the k first optimal domains, the non convex optimal domain minimizing λk+1
can be determined. This recursive procedure enabled to identify the shape figured in table 5 that
has a smaller λ7 that the one deduced from our algorithm.

Nevertheless, it seems that the combination of the Level Set method of S. Osher and J. A. Sethian
with the relaxed approach is quite promising for problems with Dirichlet’s boundary condition. The
author believes that this approach can be applied to a wide variety of shape optimization problems.
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[13] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenshaft des Kreises, Math. Ann. 94 (1925), 97-100.
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