Scalability using effects

Dominique Duval
with J.-C. Reynaud, J.-G. Dumas, L. Fousse, C. Domínguez
LJK, University of Grenoble
June 26, 2013
SLS 2013, Cambridge

Scalability

"The scalability of a computer system is its ability to adapt to increased demands"
increased $=$ larger, more complex

Scalability

"The scalability of a computer system is its ability to adapt to increased demands"
increased $=$ larger, more complex
\square $~ \sim$ \square

Scalability

"The scalability of a computer system is its ability to adapt to increased demands"
increased $=$ larger, more complex

Example.

- The plural form of most nouns is created by adding the letter 's' to the end of the word...
- ... but there are some exceptions...

The "luring" trick

This is a well-known pedagogical trick for teaching complex features:

- first lure the students with some approximation...
- ... then add the required corrections

The "luring" trick

This is a well-known pedagogical trick for teaching complex features:

- first lure the students with some approximation...
- ... then add the required corrections

Scalability in language specification

The "luring" trick is commonly used in programming languages: exceptions and other computational effects

Effects can be formalized in the framework of category theory:

- Monads and Lawvere theories for looking up and updating states, for raising exceptions,... [Moggi 91, Wadler 92, Haskell, Plotkin\&Power 02]
- and handlers
for handling exceptions,...
[Plotkin\&Pretnar 09]
This approach has been compared to the effect systems
[Lucassen\&Gifford 88, Wadler\&Thiemann 03]

In this talk

We propose a candidate for a formal language specification framework which might scale up when applied to large languages.

This framework:

- scales up thanks to a formalization of the "luring" trick
- may sometimes use monads or comonads, e.g.
- the monad $T X=X+E$ for exceptions
- the COmonad $T X=X \times S$ for states
- provides a proof system
- is based on category theory

Exceptions: operations and terms

Syntax: $f: X \rightarrow Y$
Denotation:

- f is pure if $[[f]]:[[X]] \rightarrow[[Y]]$
- f may raise exceptions if $[[f]]:[[X]] \rightarrow[[Y]]+E$
- f may catch exceptions if $[[f]]:[[X]]+E \rightarrow[[Y]]+E$

Exceptions: operations and terms

Syntax: $f: X \rightarrow Y$
Denotation:

- f is pure if $[[f]]:[[X]] \rightarrow[[Y]]$
- f may raise exceptions if $[[f]]:[[X]] \rightarrow[[Y]]+E$
- f may catch exceptions if $[[f]]:[[X]]+E \rightarrow[[Y]]+E$

Decorations (or annotations):

- $f^{(0)}$ if f is pure
- $f^{(1)}$ if f may raise exceptions ($f^{(1)}$ is called a propagator)
- $f^{(2)}$ if f may recover from exceptions $\left(f^{(2)}\right.$ is called a catcher)

Conversions:

- pure \Longrightarrow propagator \Longrightarrow catcher

The "luring" trick for exceptions: operations

The "luring" trick for exceptions: composition of propagators

$$
X \underset{(g \circ f)^{(1)}}{\stackrel{f^{(1)}}{\rightarrow} Y \stackrel{g^{(1)}}{\longrightarrow}} Z
$$

$$
X \underset{\text { gof }}{\stackrel{f}{\underset{~}{g}} Y \stackrel{g}{\underset{~}{s}}} Z
$$

Exceptions: equations

Equations: $f \equiv g: X \rightarrow Y$
Here in the "worst" case: f and g are catchers
i.e., $f^{(2)}, g^{(2)}: X \rightarrow Y$, or $f, g: X+E \rightarrow Y+E$

Denotation:

- the equation is strong if $f=g: X+E \rightarrow Y+E$
- the equation is weak if $\left.f\right|_{X}=\left.g\right|_{X}: X \rightarrow Y+E$

Exceptions: equations

Equations: $f \equiv g: X \rightarrow Y$
Here in the "worst" case: f and g are catchers
i.e., $f^{(2)}, g^{(2)}: X \rightarrow Y$, or $f, g: X+E \rightarrow Y+E$

Denotation:

- the equation is strong if $f=g: X+E \rightarrow Y+E$
- the equation is weak if $\left.f\right|_{X}=\left.g\right|_{X}: X \rightarrow Y+E$

