
About raising and handling exceptions

Dominique Duval and Jean-Claude Reynaud

University of Grenoble

WADT’06 — June 1., 2006

1

• Motivation

• Extensivity and case distinction

• Exceptions: syntax and deduction

• Exceptions: models

• Conclusion

2

Many different frameworks for exceptions!

• Gogolla, Drosten, Lipeck, Ehrich (1983)

• Bernot, Bidoit, Choppy (1986)

• Schobbens (1993)

• Benton, Hughes, Moggi (2002)

• Laird (2002)

• Plotkin, Power (2003)

• Walter, Schröder, Mossakowski (2005)

• and many others . . .

3

Yet another framework for exceptions. . .

The treatment of exceptions is viewed as a

generalized case distinction mechanism,

and the extensivity property of sums [Carboni, Lack, Walters 1993]

is used for dealing with case distinctions and with exceptions.

4

Focus on exceptions

Looking for “the simplest logics” for dealing with exceptions

⇒ many features are omitted, e.g.,

all functions are assumed univariate

since the issue of dealing with multivariate functions is not specific to

exceptions: it is similar for most computational effects (however, see

[Duval, Reynaud 2004])

5

• Motivation

• Extensivity and case distinction

• Exceptions: syntax and deduction

• Exceptions: models

• Conclusion

6

Distributivity (and extensivity)

A distributive category is a category with finite sums and products

such that for each Y1, Y2 and Z:

Z × Y1 + Z × Y2
∼= Z × (Y1 + Y2)

(dashed arrows stand for the projections from the products,

dotted arrows for the coprojections into the sums,

and “≡” for commutative squares):

Z × Y1

uu

//_________

≡

Y1

ww
Z × (Y1 + Y2) //_________ Y1 + Y2

Z × Y2

ii

//_________

≡

Y2

gg

7

(Distributivity and) extensivity

[Carboni, Lack, Walters 1993] An extensive category is a category

with finite sums such that for each Y1, Y2, X and u : X → Y1 + Y2:

u−1(Y1)

ww

//

≡

Y1

xx

X u // Y1 + Y2

u−1(Y2)

gg

//

≡

Y2

ff

Theorem. An extensive category with finite products is distributive.

8

Sums and “matches”

A (binary) sum (of types) is made of

a vertex Y1 + Y2 and coprojections ji : Yi → Y1 + Y2 such that for all:

Y1
j1

vv
f1

))SSSSSSSSSS

Y1 + Y2 Z

Y2

j2

hh

f2

55kkkkkkkkkk

there is a unique match [j1 ⇒ f1 | j2 ⇒ f2] (or [f1 | f2]):

Y1
j1

vv
f1

))SSSSSSSSSS

≡

Y1 + Y2 [f1|f2] // Z

Y2

j2

hh

f2

55kkkkkkkkkk

≡

9

Extensivity and case distinction

The match “[j1 ⇒ f1 | j2 → f2]” corresponds to:

“if y ∈ Y1 then f1(y) else f2(y)”

Let u : X → Y , then “case u of [j1 ⇒ f1 | j2 ⇒ f2]” is defined as:

case u of [j1 ⇒ f1 | j2 ⇒ f2] = [u−1(j1) ⇒ f1 | u−1(j2) ⇒ f2]

u−1(Y1)
u−1(j1)

yy

//

≡

Y1
j1

yy

X u // Y1 + Y2

u−1(Y2)
u−1(j2)

ee

//

≡

Y2

j2

ee

u−1(Y1)u−1(j1)

vv

f1

**UUUUUUUUUUUU

≡

X caseu of[j1⇒f1|j2⇒f2] // Z

u−1(Y2)
u−1(j2)

hh

f2

44iiiiiiiiiiii
≡

It corresponds to:

“if u(y) ∈ Y1 then f1(y) else f2(y)”

10

Example (1)

N is the set of naturals, and succ : N → N the successor map.

The predecessor map pred : N → N is defined as:

pred(succ(n)) = n and pred(0) = 0

Here is a specification “of naturals” Σnat:

U
z // N s

gg with a sum U
z // N N

soo

and the model “of naturals” Mnat of Σnat:

{∗}
0 // N succ

ee

A predecessor function can be generated from Σnat:

p = case id of [s ⇒ id | z ⇒ z] = [s ⇒ id | z ⇒ z] : N → N .

11

• Motivation

• Extensivity and case distinction

• Exceptions: syntax and deduction

• Exceptions: models

• Conclusion

12

Three keywords for exceptions

The predecessor map pred : N → N can also be formalised in the

following way, if some (SML-like) mechanism for exceptions is

available:

First, an exception e is created:

Exception e

Then, a function p′ : N → N is generated,

such that p′(z) raises the exception e:

p′(x) = case x of [s(y) ⇒ y | z ⇒ raise e]

Finally, a function p′′ : N → N is generated,

that calls p′ and handles the exception e:

p′′(x) = p′(x) handle [e ⇒ z]

13

Exception

The functions are decorated as follows

(this is borrowed from the monads [Moggi 1991]):

— a value is a function that does not raise any exception

— a computation is a function that may raise an exception

(so, every value can be coerced to a computation)

Let 0 be the empty sum, both for values and for computations.

