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FACT:

Logical rules are written as fractions

H

C

IN FACT:

Logical rules ARE fractions
C

H



I – FRACTIONS

P. Gabriel & M. Zisman (1967)



Categorical fractions

Given two categories S, T and a functor S
F // T

a fraction
c

h
: C→H is (“essentially”)

a cospan (h, c) in S such that F (h) is invertible in T
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Localisation and reflection

A functor F : S→ T is

I a localisation if it adds inverses for some morphisms in S .

I a reflector if T is a full subcategory of S and F is left adjoint
to inclusion. Such an adjunction is called a reflection

HomS(S ,T ) ∼= HomT(F (S),T )

S
F

//> // T

⊇full

xx

Theorem. Every reflector is a localisation.



A (usual) fraction: 3
4

Integers:
Z
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(Usual) fractions are categorical fractions

S = Module(Z) the category of modules over Z

T = Vect(Q) the category of vector spaces over Q

F : Module(Z)→ Vect(Q) is the extension of scalars:

F (V ) = Q⊗ V

FACT. A (usual) fraction is a categorical fraction wrt F

Ex. Then F (Z) = Q and
the integer 4 non-invertible in Z becomes
the rational 4 invertible in Q



A logical rule: p p⇒q
q (Modus Ponens)

Sets of formulas:
{p, p⇒q, q}

{p, p⇒q}

⊆ 66

{q}

⊆ff

Sets of generated theorems:
{p, p⇒q, q}

=
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⊆ee
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Logic, specifications, theories

INFORMALLY:

Given a logic, with its formulas and rules, we say that:

I a specification S is a family of formulas

I a theory T is a family of formulas which is closed
under application of the rules



Logical rules are categorical fractions

INFORMALLY:

Let us assume the existence of:

I a category S of specifications

I a category T of theories

I and a generating functor F : S→ T
such that F (S) is the family of formulas (or theorems)
deduced from the formulas (or axioms) in S

FACT. A logical rule is a categorical fraction wrt F

Ex. When modus ponens is a rule of the logic:
let S = {p, p⇒q}:

it is a specification that does not contain q
then F (S) = {p, p⇒q, q, ...}:

it is a theory that contains q



To sum up (I)

A LOGICAL RULE IS A FRACTION

fraction
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rule
H
C

Z

!!Z

×n
==

Z

×d
aa H ∪ C

{{H

h
;;

C

c
bb

A logical rule
H
C

IS a fraction
c

h

“THE HYPOTHESIS BECOMES INVERTIBLE”



II – SKETCHES (“Esquisses”)

C. Ehresmann (1968)

In this talk:

SKETCH = LIMIT SKETCH



Sketches and their realisations

A sketch E is a presentation for a category with limits E
It is made of:

I objects,

I “morphisms” with only “some” identities and composition

I and “limits” with only “some” associated tuples

which become actual objects, morphisms and limits in E

A realisation R of E is a set-valued model of E:
it maps each object, morphism and limit in E
to a set, function and limit in Set

Equivalently, it is a limit-preserving functor R : E→ Set

Real(E) denotes the category of realisations of E



Real(E) is a kind of generalised presheaf

I A linear sketch E has only objects and morphisms (no limit)
then Real(E) = Func(E,Set) is a presheaf category

Ex. Real( V E
soo

t
oo )

is the category Gr of directed graphs

I In general, for a [limit] sketch E,
Real(E) is a locally presentable category

Ex. Real( V E = V 2
soo

t
oo )

is the category Gr1 of directed graphs with
exactly one edge n→ p for each pair of vertices (n, p)

“Many” properties of presheaves
are still valid for locally presentable categories



“What is a logic?”

Yet another proposal:

A LOGIC IS A SKETCH

This is a very simple and very abstract
algebraic proposal...



A logic with modus ponens

Syntactic entities:
formulas (Form) and theorems (Theo)

Each theorem is a formula

Formation rule:

(IM)
p, q : Form

p⇒q : Form

If p and q are formulas then p⇒q is a formula

Deduction rule:

(MP)
[ p, q, p⇒q : Form ] p, p⇒q : Theo

q : Theo

If p and p⇒q are theorems then q is a theorem



A sketch for syntactic entities

Syntactic entities:
formulas (Form) and theorems (Theo)

Each theorem is a formula

Sketch:

Form Theooooo

A realisation R of this sketch is:

I a set of formulas R(Form)

I a set of theorems R(Theo)

I with R(Theo) ⊆ R(Form)



A sketch for the formation rule

Formation rule: (IM)
p, q : Form

p⇒q : Form
If p and q are formulas then p⇒q is a formula

CIM = Form, HIM = Form2

HIM

"" ��

cIM // CIM

��

Form

A realisation R of this sketch is:

I a set of formulas R(Form)

. the sets R(CIM) = R(Form) and R(HIM) = R(Form)2

I and a function R(cIM) : R(HIM)→ R(CIM)
denoted cIM(p, q) = p⇒q



A sketch for the deduction rule

Deduction rule (simplified): (MP)
p, p⇒q : Theo

q : Theo
If p and p⇒q are theorems then q is a theorem

CMP = Theo, HMP ≈ Theo2 (simplified!)

ET =

HMP

uu }}

�� ��

cMP // CMP

��

HIM

"" ��

cIM // CIM

��

Form Theooooo

A realisation of ET is a theory: Real(ET) = T



To sum up (II)

A LOGIC IS A SKETCH

To keep:

I a logic is a sketch ET

I the category of theories is T = Real(ET)

To improve:

I a model of a theory T in a theory D is an arrow M :T→D inT

I a rule is an arrow H
c→ C in ET

Still missing:

I specifications as presentations of theories?

