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Scalability

“The scalability of a computer system is its ability to adapt to
increased demands”

increased = larger, more complex
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Example.

» The plural form of most nouns is created
by adding the letter 's’ to the end of the word...

» ... but there are some exceptions...



The “luring” trick

This is a well-known pedagogical trick for teaching complex
features:

> first lure the students with some approximation...

> ... then add the required corrections
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Scalability in language specification

The “luring” trick is commonly used in programming languages:
exceptions and other computational effects

Effects can be formalized in the framework of category theory:

» Monads and Lawvere theories
for looking up and updating states, for raising exceptions,...
[Moggi 91, Wadler 92, Haskell, Plotkin&Power 02]

» and handlers
for handling exceptions,...
[Plotkin&Pretnar 09]

This approach has been compared to the effect systems
[Lucassen& Gifford 88, Wadler& Thiemann 03]



In this talk

We propose a candidate for a formal language specification
framework which might scale up when applied to large languages.

This framework:

> scales up thanks to a formalization of the “luring” trick
> may sometimes use monads or comonads, e.g.

» the monad TX = X + E for exceptions
» the COmonad TX = X x S for states

» provides a proof system

> is based on category theory



Exceptions: operations and terms

Syntax: f: X =Y

Denotation:
> Fis pure if [[F]]: [X]] = [[V]
» f may raise exceptions if [[f]]: [[X]] = [[Y]] + E
» f may catch exceptions if [[f]]: [[X]]+ E — [[Y]] + E



Exceptions: operations and terms

Syntax: f: X =Y

Denotation:
> Fis pure if [[F]]: [X]] = [[V]
» f may raise exceptions if [[f]]: [[X]] = [[Y]] + E
» f may catch exceptions if [[f]]: [[X]]+ E — [[Y]] + E

Decorations (or annotations):
» O if fis pure
» (U if f may raise exceptions (f(1) is called a propagator)

2)

» () if f may recover from exceptions (f(?) is called a catcher)

Conversions:

> pure = propagator = catcher



The “luring” trick for exceptions: operations

choose a
decoration ~
s

fO. X 5 Y

. X >y
Q. X >y

explain the
decoration

f:X—=Y
f:X—=Y+E
f: X4+E—=Y




The “luring” trick for exceptions: composition of

propagators
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Exceptions: equations

Equations: f=g: X =Y
Here in the “worst” case: f and g are catchers
e, fA g2 X 5 Y orf,g: X+E—Y+E
Denotation:
» the equation is strong if f =g: X+ E —> Y+ E
> the equation is weak if f|x = g|x: X = Y+ E



Exceptions: equations

Equations: f=g: X =Y
Here in the “worst” case: f and g are catchers
e, fA g2 X 5 Y orf,g: X+E—Y+E
Denotation:
» the equation is strong if f =g: X+ E —> Y+ E
> the equation is weak if f|x = g|x: X = Y+ E

Decorations:
» F(2)=(1)g(2) if the equation is strong
» A=Wk g(2) if the equation is weak
Conversions:

» F=0tlg — F=(Whg
» if f(1) and gV then F=0tlg «— =g



The “luring” trick for exceptions: equations

Gg: X =Y
Wg: X =Y

choose explain ]
a decoration o * /\ the decoration

i

f=g: X+E—-Y+E

f=g: X—=>Y
g fleg‘XZX—) Y+E




“Core” operations and equations for exceptions

Several exception names (or types) E; (for i € I).
For each exception name E; with parameters of type P;,
two operations and two equations:

ordinary value exceptional value
(normal) (abrupt)

tag;

a — [a];
untag;

a — [a];

tag;: Pi =0
8i- i tag;: P — E

untag,-: (1_> Pi(wk) 4 untag;: E =+ P, + E
untag; o tag; = idp.
—(wk) \ arr[al—ach;

untag; o tag; = []p, o tag; 2 al s3]l € E
when j # i E]J E]f




Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a
proper way! — to some usual inference system. E.g.:

f f =) f =(wk)
(Rl) 0—X (Ry) 1= 2 . 81 g
=(wk) []X gofy =(Wk) gofy giof =Wk) grof
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Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a

proper way! — to some usual inference system. E.g.:
f:0—=X fi =(wk) £, =(wk)
(Rl) - (R») 1= _ 2 2 gl_ . &2
(wh) []x gofy ="K gofy giof ="K gyof

