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This talk IS NOT about
extracting programs from proofs

This talk IS about
designing proof systems from programming features



The Curry Howard Lambek correspondence

intuitionistic typed lambda cartesian closed
logic calculus categories

propositions types objects

proofs terms morphisms

What about non-functional features in programming languages?
i.e., what about computational effects?

Claim. Each computational effect has an associated logic

This talk IS about
the effects of states and exceptions, with their logics



A surprising result

There is a symmetry between the logics for states and exceptions,
based on the well-known categorical duality:

for states for exceptions

X 7→ X × S X 7→ X + E

with fixed S with fixed E
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Exceptions: values

When dealing with exceptions, there are two kinds of values:

I non-exceptional values

I exceptions

X + Exc =
X

Exc



Exceptions: functions

f : X + Exc → Y + Exc

I f throws an exception if it may
map a non-exceptional value to an exception

X

**TTTTTTTTTTT Y
Exc Exc

I f catches an exception if it may
map an exception to a non-exceptional value

X 44jjjjjjjjjjj

Y
Exc Exc



Exceptions: the KEY THROW operations

Exc = set of exceptions
ExCstr = set of exception constructors (or exception types)

For each i ∈ ExCstr :

I Par i = set of parameters

I t i : Par i → Exc = the KEY THROW operations

or t i : Par i + Exc → Exc such that ∀ e ∈ Exc , t i (e) = e

Par i
**TTTTTTTTTTT ∅

Exc Exc

– t i throws exceptions of constructor i

– t i propagates exceptions

E.g. Exc =
∑

i Par i with the t i ’s as coprojections



Exceptions: the KEY CATCH operations

For each i ∈ ExCstr :

I c i : Exc → Par i + Exc = the KEY CATCH operations

∀ p ∈ Par i

{
c i (t i (p)) = p ∈ Par i ⊆ Par i + Exc

c i (t j(p)) = t j(p) ∈ Exc ⊆ Par i + Exc (∀ j 6= i)

∅ 44jjjjjjjjjjj

Par i
Exc Exc

– c i catches exceptions of constructor i

– c i propagates exceptions of constructor j 6= i

E.g. Exc =
∑

i Par i with the t i ’s as coprojections:
these equations define the c i ’s



Exceptions: the RAISE (or THROW) construction

The key throwing and catching operations are encapsulated
for building the usual raising and handling constructions.

I From key throwing (t i )
to raising (raise i ,Y or throw i ,Y ):

raise i ,Y (a) = t i (a) ∈ Y + Exc

Par i
raise i,Y

//

t i
**VVVVVVVVVVVVVVVVVVV Y + Exc

=

Exc

⊆
OO



Exceptions: the HANDLE (or TRY...CATCH) construction

I From key catching (c i )
to catching (catch i {g}):

Par i
⊆

��

g

,,YYYYYYYYYYYYYYYYYYYYYYYY

Exc
c i // Par i + Exc //

=

=
Y + Exc

Exc

⊆
OO

⊆

22eeeeeeeeeeeeeeeeeeeeeeeee

I From catching (catch i {g})
to handling (f handle i ⇒ g or try {f }catch i {g}):

Y
⊆

��

⊆
,,YYYYYYYYYYYYYYYYYYYYYYYY

X
f // Y + Exc //

=

=
Y + Exc

Exc

⊆
OO

catch i {g}

22eeeeeeeeeeeeeeeeeeeeeeee



States

St = set of states
Loc = set of locations

For each i ∈ Loc:

I Val i = set of values

I l i : St → Val i = lookup function

or l i : St → Val i × St such that ∀s ∈ St, l i (s) = (−, s)

I ui : Val i × St → St = update function

∀ vi ∈ Val i ∀ s ∈ St

{
l i (ui (vi , s)) = vi

l j(ui (vi , s)) = l j(s) (∀ j 6= i)

E.g. St =
∏

i Val i with the l i ’s as projections:
these equations define the ui ’s



Duality of semantics

States Exceptions

i ∈ Loc, Val i i ∈ ExCstr , Par i

St (=
∏

i∈Loc Val i ) Exc (=
∑

i∈ExCstr Par i )

l i : St → Val i Exc ← Par i : t i

ui : Val i × St → St Par i + Exc ← Exc : c i

Val i × St
pr

//

ui
��

Val i
id��

St
l i // Val i

=

Par i + Exc Par i
inoo

Exc

c i
OO

Par i
t ioo

id
OO

=

Val i × St
pr

//

ui
��

St
l j

// Val j
id��

St
l j

// Val j

=

Par i + Exc Exc
inoo Par j

t j
oo

Exc

c i
OO

Par j
t j

oo

id
OO

=



I So, there is a duality between states and exceptions,
at the semantics level,
involving a set of states St and a set of exceptions Exc .