Decorations:

- $f^{(2)} \equiv^{(s t)} g^{(2)}$ if the equation is strong
- $f^{(2)} \equiv^{(w k)} g^{(2)}$ if the equation is weak

Conversions:

- $f \equiv^{(s t)} g \Longrightarrow f \equiv{ }^{(w k)} g$
- if $f^{(1)}$ and $g^{(1)}$ then $f \equiv^{(s t)} g \Longleftrightarrow f \equiv{ }^{(w k)} g$

The "luring" trick for exceptions: equations

$$
\begin{aligned}
& \hline \equiv_{\equiv\left({ }^{(s t)} g: X \rightarrow Y\right.}\left({ }^{(w k)} g: X \rightarrow Y\right.
\end{aligned}
$$

choose
a decoration r^{-}

$$
f \equiv g: X \rightarrow Y
$$

explain the decoration

$$
\begin{aligned}
& f \equiv g: X+E \rightarrow Y+E \\
& \left.\left.f\right|_{X} \equiv g\right|_{X}: X \rightarrow Y+E
\end{aligned}
$$

"Core" operations and equations for exceptions

Several exception names (or types) E_{i} (for $i \in I$). For each exception name E_{i} with parameters of type P_{i}, two operations and two equations:

ordinary value (normal)		exceptional value (abrupt)
a	$\stackrel{\text { tag }_{i}}{\longrightarrow}$	$\boxed{a}{ }_{i}$
a	$\stackrel{\text { utag }_{i}}{\leftrightarrows}$	$\boxed{a} i_{i}$

$$
\begin{aligned}
& \operatorname{tag}_{i}: P_{i} \rightarrow \mathbb{0} \\
& \text { untag }_{i}: 0 \rightarrow P_{i} \\
& \text { untag }_{i} \circ \operatorname{tag}_{i} \equiv{ }^{(w k)} \text { idd }_{P_{i}} \\
& \text { untag }_{i} \circ \operatorname{tag}_{j} \equiv{ }^{(w k)}[]_{p_{i}} \circ \operatorname{tag}_{j} \\
& \quad \text { when } j \neq i
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{tag}_{i}: P_{i} \rightarrow E \\
& \text { untag }_{i}: E \rightarrow P_{i}+E \\
& a \mapsto a_{j} \mapsto a \in P_{i} \\
& \left.a \mapsto a_{j} \mapsto a\right]_{j} \in E
\end{aligned}
$$

Decorated rules for exceptions

We get a decorated inference system by adding decorations - in a proper way! - to some usual inference system. E.g.:

$$
\left(R_{1}\right) \frac{f: 0 \rightarrow X}{f \equiv(w k)[]_{X}}\left(R_{2}\right) \frac{f_{1} \equiv^{(w k)} f_{2}}{g \circ f_{1} \equiv^{(w k)} g \circ f_{2}}\left(R_{3}\right) \frac{g_{1} \equiv^{(w k)} g_{2}}{g_{1} \circ f \equiv{ }^{(w k)} g_{2} \circ f}
$$

Decorated rules for exceptions

We get a decorated inference system by adding decorations - in a proper way! - to some usual inference system. E.g.:

$$
\left(R_{1}\right) \frac{f: 0 \rightarrow X}{f \equiv \equiv^{(w k)}[]_{X}}\left(R_{2}\right) \frac{f_{1} \equiv^{(w k)} f_{2}}{g \circ f_{1} \equiv^{(w k)} g \circ f_{2}}\left(R_{3}\right) \frac{g_{1} \equiv^{(w k)} g_{2}}{g_{1} \circ f \equiv \equiv^{(w k)} g_{2} \circ f}
$$

Exercice. Prove that for all $f: \mathbb{O} \rightarrow \mathbb{O}$ not containing untag ${ }_{i}$:

$$
\operatorname{untag}_{i} \circ f \circ \operatorname{tag}_{i} \equiv^{(w k)} \text { id }_{P_{i}}
$$

