Scalability using effects

Dominique Duval
with J.-C. Reynaud, J.-G. Dumas, L. Fousse, C. Dominguez

LJK, University of Grenoble

June 26, 2013
SLS 2013, Cambridge

Scalability

“The scalability of a computer system is its ability to adapt to
increased demands”

increased = larger, more complex

Scalability

“The scalability of a computer system is its ability to adapt to
increased demands”

increased = larger, more complex

~—— | LARGE

Scalability

“The scalability of a computer system is its ability to adapt to
increased demands”

increased = larger, more complex

~—— | LARGE

Example.

» The plural form of most nouns is created
by adding the letter 's’ to the end of the word...

» ... but there are some exceptions...

The “luring” trick

This is a well-known pedagogical trick for teaching complex
features:

> first lure the students with some approximation...

> ... then add the required corrections

The “luring” trick

This is a well-known pedagogical trick for teaching complex

features:

> first lure the students with some approximation...

> ... then add the required corrections

approximation
+ correction

approximation
(wrong)

~

corrected version
(right)

Scalability in language specification

The “luring” trick is commonly used in programming languages:
exceptions and other computational effects

Effects can be formalized in the framework of category theory:

» Monads and Lawvere theories
for looking up and updating states, for raising exceptions,...
[Moggi 91, Wadler 92, Haskell, Plotkin&Power 02]

» and handlers
for handling exceptions,...
[Plotkin&Pretnar 09]

This approach has been compared to the effect systems
[Lucassen& Gifford 88, Wadler& Thiemann 03]

In this talk

We propose a candidate for a formal language specification
framework which might scale up when applied to large languages.

This framework:

> scales up thanks to a formalization of the “luring” trick
> may sometimes use monads or comonads, e.g.

» the monad TX = X + E for exceptions
» the COmonad TX = X x S for states

» provides a proof system

> is based on category theory

Exceptions: operations and terms

Syntax: f: X =Y

Denotation:
> Fis pure if [[F]]: [X]] = [[V]
» f may raise exceptions if [[f]]: [[X]] = [[Y]] + E
» f may catch exceptions if [[f]]: [[X]]+ E — [[Y]] + E

Exceptions: operations and terms

Syntax: f: X =Y

Denotation:
> Fis pure if [[F]]: [X]] = [[V]
» f may raise exceptions if [[f]]: [[X]] = [[Y]] + E
» f may catch exceptions if [[f]]: [[X]]+ E — [[Y]] + E

Decorations (or annotations):
» O if fis pure
» (U if f may raise exceptions (f(1) is called a propagator)

2)

» () if f may recover from exceptions (f(?) is called a catcher)

Conversions:

> pure = propagator = catcher

The “luring” trick for exceptions: operations

choose a
decoration ~
s

fO. X 5 Y

. X >y
Q. X >y

explain the
decoration

f:X—=Y
f:X—=Y+E
f: X4+E—=Y

The “luring” trick for exceptions: composition of

propagators

£ g(l)
X—=Y =57

(o)™

XDy 57

gof

Z+E+E

Exceptions: equations

Equations: f=g: X =Y
Here in the “worst” case: f and g are catchers
e, fA g2 X 5 Y orf,g: X+E—Y+E
Denotation:
» the equation is strong if f =g: X+ E —> Y+ E
> the equation is weak if f|x = g|x: X = Y+ E

Exceptions: equations

Equations: f=g: X =Y
Here in the “worst” case: f and g are catchers
e, fA g2 X 5 Y orf,g: X+E—Y+E
Denotation:
» the equation is strong if f =g: X+ E —> Y+ E
> the equation is weak if f|x = g|x: X = Y+ E

Decorations:
» F(2)=(1)g(2) if the equation is strong
» A=Wk g(2) if the equation is weak
Conversions:

» F=0tlg — F=(Whg
» if f(1) and gV then F=0tlg «— =g

The “luring” trick for exceptions: equations

Gg: X =Y
Wg: X =Y

choose explain]
a decoration o * /\ the decoration

i

f=g: X+E—-Y+E

f=g: X—=>Y
g fleg‘XZX—) Y+E

“Core” operations and equations for exceptions

Several exception names (or types) E; (for i € I).
For each exception name E; with parameters of type P;,
two operations and two equations:

ordinary value exceptional value
(normal) (abrupt)

tag;

a — [a];
untag;

a — [a];

tag;: Pi =0
8i- i tag;: P — E

untag,-: (1_> Pi(wk) 4 untag;: E =+ P, + E
untag; o tag; = idp.
—(wk) \ arr[al—ach;

untag; o tag; = []p, o tag; 2 al s3]l € E
when j # i E]J E]f

Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a
proper way! — to some usual inference system. E.g.:

f f =) f =(wk)
(Rl) 0—X (Ry) 1= 2 . 81 g
=(wk) []X gofy =(Wk) gofy giof =Wk) grof

Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a

proper way! — to some usual inference system. E.g.:
f:0—=X fi =(wk) £, =(wk)
(Rl) - (R») 1= _ 2 2 gl_ . &2
(wh) []x gofy ="K gofy giof ="K gyof

Exercice. Prove that for all f : 0 — O not containing untag;:

—(wk)

untag; o f o tag; = idp,

Decorated rules for exceptions

We get a decorated inference system by adding decorations — in a

proper way! — to some usual inference system. E.g.:
f:0—=X fi =(wk) £, =(wk)
(Rl) - (R») 1= _ 2 2 gl_ . &2
(wh) []x gofy ="K gofy giof ="K gyof

Exercice. Prove that for all f : 0 — O not containing untag;:

—(wk)

untag; o f o tag; = idp,

Proof. By induction on the structure of f

» if f(1) then use (R;) and the conversions, then conclude with
the axiom untag; o tag; =(wk) i4

» if untag; is the first catcher in f then use the axiom
untag; o tag; ="k [] o tag; and (R,)

“Public” operations for exceptions

The core operations are wrapped

All public operations propagate exceptions

“Public” operations for exceptions

The core operations are wrapped
All public operations propagate exceptions

For raising exceptions: tag;: P; — O gives rise to
throw; x: P; — X for each X:

throw; x tag;

[1x

P; X = P 0 X

“Public” operations for exceptions

The core operations are wrapped
All public operations propagate exceptions

For raising exceptions: tag;: P; — O gives rise to
throw; x: P; — X for each X:

throw; x

P, X _ P, tag; 0 [1x X

For handling exceptions: untag;: 0 — P; gives rise to
try(f)catch(E; = gi|...): X =Y
foreachf: X =Y, g :Pi—=Y...:

X try(f)catch(Ei=gil...) y _

Control flow for try(f)catch(E; = g ...)

All conditions are "exc?": “is this value an exception?’

|
4

V exc’ x
.

vy exc? N
untaggz) / \
!
| gi(l)
¢ |

’ normal or abrupt‘

The “luring” trick for exceptions: exc?

Monad and Comonad for exceptions

Syntax: f: X =Y
Denotation:
» FO) s pureif f: X = Y
» (1) may raise exceptions if f: X — Y + E
» (2 may catch exceptions if f: X + E — Y + E

Monad and Comonad for exceptions

Syntax: f: X =Y
Denotation:
» O s pureif f: X = Y
» (1) may raise exceptions if f: X — Y + E
» (2 may catch exceptions if f: X + E — Y + E

With (co)monads:

» 0 X = Y is in the base category Cg
T(X)= X+ E is a monad on Cy

» f(: X — Y is in the Kleisli category C; = KI(Cp, T)
T(X)= X+ E is a comonad on C;

» f(2) . X — Y is in the coKleisli category C> = coKI(Cy, T)

Comonad and Monad for states

Syntax: f: X =Y
Denotation:
» FO) s pureif f: X = Y
» (1) may observe the state if f: X x S — Y
» (2 may modify the state if f: X xS — Y x S