I rules as fractions?



III – SKETCHES and FRACTIONS

From theories to specifications



Morphisms of sketches

A morphism of sketches E1
σ // E2

induces a functor

Real(E1) Real(E2)
qq

E1
σ //

R1=
R2◦σ !!

E2

R2
}}

Set

Theorem. This functor has a left adjoint.

Real(E1) 11> Real(E2)
qq

Thus: each realisation of E1 generates a realisation of E2



Cycles

A “cycle” in E is defined by considering that projections are
oriented both sides

Ex. The formation rule (IM)
p, q : Form

p⇒q : Form

HIM

$$ ��

cIM //

�

CIM

��

Form

Because of cycle “�”, in a theory T ,
for ALL pairs of formulas (p, q) there is a formula p⇒q

Required: in a specification S ,
for SOME pairs of formulas (p, q) there is a formula p⇒q



Breaking cycles

The cycles in E can be broken by making c partial:

replace H
c // C by H H ′oo

hoo c // C

By breaking the cycles in ET we get a sketch ES

and a morphism called a localiser

ES
// ET

such that the corresponding adjunction is a reflection

Real(ES) = S
F

//> // T = Real(ET)

⊇full

ss



Definitions (1/2)

A diagrammatic logic is a sketch ET

I the category of theories is T = Real(ET)

Let σ : ES → ET be a localiser

it defines a reflector F : S→ T

I the category of specifications is S = Real(ES)

I the theory generated by a specification S is F (S)

I a model of a specification S in a theory D is
an arrow M : S → D in S
[ or equivalently, an arrow M : F (S)→ D in T ]



ES
op σop

//

YS

��

ET
op

YT

��

Real(ES) = S
F

//> //

S

""

T = Real(ET)

⊇full

rr

T
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M +3

Set

Y is the Yoneda contravariant embedding

Y : Eop → Real(E) such that Y(X ) = HomE (X ,−)



Definitions (2/2)

Given a diagrammatic logic ET with a localiser σ : ES → ET

I a rule is a fraction in ES wrt σ

Thus, using the Yoneda contravariant embedding Y:

I a rule is a fraction in S wrt F (in the image of ES by Y)



The Yoneda contravariant embedding

Y : Eop → Real(E) is “nearly as nice”
for locally presentable categories as for presheaves

I Y is faithful

I Y maps limits to colimits

I Y(Eop) is dense in Real(E):
each realisation of E is the colimit of realisations in Y(Eop)

The category Real(E) has all colimits (like presheaves)
BUT they cannot be computed sortwise (unlike presheaves)

Ex. Coproduct of graphs v
%%

and w
yy

is

v
%%

w
yy

in Gr BUT v
%% ))

w
yy

ii in Gr1



Breaking the cycle for (IM): sketches

Adding a rule is a morphism:

E0
// ET

HIM

�� ��

CIM

��

Form

→ HIM

��

//

��

CIM

��

Form

that gets factorised by breaking cycles (theorem!):

E0
// ES

// ET

HIM
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Breaking the cycle for (IM): realisations

Eop
0

//

Y0
��

ES
op //

YS
��

ET
op

YT
��

Real(E0)
> // S

F

> //
uu

T

⊇full

ww

Thus, focusing on Y(−)(Form)

{p, q} {r}

→ {p, q, r}

{p, q}

DD

{r}

WW
→

{p, q, p⇒q,...} {r ,...}r 7→p⇒q
oo

we get the fraction
{p, q, p⇒q}

xx

{p, q}

88

{p⇒q}

gg

mm



“Moral”: fractions as presentations

I A specification S in S is a presentation
for the theory T = F (S) in T

I A morphism s : S → S ′ in S is a presentation
for the morphism F (s) : F (S)→ F (S ′) in T

One gets SOME morphisms t : F (S)→ F (S ′) in T

Ex. Every ring is a monoid

I A fraction
c

h
: S→S ′ wrt F is a presentation

for the morphism F (h)−1 ◦ F (c) : F (S)→ F (S ′) in T

One gets ALL morphisms t : F (S)→ F (S ′) in T

Ex. Every boolean algebra is a ring

“MORPHISMS OF THEORIES are presented by
FRACTIONS OF SPECIFICATIONS”



To sum up (III):

A LOGIC IS A SKETCH

and

A LOGICAL RULE IS A FRACTION



IV – Application: COMPUTATIONAL EFFECTS



The state effect in object-oriented programming

Class BankAccount {...
int balance (void) const ;

void deposit (int) ;

...}

From this C++ syntax to an equational specification?

I apparent specification

balance : void→ int

deposit : int→ void

� the object-oriented flavour is preserved
� BUT the intended interpretation is not a model

I explicit specification

balance : state→ int

deposit : int× state→ state

� the intended interpretation is a model,
� BUT the object-oriented flavour is not preserved



I decorated specification

balancea : void→int

depositm : int→void

where the decorations are:

m for modifiers (methods)
a for accessors (“const” methods)

� the intended interpretation is a model
� AND the object-oriented flavour is preserved

Morphisms of logics:

ba : void→int

dm : int→void
2

yy

�
%%

b : void→ int

d : int→ void

b : state→ int

d : int× state→ state



Conclusion: an algebraic framework for logic

� A simple framework:

I A diagrammatic logic is a sketch ET

I A diagrammatic logical rule is a fraction
c

h

� A homogeneous framework:
“the logic of logics is a logic”

� A category of logics:
morphisms of logics are fractions of sketches



THANK YOU!
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