Decorated rules for exceptions

We get a decorated inference system by adding decorations - in a proper way! - to some usual inference system. E.g.:

$$
\left(R_{1}\right) \frac{f: 0 \rightarrow X}{f \equiv \equiv^{(w k)}[]_{x}}\left(R_{2}\right) \frac{f_{1} \equiv^{(w k)} f_{2}}{g \circ f_{1} \equiv^{(w k)} g \circ f_{2}}\left(R_{3}\right) \frac{g_{1} \equiv^{(w k)} g_{2}}{g_{1} \circ f \equiv \equiv^{(w k)} g_{2} \circ f}
$$

Exercice. Prove that for all $f: \mathbb{O} \rightarrow \mathbb{0}$ not containing untag ${ }_{i}$:

$$
\operatorname{untag}_{i} \circ f \circ \operatorname{tag}_{i} \equiv^{(w k)} \text { id }_{P_{i}}
$$

Proof. By induction on the structure of f

- if $f^{(1)}$ then use $\left(R_{1}\right)$ and the conversions, then conclude with the axiom untag ${ }_{i} \circ \operatorname{tag}_{i} \equiv{ }^{(w k)}$ id
- if untag ${ }_{j}$ is the first catcher in f then use the axiom untag $_{j} \circ \operatorname{tag}_{i} \equiv^{(w k)}[] \circ \operatorname{tag}_{i}$ and $\left(R_{2}\right)$

"Public" operations for exceptions

The core operations are wrapped
All public operations propagate exceptions

"Public" operations for exceptions

The core operations are wrapped
All public operations propagate exceptions
For raising exceptions: $\operatorname{tag}_{i}: P_{i} \rightarrow \mathbb{O}$ gives rise to throw $_{i, X}: P_{i} \rightarrow X$ for each X :

$$
P_{i} \xrightarrow{\text { throw }_{i, X}} X \quad=\quad P_{i} \xrightarrow{\text { tag }_{i}} \mathbb{O} \xrightarrow{[]_{X}} X
$$

"Public" operations for exceptions

The core operations are wrapped
All public operations propagate exceptions
For raising exceptions: $\mathrm{tag}_{i}: P_{i} \rightarrow \mathbb{O}$ gives rise to throw $_{i, X}: P_{i} \rightarrow X$ for each X :

$$
P_{i} \xrightarrow{\text { throw }_{i, X}} X \quad=\quad P_{i} \xrightarrow{\text { tag }_{i}} \mathbb{O} \xrightarrow{[]_{X}} X
$$

For handling exceptions: untag $: 0 \rightarrow P_{i}$ gives rise to $\operatorname{try}(f) \operatorname{catch}\left(E_{i} \Rightarrow g_{i} \mid \ldots\right): X \rightarrow Y$ for each $f: X \rightarrow Y, g_{i}: P_{i} \rightarrow Y \ldots$:

$$
X \xrightarrow{\operatorname{try}(f) \operatorname{catch}\left(E_{i} \Rightarrow g_{i} \mid \ldots\right)} Y=\ldots
$$

Control flow for $\operatorname{try}(f) \operatorname{catch}\left(E_{i} \Rightarrow g_{i} \mid \ldots\right)$

All conditions are "exc?": "is this value an exception?'

The "luring" trick for exceptions: exc?

Monad and Comonad for exceptions

Syntax: $f: X \rightarrow Y$
Denotation:

- $f^{(0)}$ is pure if $f: X \rightarrow Y$
- $f^{(1)}$ may raise exceptions if $f: X \rightarrow Y+E$
- $f^{(2)}$ may catch exceptions if $f: X+E \rightarrow Y+E$

Monad and Comonad for exceptions

Syntax: $f: X \rightarrow Y$
Denotation:

- $f^{(0)}$ is pure if $f: X \rightarrow Y$
- $f^{(1)}$ may raise exceptions if $f: X \rightarrow Y+E$
- $f^{(2)}$ may catch exceptions if $f: X+E \rightarrow Y+E$

With (co)monads:

- $f^{(0)}: X \rightarrow Y$ is in the base category C_{0}
$T(X)=X+E$ is a monad on \mathbf{C}_{0}
- $f^{(1)}: X \rightarrow Y$ is in the Kleisli category $\mathbf{C}_{1}=\mathrm{KI}\left(\mathbf{C}_{O}, T\right)$
$T(X)=X+E$ is a comonad on \mathbf{C}_{1}
- $f^{(2)}: X \rightarrow Y$ is in the coKleisli category $\mathbf{C}_{2}=\operatorname{coKI}\left(\mathbf{C}_{1}, T\right)$