I But states and exceptions are computational effects:
the “type of states” and the “type of exceptions” are hidden,
they do not appear explicitly in the syntax.

I In fact, the duality at the semantics level
comes from a duality of states and exceptions
seen as computational effects, at the logical level.
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Monads for effects

[Moggi 1991] The basic idea behind the categorical semantics
of effects is that we distinguish the object X of values
from the object TX of computations (for some endofunctor T )

Programs of type Y with a parameter of type X
ought to be interpreted by morphisms with codomain TY ,
but for their domain there are two alternatives, either X or TX .

1. Moggi chooses the first alternative:
a program X → Y is interpreted by a morphism X → TY

Then T must be a monad – for substitution
with a strength – for the context

2. The second alternative would be:
a program X → Y is interpreted by a morphism TX → TY



Monads for effects: exceptions

The monad of exceptions is TX = X + Exc .

1. First alternative.
A program of type Y with a parameter of type X
is interpreted by a morphism X → Y + Exc .
=⇒ it may throw an exception
=⇒ it cannot catch an exception

2. Second alternative.
A program of type Y with a parameter of type X
is interpreted by a morphism X + Exc → Y + Exc .
=⇒ it may throw an exception
=⇒ it may catch an exception



Effects, more generally

Claim. A computational effect is

an apparent lack of soundness

There is a computational effect when:

I at first sight, the intended semantics
is not a model of the syntax

I but the syntax may be “decorated”
so as to recover soundness

The monads approach from this point of view:

– operations are decorated as values or computations
and every value can be seen as a computation
(the base category is in the Kleisli category)

– a computation f c : X → Y stands for f : X → TY

– a value f v : X → Y stands for f : X → Y
ηY→ TY



States, apparently

The intended semantics (one location):
l : St → Val

u : Val × St → St

∀ v ∈ Val ∀ s ∈ St l(u(v , s)) = v

is not a model of the (equational) apparent syntax

Apparent

l : 1→ V
u : V → 1

l ◦ u = id : V → V



States, explicitly

The intended semantics (one location)
is a model of the (equational) explicit syntax

Explicit

l : S → V
u : V × S → S
l ◦ u = pr : V × S → V

=⇒ Two equational logics for states:

I The apparent logic is not sound, but close to the syntax

I The explicit logic is sound, but far from the syntax

Claim. There is a logic sound and close to the syntax,
but it is not truly equational: it is a decorated logic



States as effect: decorations

The apparent syntax may be decorated

f : X → Y is decorated as

f (0) : X → Y if f is pure
f (1) : X → Y if f is an accessor (cf. const methods in C++)
f (2) : X → Y if f is a modifier

f = g is decorated as

f =(sg) g (strong) if f and g coincide on results and on states
f =(wk) g (weak) if f and g coincide on results (only)

Apparent Decorated

l : 1→ V l (1) : 1→ V

u : V → 1 u(2) : V → 1

l ◦ u = idV : V → V l ◦ u =(wk) idV : V → V



States as effect: meaning of the decorations

The decorated syntax may be explicited

f (0) : X → Y as f : X → Y

f (1) : X → Y as f : X × S → Y

f (2) : X → Y as f : X × S → Y × S

f =(sg) g : X → Y as f = g : X × S → Y × S

f =(wk) g : X → Y as prY ◦ f = prY ◦ g : X × S → Y

Decorated Explicit

l (1) : 1→ V l : 1× S → V

u(2) : V → 1 u : V × S → S

l ◦ u =(wk) idV : V × S → V l ◦ u = prV : V × S → V



States as effect: three logics

Decorated

l (1) : 1→ V

u(2) : V → 1

l ◦ u =(wk) idV
,

uullllll �
))RRRRRR

Apparent

l : 1→ V
u : V → 1

l ◦ u = idV

Explicit

l : S → V
u : V × S → S
l ◦ u = prV

The intended semantics

I is NOT a model of the apparent syntax (effect)

I is a model of the explicit syntax (obviously)

I is also a model of the decorated syntax (by adjunction)



Exceptions as effect

The intended semantics (one exc. constructor):
t : Par → Exc

c : Exc → Par + Exc

∀ p ∈ Par c(t(p)) = p

is not a model of the apparent syntax
but it is a model of the explicit syntax

Apparent Explicit
t : P → 0 t : P → E
c : 0→ P c : E → P + E
c ◦ t = id : P → P c ◦ t = in : P → P + E



Exceptions as effect: decorations

The apparent syntax may be decorated

f : X → Y is decorated as

f (0) : X → Y if f is pure
f (1) : X → Y if f is a propagator (it may throw exceptions)
f (2) : X → Y if f is a catcher (it may throw and catch
exceptions)

f = g is decorated as

f =(sg) g (strong) if f and g coincide on exceptions and on
values
f =(wk) g (weak) if f and g coincide on values (only)