Exercice. Prove that for all f : 0 — O not containing untag;:

—(wk)

untag; o f o tag; = idp,

Proof. By induction on the structure of f

» if f(1) then use (R;) and the conversions, then conclude with
the axiom untag; o tag; =(wk) i4

» if untag; is the first catcher in f then use the axiom
untag; o tag; ="k [] o tag; and (R,)



“Public” operations for exceptions

The core operations are wrapped

All public operations propagate exceptions
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“Public” operations for exceptions

The core operations are wrapped
All public operations propagate exceptions

For raising exceptions: tag;: P; — O gives rise to
throw; x: P; — X for each X:

throw; x

P, X _ P, tag; 0 [1x X

For handling exceptions: untag;: 0 — P; gives rise to
try(f)catch(E; = gi|...): X =Y
foreachf: X =Y, g :Pi—=Y...:

X try(f)catch(Ei=gil...) y _




Control flow for try(f)catch(E; = g ...)

All conditions are "exc?": “is this value an exception?’

|
4

V exc’ x
.

vy exc? N
untaggz) / \
!
| gi(l)
¢ |

’ normal or abrupt‘




The “luring” trick for exceptions: exc?




Monad and Comonad for exceptions

Syntax: f: X =Y
Denotation:
» FO) s pureif f: X = Y
» (1) may raise exceptions if f: X — Y + E
» (2 may catch exceptions if f: X + E — Y + E



Monad and Comonad for exceptions

Syntax: f: X =Y
Denotation:
» O s pureif f: X = Y
» (1) may raise exceptions if f: X — Y + E
» (2 may catch exceptions if f: X + E — Y + E

With (co)monads:

» 0 X = Y is in the base category Cg
T(X)= X+ E is a monad on Cy

» f(: X — Y is in the Kleisli category C; = KI(Cp, T)
T(X)= X+ E is a comonad on C;

» f(2) . X — Y is in the coKleisli category C> = coKI(Cy, T)



Comonad and Monad for states

Syntax: f: X =Y
Denotation:
» FO) s pureif f: X = Y
» (1) may observe the state if f: X x S — Y
» (2 may modify the state if f: X xS — Y x S



Comonad and Monad for states

Syntax: f: X =Y
Denotation:
» O s pureif f: X = Y
» (1) may observe the state if f: X x S — Y
» (2 may modify the state if f: X xS — Y x S

With (co)monads:

» 0 X = Y is in the base category Cg
T(X) =X xS is a comonad on Cy

» f(1) X — Y is in the coKleisli category C; = coKI(Cp, T)
T(X) =X xS is a monad on C;

» £(2) . X — Y is in the Kleisli category C, = KI(Cy, T)



The “luring” trick for states: pairs
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Application: Sequential product (seq)

“first fi then 5"

X i vi— 4 sy
T o= 1= 1
X1XX2***%Y1XX2***%Y1XY2
! = ! ; !

Xo Xo Yo



Application: Sequential product (seq)

“first fi then 5"

X, E Y, id Y,
T o= 1= 1
X1XX2***%Y1XX2***%Y1XY2
! = ! = !
X, X, e Y,
/h
fi id\/ fi
X1 Y1 Y1 < X1—>Y1
T o= 1 = 1 T o= 7
X1><X2**%Y1><X2**$Y1><Y2 X1><X2**%Y1><Y2
=1 =z | 1= 1
X2 = X2 Y2 X2—>Y2



Application: Sequential product (seq)

“first fi then 5"

X i Yy i Yy
A
X1XX2***%Y1XX2***%Y1XY2

! = ! = !

Xo X, E Yy
X1XSL>Y1><5 Yl#yl
o= 1 1 =

XiXxXoxS5-3YixXox5-3YixXox5-3Y1xYax$§

l = 1 i = i

-

X214>X2 X2X542>Y2XS

o



Conclusion

An effect “is” a span:

DECORATED ||
= T

LARGE

> right branch: semantics
» left branch: proofs [Coq]

(This framework relies on categorical tools:
adjunction, categories of fractions, limit sketches)
» IMPORTANT: provides a stepwise scalability method:
the combinaison of effects “is"”

is" the composition of spans
» HOPEFULLY: compatible with other scalability methods



THANK YOU
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