Scalability using effects

Dominique Duval with J.-C. Reynaud, J.-G. Dumas, L. Fousse, C. Domínguez

LJK, University of Grenoble

June 26, 2013 SLS 2013, Cambridge

Scalability

"The scalability of a computer system is its ability to adapt to increased demands"

increased = larger, more complex

Scalability

"The scalability of a computer system is its ability to adapt to increased demands"

increased = larger, more complex

Scalability

"The scalability of a computer system is its ability to adapt to increased demands"

increased = larger, more complex

Example.

- ► The plural form of most nouns is created by adding the letter 's' to the end of the word...
- but there are some exceptions...

The "luring" trick

This is a well-known pedagogical trick for teaching complex features:

- first lure the students with some approximation...
- ... then add the required corrections

The "luring" trick

This is a well-known pedagogical trick for teaching complex features:

- first lure the students with some approximation...
- ... then add the required corrections

Scalability in language specification

The "luring" trick is commonly used in programming languages: exceptions and other computational effects

Effects can be formalized in the framework of category theory:

- Monads and Lawvere theories for looking up and updating states, for raising exceptions,... [Moggi 91, Wadler 92, Haskell, Plotkin&Power 02]
- and handlers for handling exceptions,... [Plotkin&Pretnar 09]

This approach has been compared to the effect systems [Lucassen&Gifford 88, Wadler&Thiemann 03]

In this talk

We propose a candidate for a formal language specification framework which might scale up when applied to large languages.

This framework:

- scales up thanks to a formalization of the "luring" trick
- may sometimes use monads or comonads, e.g.
 - the monad TX = X + E for exceptions
 - the COmonad $TX = X \times S$ for states
- provides a proof system
- is based on category theory

Exceptions: operations and terms

Syntax: $f: X \rightarrow Y$

Denotation:

- f is pure if $[[f]]: [[X]] \rightarrow [[Y]]$
- ▶ f may raise exceptions if $[[f]]: [[X]] \rightarrow [[Y]] + E$
- ▶ f may catch exceptions if [[f]]: $[[X]] + E \rightarrow [[Y]] + E$

Exceptions: operations and terms

Syntax: $f: X \rightarrow Y$

Denotation:

- f is pure if $[[f]]: [[X]] \rightarrow [[Y]]$
- ▶ f may raise exceptions if $[[f]]: [[X]] \rightarrow [[Y]] + E$
- ▶ f may catch exceptions if [[f]]: $[[X]] + E \rightarrow [[Y]] + E$

Decorations (or annotations):

- $f^{(0)}$ if f is pure
- ▶ $f^{(1)}$ if f may raise exceptions ($f^{(1)}$ is called a propagator)
- $f^{(2)}$ if f may recover from exceptions ($f^{(2)}$ is called a catcher)

Conversions:

▶ pure ⇒ propagator ⇒ catcher

The "luring" trick for exceptions: operations

The "luring" trick for exceptions: composition of propagators

Exceptions: equations

Equations: $f \equiv g: X \rightarrow Y$

Here in the "worst" case: f and g are catchers i.e., $f^{(2)}, g^{(2)}: X \to Y$, or $f, g: X + E \to Y + E$

Denotation:

- ▶ the equation is strong if $f = g: X + E \rightarrow Y + E$
- ▶ the equation is weak if $f|_X = g|_X : X \to Y + E$

Exceptions: equations

Equations: $f \equiv g: X \rightarrow Y$

Here in the "worst" case: f and g are catchers i.e., $f^{(2)}, g^{(2)}: X \to Y$, or $f, g: X + E \to Y + E$

Denotation:

- ▶ the equation is strong if $f = g: X + E \rightarrow Y + E$
- ▶ the equation is weak if $f|_X = g|_X \colon X \to Y + E$

Decorations:

- $f^{(2)} \equiv^{(st)} g^{(2)}$ if the equation is strong
- $f^{(2)} \equiv^{(wk)} g^{(2)}$ if the equation is weak

Conversions:

- if $f^{(1)}$ and $g^{(1)}$ then $f \equiv^{(st)} g \iff f \equiv^{(wk)} g$

The "luring" trick for exceptions: equations

choose a decoration
$$f \equiv (st) g: X \to Y \\ f \equiv (wk) g: X \to Y$$

$$f \equiv g: X \to Y$$

$$f \equiv g: X + E \to Y + E \\ f|_{X} \equiv g|_{X}: X \to Y + E$$

"Core" operations and equations for exceptions

Several exception names (or types) E_i (for $i \in I$). For each exception name E_i with parameters of type P_i , two operations and two equations:

ordinary value		exceptional value
(normal)		(abrupt)
а	$\xrightarrow{\mathtt{tag}_i}$	a
а	\leftarrow	$[a]_i$

Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a proper way! — to some usual inference system. E.g.:

$$(R_1)\frac{f:\mathbb{O}\to X}{f\equiv^{(wk)}[]_X} (R_2)\frac{f_1\equiv^{(wk)}f_2}{g\circ f_1\equiv^{(wk)}g\circ f_2} (R_3)\frac{g_1\equiv^{(wk)}g_2}{g_1\circ f\equiv^{(wk)}g_2\circ f}$$

Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a proper way! — to some usual inference system. E.g.:

$$(R_1)\frac{f:\mathbb{O}\to X}{f\equiv^{(wk)}[]_X} (R_2)\frac{f_1\equiv^{(wk)}f_2}{g\circ f_1\equiv^{(wk)}g\circ f_2} (R_3)\frac{g_1\equiv^{(wk)}g_2}{g_1\circ f\equiv^{(wk)}g_2\circ f}$$

Exercice. Prove that for all $f: \mathbb{O} \to \mathbb{O}$ not containing untag_i:

$$\operatorname{untag}_i \circ f \circ \operatorname{tag}_i \equiv^{(wk)} \operatorname{id}_{P_i}$$

Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a proper way! — to some usual inference system. E.g.:

$$(R_1)\frac{f:\mathbb{O}\to X}{f\equiv^{(wk)}[]_X} (R_2)\frac{f_1\equiv^{(wk)}f_2}{g\circ f_1\equiv^{(wk)}g\circ f_2} (R_3)\frac{g_1\equiv^{(wk)}g_2}{g_1\circ f\equiv^{(wk)}g_2\circ f}$$

Exercice. Prove that for all $f: \mathbb{O} \to \mathbb{O}$ not containing untag_i:

$$\operatorname{untag}_i \circ f \circ \operatorname{tag}_i \equiv^{(wk)} \operatorname{id}_{P_i}$$

Proof. By induction on the structure of f

- ▶ if $f^{(1)}$ then use (R_1) and the conversions, then conclude with the axiom $\operatorname{untag}_i \circ \operatorname{tag}_i \equiv^{(wk)} \operatorname{id}$
- ▶ if untag_{j} is the first catcher in f then use the axiom $\operatorname{untag}_{i} \circ \operatorname{tag}_{i} \equiv^{(wk)} [] \circ \operatorname{tag}_{i}$ and (R_{2})

"Public" operations for exceptions

The core operations are wrapped

All public operations propagate exceptions

"Public" operations for exceptions

The core operations are wrapped

All public operations propagate exceptions

For raising exceptions: $tag_i: P_i \to \mathbb{O}$ gives rise to $throw_{i,X}: P_i \to X$ for each X:

$$P_i \xrightarrow{\operatorname{throw}_{i,X}} X = P_i \xrightarrow{\operatorname{tag}_i} \mathbb{O} \xrightarrow{[]_X} X$$

"Public" operations for exceptions

The core operations are wrapped

All public operations propagate exceptions

For raising exceptions: $tag_i: P_i \to \mathbb{O}$ gives rise to $throw_{i,X}: P_i \to X$ for each X:

$$P_i \xrightarrow{\operatorname{throw}_{i,X}} X = P_i \xrightarrow{\operatorname{tag}_i} \mathbb{O} \xrightarrow{[]_X} X$$

For handling exceptions: $\operatorname{untag}_i : \mathbb{O} \to P_i$ gives rise to $\operatorname{try}(f)\operatorname{catch}(E_i \Rightarrow g_i | \dots) : X \to Y$ for each $f: X \to Y$, $g_i: P_i \to Y \dots$:

$$X \xrightarrow{\operatorname{try}(f)\operatorname{catch}(E_i \Rightarrow g_i|\dots)} Y = \dots$$

Control flow for $\operatorname{try}(f)\operatorname{catch}(E_i \Rightarrow g_i | \dots)$

All conditions are "exc?": "is this value an exception?"

The "luring" trick for exceptions: exc?

Monad and Comonad for exceptions

Syntax: $f: X \rightarrow Y$

Denotation:

- $f^{(0)}$ is pure if $f: X \to Y$
- ▶ $f^{(1)}$ may raise exceptions if $f: X \to Y + E$
- ▶ $f^{(2)}$ may catch exceptions if $f: X + E \rightarrow Y + E$

Monad and Comonad for exceptions

Syntax: $f: X \rightarrow Y$

Denotation:

- $f^{(0)}$ is pure if $f: X \to Y$
- ▶ $f^{(1)}$ may raise exceptions if $f: X \to Y + E$
- ▶ $f^{(2)}$ may catch exceptions if $f: X + E \rightarrow Y + E$

With (co)monads:

- $f^{(0)}: X \to Y$ is in the base category \mathbf{C}_0 • T(X) = X + E is a monad on \mathbf{C}_0
- ▶ $f^{(1)}: X \to Y$ is in the Kleisli category $\mathbf{C}_1 = \mathbf{KI}(\mathbf{C}_O, T)$ T(X) = X + E is a comonad on \mathbf{C}_1
- $f^{(2)}: X \to Y$ is in the coKleisli category $\mathbb{C}_2 = \operatorname{coKl}(\mathbb{C}_1, T)$