Comonad and Monad for states

Syntax: $f: X \rightarrow Y$
Denotation:

- $f^{(0)}$ is pure if $f: X \rightarrow Y$
- $f^{(1)}$ may observe the state if $f: X \times S \rightarrow Y$
- $f^{(2)}$ may modify the state if $f: X \times S \rightarrow Y \times S$

Comonad and Monad for states

Syntax: $f: X \rightarrow Y$
Denotation:

- $f^{(0)}$ is pure if $f: X \rightarrow Y$
- $f^{(1)}$ may observe the state if $f: X \times S \rightarrow Y$
- $f^{(2)}$ may modify the state if $f: X \times S \rightarrow Y \times S$

With (co)monads:

- $f^{(0)}: X \rightarrow Y$ is in the base category C_{0} $T(X)=X \times S$ is a comonad on \mathbf{C}_{0}
- $f^{(1)}: X \rightarrow Y$ is in the coKleisli category $\mathbf{C}_{1}=\operatorname{coKI}\left(\mathbf{C}_{O}, T\right)$
$T(X)=X \times S$ is a monad on \mathbf{C}_{1}
- $f^{(2)}: X \rightarrow Y$ is in the Kleisli category $\mathbf{C}_{2}=\mathrm{KI}\left(\mathbf{C}_{1}, T\right)$

The "luring" trick for states: pairs

Application: Sequential product (seq)

"first f_{1} then $f_{2} "$

$$
\begin{aligned}
& X_{1} \xrightarrow{f_{1}} Y_{1} \xrightarrow{\text { id }} Y_{1} \\
& \uparrow \quad \equiv \quad \uparrow \quad \equiv \quad \uparrow \\
& X_{1} \times X_{2}-\cdots Y_{1} \times X_{2}-\rightarrow Y_{1} \times Y_{2}
\end{aligned}
$$

Application: Sequential product (seq)

"first f_{1} then $f_{2} "$

Application: Sequential product (seq)

"first f_{1} then f_{2} "

Conclusion

An effect "is" a span:

DECORATED

small

- right branch: semantics
 \title{
LARGE
}
 \title{
LARGE
}
- left branch: proofs [Coq]
(This framework relies on categorical tools: adjunction, categories of fractions, limit sketches)
- IMPORTANT: provides a stepwise scalability method: the combinaison of effects "is" the composition of spans
- HOPEFULLY: compatible with other scalability methods

THANK YOU

Cited papers

Lucassen\&Gifford 88 J. M. Lucassen, D. K. Gifford. Polymorphic effect systems. POPL 1988.ACM Press, p. 47-57 (1988).

Moggi 91 Eugenio Moggi. Notions of Computation and Monads. Information and Computation 93(1), p. 55-92 (1991).
Plotkin\&Power 02 G. D. Plotkin, J. Power. Notions of Computation Determine Monads. FoSSaCS 2002. LNCS 2303, p. 342-356 (2002).
Plotkin\&Pretnar 09 G. D. Plotkin, M. Pretnar. Handlers of Algebraic Effects. ESOP 2009. LNCS 5502, p. 80-94 (2009).
Wadler 92 P. Wadler. The essence of functional programming. POPL 1992. ACM Press, p. 1-14 (1992).

Wadler\&Thiemann 03 P. Wadler, P.Thiemann. The Marriage of Effects and Monads. ACM Trans. on Computational Logic, 4, p. 1-32 (2003).

Our papers

- About exceptions and states:
- J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. A duality between exceptions and states. MSCS 22 p.719-722 (2012)
- J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. Decorated proofs for computational effects: States. ACCAT 2012. EPTCS 93 p.45-59 (2012)
- J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. Adjunctions for exceptions. arXiv:1207.1255 (2012)
- About the categorical framework:
- C. Domínguez, D. Duval. Diagrammatic logic applied to a parameterization process. MSCS 20 p. 639-654 (2010)
- J.-G.Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. JSC 46 p. 272-293 (2011)