Definition. An exception is a computation with type 0:

ec : P → 0

14

Example (2)

It generates a predecessor value:

pv = (case id of [s ⇒ id | z ⇒ z])v = [s ⇒ id | z ⇒ z]v : N → N

so that p.s ≡v id and p.z ≡v z.

15

raise

Claim. When a function f : X → Y raises an exception e, this means

that the exception e (of type 0) can be viewed as an expression of

type Y .

Definition. The keyword raise constructs a value raiseY
v for every

type Y :

raiseY
v = []Y

v : 0 −→ Y .

Let ec : P → 0 be an exception and Y a type.

To raise the exception ec in the type Y is to build:

(raiseY .e)c : P −→ Y .

Theorem. The exceptions do propagate:

let ec : P → 0 and gc : Y → Z, then

g.raiseY .e ≡c raiseZ .e .

16

Example (3)

Σnat,deco:

U
zv

//
ec

))TTTTTTTTT N sv

gg

0

generates a predecessor computation:

p′
c

= (case id of [s ⇒ id | z ⇒ raise.e])c

= [s ⇒ id | z ⇒ raise.e]c : N → N

so that p′.s ≡c id and p′.z ≡c raise.e.

17

handle

The keyword handle has two arguments.

For instance, “p′ handle [e ⇒ z]” has arguments p′ and [e ⇒ z].

There are two nested cases in a handling expression “f handle g”:

— the first one tests whether f raises an exception,

— when true, the second one tests which is the raised exception.

The handling construction is defined from these two kinds of “cases”,

which correspond to two decorations of extensivity,

on top of the “ordinary” decoration of extensivity.

18

1st decoration of extensivity

For “ordinary” case distinction, when uv : X → Y1 + Y2 is a value:

u−1(Y1)
uv

1 //

u−1(j1)
v

yy

//

≡

Y1
jv

1

yy

X uv // Y1 + Y2

u−1(Y2)
uv

2

//
u−1(j2)

v

ee

//

≡

Y2

jv

2

ee

19

2nd decoration of extensivity

For testing whether a computation uc : X → Y raises an exception:

Xu,1
uv

1 //

u−1(id)v

{{

//

≡

Y
id

v

Y

}}
X uc // Y

Xu,0
uc

0

//
u−1(raise)v

cc

//

≡

0
raise

v

Y

aa

20

3rd decoration of extensivity

For testing which exception has been raised:

u−1(P1)
uv

1 //

u−1(e1)
v

yy

//

≡

P1
ec

1

}}
X uc // 0

u−1(P2)
uv

2

//
u−1(e2)

v

ee

//

≡

P2

ec

2

aa

21

handle (more precisely)

The handling construction is defined from the 2nd and 3rd

decorations of extensivity:

(u handle [ei ⇒ fi]i∈I)
c

= (case2 u of [idY ⇒ u1 | raiseY ⇒ f])c : X −→ Y ,

where f is the computation:

f c = (case3 u0 of [ei ⇒ fi]i∈I)
c : Xu,0 −→ Y .

22

Example (4)

We have yet a predecessor value:

pv = [s ⇒ id | z ⇒ z] : N → N

and a predecessor computation:

p′
c

= [s ⇒ id | z ⇒ raise.e] : N → N

Now, we get another predecessor computation:

p′′
c

= p′ handle [e ⇒ z] : N → N

Using the rules of the decorated logic, it can be proved that p′′ ≡c p.

It follows that p′′, actually, never raises an exception.

23

• Motivation

• Extensivity and case distinction

• Exceptions: syntax and deduction

• Exceptions: models

• Conclusion

24

The expansion of the decorations

The expansion gets rid of the decorations.

(this is borrowed from the monads [Moggi 1991]).

Definition. Let E be a distinguished type;

— the expansion of a value fv : X → Y

is a function f : X → Y ,

— the expansion of a computation f c : X → Y

is a function f : X → Y + E.

25

Models

Let Σdeco be a decorated specification, and Σexpl its expansion.

Definition. A model of Σdeco is a model of Σexpl.

Theorem. The decorated deduction rules are sound with respect to

the explicit models.

This means that if f ≡v g (for values) or f ≡c g (for computations)

in Σdeco, then M(f) = M(g) in every model of Σexpl.

A proof of this result relies upon the fact that the expansion is a

morphism between diagrammatic logics [Duval, Reynaud 2004].

26

Example (5)

The expansion Σnat,expl of Σnat,deco is Σnat with a function e : U → E:

U
z //
e

))TTTTTTTT N s
gg

E

Then Σnat,expl has a model Mnat,expl:

{∗}
0 //
ε

))SSSSSSSS N succ
ee

{ε}

In this model, both the functions p and p′′ are interpreted as the

predecessor map pred : N → N.

27

• Motivation

• Extensivity and case distinction

• Exceptions: syntax and deduction

• Exceptions: models

• Conclusion

28

What has been done:

The deduction system of a language with exceptions

(without any explicit “type of exceptions”)

and its set-valued interpretation

(with an explicit “set of exceptions”)

are related by a morphism of diagrammatic logics.

What has to be done:

This approach has to be embedded into some model of computation:

maybe distributive computability? [Walters 1992, Vigna 1995]

29