Comonad and Monad for states

Syntax: $f: X \rightarrow Y$

Denotation:

- $f^{(0)}$ is pure if $f: X \to Y$
- ▶ $f^{(1)}$ may observe the state if $f: X \times S \rightarrow Y$
- ▶ $f^{(2)}$ may modify the state if $f: X \times S \to Y \times S$

Comonad and Monad for states

Syntax: $f: X \rightarrow Y$

Denotation:

- $f^{(0)}$ is pure if $f: X \to Y$
- ▶ $f^{(1)}$ may observe the state if $f: X \times S \to Y$
- ▶ $f^{(2)}$ may modify the state if $f: X \times S \to Y \times S$

With (co)monads:

- ▶ $f^{(0)}: X \to Y$ is in the base category \mathbf{C}_0 $T(X) = X \times S$ is a comonad on \mathbf{C}_0
- ▶ $f^{(1)}: X \to Y$ is in the coKleisli category $\mathbf{C}_1 = \mathbf{coKl}(\mathbf{C}_O, T)$ $T(X) = X \times S$ is a monad on \mathbf{C}_1
- $f^{(2)}: X \to Y$ is in the Kleisli category $C_2 = KI(C_1, T)$

The "luring" trick for states: pairs

Application: Sequential product (seq)

"first f_1 then f_2 "

Application: Sequential product (seq)

"first f_1 then f_2 "

Application: Sequential product (seq)

"first f_1 then f_2 "

$$X_{1} \xrightarrow{f_{1}} Y_{1} \xrightarrow{\operatorname{id}} Y_{1}$$

$$\uparrow \qquad \equiv \qquad \uparrow \qquad \equiv \qquad \uparrow$$

$$X_{1} \times X_{2} - - - \rightarrow Y_{1} \times X_{2} - - - \rightarrow Y_{1} \times Y_{2}$$

$$\downarrow \qquad \equiv \qquad \downarrow \qquad \equiv \qquad \downarrow$$

$$X_{2} \xrightarrow{\operatorname{id}} X_{2} \xrightarrow{f_{2}} Y_{2}$$

$$X_{1} \times S \xrightarrow{f_{1}} Y_{1} \times S \qquad \uparrow \qquad \Rightarrow Y_{1}$$

$$\uparrow \qquad \equiv \qquad \uparrow \qquad \uparrow \qquad \equiv \qquad \uparrow$$

$$X_{1} \times X_{2} \times S \xrightarrow{f_{1}} Y_{1} \times X_{2} \times S \xrightarrow{\operatorname{id}} Y_{1} \times X_{2} \times S \xrightarrow{f_{2}} Y_{2} \times S$$

$$\downarrow \qquad \equiv \qquad \downarrow \qquad \downarrow \qquad \equiv \qquad \downarrow$$

$$X_{2} \xrightarrow{\operatorname{id}} X_{2} \qquad X_{2} \times S \xrightarrow{f_{2}} Y_{2} \times S$$

Conclusion

An effect "is" a span:

- right branch: semantics
- left branch: proofs [Coq]

(This framework relies on categorical tools: adjunction, categories of fractions, limit sketches)

- ► IMPORTANT: provides a stepwise scalability method: the combinaison of effects "is" the composition of spans
- ▶ HOPEFULLY: compatible with other scalability methods

THANK YOU

Cited papers

- Lucassen&Gifford 88 J. M. Lucassen, D. K. Gifford. Polymorphic effect systems. POPL 1988.ACM Press, p. 47-57 (1988).
 - Moggi 91 Eugenio Moggi. Notions of Computation and Monads. Information and Computation 93(1), p. 55-92 (1991).
- Plotkin&Power 02 G. D. Plotkin, J. Power. Notions of Computation Determine Monads. FoSSaCS 2002. LNCS 2303, p. 342-356 (2002).
- Plotkin&Pretnar 09 G. D. Plotkin, M. Pretnar. Handlers of Algebraic Effects. ESOP 2009. LNCS 5502, p. 80-94 (2009).
 - Wadler 92 P. Wadler. The essence of functional programming. POPL 1992. ACM Press, p. 1-14 (1992).
- Wadler&Thiemann 03 P. Wadler, P.Thiemann. The Marriage of Effects and Monads. ACM Trans. on Computational Logic, 4, p. 1-32 (2003).

Our papers

- About exceptions and states:
 - ▶ J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. A duality between exceptions and states. MSCS 22 p.719-722 (2012)
 - J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. Decorated proofs for computational effects: States. ACCAT 2012. EPTCS 93 p.45-59 (2012)
 - ▶ J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. Adjunctions for exceptions. arXiv:1207.1255 (2012)
- About the categorical framework:
 - C. Domínguez, D. Duval. Diagrammatic logic applied to a parameterization process. MSCS 20 p. 639-654 (2010)
 - J.-G.Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. JSC 46 p. 272-293 (2011)