Apparent Decorated

t : P → 0 t(1) : P → 0

c : 0→ P c(2) : 0→ P

c ◦ t = id : P → P c(2) ◦ t(1) =(wk) id (0) : P → P



Exceptions as effect: meaning of the decorations

The decorated syntax may be explicited

f (0) : X → Y as f : X → Y

f (1) : X → Y as f : X → Y + E

f (2) : X → Y as f : X + E → Y + E

f =(sg) g : X → Y as f = g : X × S → Y × S

f =(wk) g : X → Y as f ◦ inX = g ◦ inX : X → Y + E

Decorated Explicit

t(1) : P → 0 t : P → E

c(2) : 0→ P c : E → P + E

c(2) ◦ t(1) =(wk) id (0) : P → P c ◦ t = in : P → P + E



Exceptions as effect: three logics

Decorated

t(1) : P → 0

c(2) : 0→ P

c ◦ t =(wk) idP
2

yyrrrrrr �
%%LLLLLL

Apparent

t : P → 0

c : 0→ P
c ◦ t = idP

Explicit

t : P → E
c : E → P + E
c ◦ t = inP

The intended semantics

I is NOT a model of the apparent syntax (effect)

I is a model of the explicit syntax (obviously)

I is also a model of the decorated syntax (by adjunction)



Duality of effects

States Exceptions

i ∈ Loc, Vi i ∈ ExCstr , Pi

1 0

l
(1)
i : 1→ Vi 0← Pi : t

(1)
i

u
(2)
i : Vi → 1 Pi ← 0 : c

(2)
i

Vi
id //

ui
��

Vi

id��

1
li // Vi

=(wk)

Pi Pi
idoo

0

ci
OO

Pi
tioo

id
OO

=(wk)

Vi
//

ui
��

1
lj

// Vj

id��

1
lj

// Vj

=(wk)

Pi 0oo Pj
tj

oo

0

ci
OO

Pj
tj

oo

id
OO

=(wk)
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Operations and equations

I The monads approach leads to Lawvere theories
for getting operations and equations [Plotkin&Power 2001]
This can be extended

I with exception monads [Schroeder&Mossakowski 2004]
I with coalgebras [Levy 2006]
I with handlers [Plotkin&Pretnar 2009]

Then

– lookup, update, raise are algebraic operations
– handle is not an algebraic operation

I Our approach generalizes algebraic specifications

=⇒ it involves (decorated) operations and equations

Then

– catching exceptions is symmetric to updating states



A framework for effects

A language without effects is defined wrt one logic

L

A language with effects is defined wrt a span of logics

Ldeco

xxqqqqqq
&&NNNNNN

Lapp Lexpl

Defined in the category of diagrammatic logics [Duval&Lair 2002]
which is based on categorical notions:

I Adjunctions [Kan 1958]

I Categories of fractions [Gabriel&Zisman 1967]

I Limit sketches [Ehresmann 1968]



One logic: models

A diagrammatic logic is a left adjoint functor L
with a full and faithful right adjoint R

S
L // T

R (f.f.)

hh

⊥

induced by a morphism of limit sketches

I S is the category of specifications

I T is the category of theories

I Each specification Σ presents the theory LΣ
I A model M : Σ→ Θ is an “oblique” morphism:

M : L Σ→ Θ in T or M : Σ→ R Θ in S



One logic: proofs

T is a category of fractions on S:
a fraction is a cospan in S with numerator σ
and denominator τ such that L τ is invertible in T

Σ1
σ // Σ′2 //____ Σ2

τoo

This fraction can be seen as

I an instance of the specification Σ1 in Σ2

I or an inference rule with hypothesis Σ2 and conclusion Σ1.

The inference step is the composition of fractions:
applying a rule with hypothesis H and conclusion C
to an instance of H in Σ
yields an instance of C in Σ.



A category of logics

A morphism of logics F : L1 → L2

is a pair of left adjoint functors (FS ,FT ) with a commutative
square induced by a commutative square of limit sketches

S1
L1 //

FS
��

T1

FT
��

S2 L2
// T2

∼=

This yields the category of diagrammatic logics

Which provides a framework for spans of logics

Ldeco

xxqqqqqq
&&NNNNNN

Lapp Lexpl



Decorated proofs

Ldeco
Fapp

xxqqqqqq Fexpl

&&NNNNNN

Lapp Lexpl

In this talk, for states and exceptions,
Lapp and Lexpl are (variants of) equational logic.
Each decorated proof is mapped to an equational proof

I either by dropping the decorations (by Fapp)
→ an “uninteresting” proof

I or by expliciting the decorations (by Fexpl)
→ a “complicated” proof



Some decorated rules for states (1)