Comonad and Monad for states

Syntax: f: X =Y
Denotation:
» O s pureif f: X = Y
» (1) may observe the state if f: X x S — Y
» (2 may modify the state if f: X xS — Y x S

With (co)monads:

» 0 X = Y is in the base category Cg
T(X) =X xS is a comonad on Cy

» f(1) X — Y is in the coKleisli category C; = coKI(Cp, T)
T(X) =X xS is a monad on C;

» £(2) . X — Y is in the Kleisli category C, = KI(Cy, T)

The “luring” trick for states: pairs

v

—

Yi
f _ Tprl
X**%_le Y,

X Ler

Y

f
X**%j/l

g

Y1

Tprl

X Y2

\ iprz

Yo

Xx§5—-—->

i<

Y1

<—

X Yo xS

!

Y2><5

Application: Sequential product (seq)

“first fi then 5"

X i vi— 4 sy
T o= 1= 1
X1XX2***%Y1XX2***%Y1XY2
! = ! ; !

Xo Xo Yo

Application: Sequential product (seq)

“first fi then 5"

X, E Y, id Y,
T o= 1= 1
X1XX2***%Y1XX2***%Y1XY2
! = ! = !
X, X, e Y,
/h
fi id\/ fi
X1 Y1 Y1 < X1—>Y1
T o= 1 = 1 T o= 7
X1><X2**%Y1><X2**$Y1><Y2 X1><X2**%Y1><Y2
=1 =z | 1= 1
X2 = X2 Y2 X2—>Y2

Application: Sequential product (seq)

“first fi then 5"

X i Yy i Yy
A
X1XX2***%Y1XX2***%Y1XY2

! = ! = !

Xo X, E Yy
X1XSL>Y1><5 Yl#yl
o= 1 1 =

XiXxXoxS5-3YixXox5-3YixXox5-3Y1xYax$§

l = 1 i = i

-

X214>X2 X2X542>Y2XS

o

Conclusion

An effect “is” a span:

DECORATED ||
= T

LARGE

> right branch: semantics
» left branch: proofs [Coq]

(This framework relies on categorical tools:
adjunction, categories of fractions, limit sketches)
» IMPORTANT: provides a stepwise scalability method:
the combinaison of effects “is"”

is" the composition of spans
» HOPEFULLY: compatible with other scalability methods

THANK YOU

Cited papers

Lucassen&Gifford 88 J. M. Lucassen, D. K. Gifford. Polymorphic effect
systems. POPL 1988.ACM Press, p. 47-57 (1988).

Moggi 91 Eugenio Moggi. Notions of Computation and Monads.
Information and Computation 93(1), p. 55-92 (1991).

Plotkin&Power 02 G. D. Plotkin, J. Power. Notions of Computation Determine
Monads. FoSSaCS 2002. LNCS 2303, p. 342-356 (2002).

Plotkin&Pretnar 09 G. D. Plotkin, M. Pretnar. Handlers of Algebraic Effects.
ESOP 2009. LNCS 5502, p. 80-94 (2009).

Wadler 92 P. Wadler. The essence of functional programming. POPL
1992. ACM Press, p. 1-14 (1992).

Wadler& Thiemann 03 P. Wadler, P.Thiemann. The Marriage of Effects and
Monads. ACM Trans. on Computational Logic, 4, p. 1-32
(2003).

Our papers

> About exceptions and states:

» J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. A duality
between exceptions and states. MSCS 22 p.719-722 (2012)

» J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. Decorated
proofs for computational effects: States. ACCAT 2012.
EPTCS 93 p.45-59 (2012)

» J.-G.Dumas, D. Duval, L. Fousse, J.-C. Reynaud. Adjunctions
for exceptions. arXiv:1207.1255 (2012)

» About the categorical framework:

» C. Dominguez, D. Duval. Diagrammatic logic applied to a
parameterization process. MSCS 20 p. 639-654 (2010)

» J.-G.Dumas, D. Duval, J.-C. Reynaud. Cartesian effect
categories are Freyd-categories. JSC 46 p. 272-293 (2011)