(0-to-1)
f (0)

f (1)

(1-to-2)
f (1)

f (2)

(sg -trans)
f (2) =(sg) g (2) g (2) =(sg) h(2)

f (2) =(sg) h(2)

(sg -subs)
g
(2)
1 =(sg) g

(2)
2

(g1 ◦ f )(2) =(sg) (g2 ◦ f )(2)

(sg -repl)
f
(2)
1 =(sg) f

(2)
2

(g ◦ f1)(2) =(sg) (g ◦ f2)(2)

(wk-trans)
f (2) =(wk) g (2) g (2) =(wk) h(2)

f (2) =(wk) h(2)

(wk-subs)
g
(2)
1 =(wk) g

(2)
2

(g1 ◦ f )(2) =(wk) (g2 ◦ f )(2)

(wk-repl)
f
(2)
1 =(wk) f

(2)
2 g (0)

(g ◦ f1)(2) =(wk) (g ◦ f2)(2)



Some decorated rules for states (2)

(sg -to-wk)
f (2) =(sg) g (2)

f (2) =(wk) g (2)

(wk-to-sg)
f (1) =(wk) g (1)

f (1) =(sg) g (1)

And there is a “decorated product”

(l
(1)
j : 1→ Vj)j∈Loc

such that

f (2) =(sg) g (2) : X → 1 ⇐⇒

∀j ∈ Loc, (lj ◦ f )(2) =(wk) (lj ◦ g)(2) : X → Vj



A decorated proof (for states)

Proposition. For every i ∈ Loc:

I Semantically: ∀s ∈ St, ui (l i (s), s) = s

I Explicitly: ui ◦ li = idS

I Decorated: u
(2)
i ◦ l

(1)
i =(sg) id

(0)
1

Proof. ∀j ∈ Loc, l
(1)
j ◦ u

(2)
i ◦ l

(1)
i =(wk) l

(1)
j

When j = i :

li ◦ ui =(wk) idVi
(wk-subs)

li ◦ ui ◦ li =(wk) li

When j 6= i :

lj ◦ ui =(wk) lj ◦ 〈 〉Vi
(wk-subs)

lj ◦ ui ◦ li =(wk) lj ◦ 〈 〉Vi
◦ li

...

〈 〉Vi
◦ li =(sg) id1

(sg -repl)
lj ◦ 〈 〉Vi

◦ li =(sg) lj
(sg -to-wk)

lj ◦ 〈 〉Vi
◦ li =(wk) lj

(wk-trans)
lj ◦ ui ◦ li =(wk) lj



Decorated rules and proofs (for exceptions)

Decorated rules and proofs for exceptions
are dual to decorated rules and proofs for states.

Proposition. For every i ∈ ExCstr :

I Semantically: ∀e ∈ Exc , t i (c i (e)) = e

I Explicitly: ti ◦ ci = idE

I Decorated: t
(1)
i ◦ c

(2)
i =(sg) id

(0)
1

Proof. Dual to the proof for states.



More decorated proofs (for states)

Equations from [Plotkin&Power 2002] as stated in [Mellies 2010]

I Interaction update-update:
storing a value v and then a value v ′ at the same location i
is just like storing the value v ′ in the location i . ∀i ∈ Loc,

u
(2)
i ◦ π

(0) ◦ (ui × idVi )
(2) =(sg) u

(2)
i ◦ π

(0)

I Commutation update-update:
the order of storing in two different locations i and j
does not matter. ∀i 6= j ∈ Loc,

u
(2)
j ◦ π

(0) ◦ (ui × idVj )
(2) =(sg) u

(2)
i ◦ π

(0) ◦ (idVi × uj)
(2)

Decorated proofs in [Dumas&Duval&Fousse&Reynaud 2011]



More decorated proofs (for exceptions)

I when catching an exception constructor i twice,
the second catcher is never used. ∀i ∈ ExCstr ,

try {f }catch i {g}catch i {h} =(sg) try {f }catch i {g}

I when catching two different exception constructors i and j ,
the order of catching does not matter. ∀i 6= j ∈ ExCstr ,

try {f }catch i {g}catch j {h} =(sg) try {f }catch j {h}catch i {g}

Proof:

1. Start from the previous equations for states

2. Dualize

3. Encapsulate



Outline

Introduction

1. Duality, at the semantics level

2. Duality, at the logical level

3. About “decorated” proofs

Conclusion



Conclusion

I An effect is an apparent lack of soundness

I Designing proof systems from programming features:
each computational effect has an associated logic

I States and exceptions may be considered as dual effects

Future work

I Using a proof assistant (Coq) for decorated proofs

I Combining effects by composing the spans of logics



Thanks for your attention
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