Decorated semantics
 for an imperative language with exceptions

Dominique Duval, with Jean-Guillaume Dumas, Burak Ekici, Damien Pous and Jean-Claude Reynaud

Work in progress

GdT Plume, ENS Lyon, 21 mars 2016

The language IMP-EX

Syntax

Arithmetic expressions:

$$
a::=0|1|-1|2|-2|\ldots| \ell_{1}\left|\ell_{2}\right| \cdots|a+a| a-a \mid a \times a
$$

Boolean expressions:

$$
b::=\text { true } \mid \text { false }|\neg b| b \wedge b|b \vee b| a=a \mid a>a
$$

Commands:

$$
c::=\left\{\begin{array}{l}
\operatorname{skip}|c ; c| \ell_{i}:=a \mid \\
\operatorname{if}(b) \operatorname{then}(c) \operatorname{else}(c)|\operatorname{while}(b) \operatorname{do}(c)| \\
\operatorname{throw}\left(e x n_{i}\right) \mid \operatorname{try}(c) \operatorname{catch}\left(e x n_{i} \Rightarrow c\right)
\end{array}\right.
$$

Programs:

$$
p g::=c ; r e t u r n(a) \mid c ; \text { return }(b)
$$

Semantics
Denotational: in the category of sets and partial functions
Operational: small-step, big-step
Predicate transformer semantics, ...
Theorem "All semantics for IMP-EX coincide".

Aims and tools

Aims.

- Design a "kind of" equational logic \mathcal{L}, close to the syntax, for reasoning about imperative programs with exceptions.
- Translate the syntax of IMP-EX into the logic \mathcal{L}.
- Prove properties of programs of IMP-EX in the logic \mathcal{L}.
- Implement this proof system in Coq.

Tools.

- [Moggi 1989] "effects as monads".

Terms of type B with a parameter of type A are not interpreted by morphisms from A to B but by morphisms from A to $T(B)$ for some monad T.

- Here, more generally, "effects as functors". Terms of type B with a parameter of type A are not interpreted by morphisms from A to B but by morphisms from $H(A)$ to $H(B)$ for some functor H.

Outline

Logic and categories

- Syntax and equational semantics: a theory $\mathcal{T h}$ (a category with a congruence \equiv) generated by a signature and equations.
- Denotational semantics: a model $M: \mathcal{T} h \rightarrow \mathcal{C}$ (a functor mapping \equiv to $=$) where \mathcal{C} is "given by mathematics"
(e.g., $\mathcal{C}=\operatorname{Set}$ or $\mathcal{C}=\mathcal{P a r t}$).

Soundness: granted
Remark: usually structured categories and functors

Decorated logic: theories and models

Simply "enlarge" the previous diagram

where the functor $\mathcal{T} h_{i-1} \subseteq \mathcal{T} h_{i}$

- is the identity on objects
- preserves \equiv and is "三-faithful": for all $f, g: X \rightarrow Y$ in $\mathcal{T} h_{i-1}$

$$
f \equiv g \text { in } \mathcal{T} h_{i-1} \Longleftrightarrow f \equiv g \text { in } \mathcal{T} h_{i}
$$

Decoration of terms (notation): $f^{(d)}$ iff $f \in \mathcal{T} h_{d}$ conversions: $f^{(d)} \Longrightarrow f^{(d+1)}$
Soundness: if each H_{i} is faithful

Full image

The full image of a functor $H: \mathcal{C}_{i-1} \rightarrow \mathcal{C}_{i}$ is the category $\overline{\operatorname{im}}(H)$ with:

- the same objects as \mathcal{C}_{i-1}
- an arrow $f: X \rightarrow Y$ for each $f: H(X) \rightarrow H(Y)$ in \mathcal{C}_{i}.

Soundness: if \bar{H} is faithful

Kleisli category

The Kleisli category of a monad $T: \mathcal{C} \rightarrow \mathcal{C}$ is the category \mathcal{C}_{T} with:

- the same objects as \mathcal{C}
- an arrow $f: X \rightarrow Y$ for each $f: X \rightarrow T(Y)$ in \mathcal{C}.

Soundness: if each component of the unit $\eta: I d \Rightarrow T$ is mono

Decorated logic: decorated equations

Notation: $f \bullet g=g \circ f$ when $\bullet \xrightarrow{f} \stackrel{g}{ } \bullet$
In each theory:

- a congruence \equiv :
- equivalence relation between parallel terms
- compatible with composition

$$
g_{1} \equiv g_{2} \Longrightarrow f \bullet g_{1} \bullet h \equiv f \bullet g_{2} \bullet h
$$

- a weak congruence (or several):
- extends \equiv
- preorder relation between parallel terms
- "sometimes" symmetry
- "sometimes" substitution

$$
g_{1} \equiv g_{2} \Longrightarrow f \bullet g_{1} \equiv f \bullet g_{2}
$$

- "sometimes" replacement

$$
g_{1} \equiv g_{2} \quad \Longrightarrow \quad g_{1} \bullet h \equiv g_{2} \bullet h
$$

Outline

The language XS-IMP

Syntax
Expressions:

$$
\begin{aligned}
& a::=0|1|-1|2|-2|\ldots| \ell|s(a)| p(a) \\
& b::=\text { true } \mid \text { false }|\neg b| a=0 \mid a>0 \\
& e::=a \mid b
\end{aligned}
$$

Commands:

$$
c::=\operatorname{skip}|c ; c| \ell:=a
$$

Programs:

$$
p g::=c ; \operatorname{return}(e)
$$

Restrictions (easy to remove):

- only one location ℓ
- no binary operation on expressions

Later:

- exceptions, conditionals, loops

Decorated logic for states

Comonad $D(X)=S \times X$
$\mathcal{T} h_{0} \xrightarrow{\subseteq} \mathcal{T} h_{1} \xrightarrow{\subseteq} h_{2}$

Weak equations $f_{1} \sim_{s t} f_{2}: X \rightarrow Y$ interpreted as: $f_{1} \bullet \varepsilon_{Y}=f_{2} \bullet \varepsilon_{Y}: S \times X \rightarrow Y$

$$
S \times X \underset{f_{2} \longrightarrow}{f_{1} \longrightarrow} S \times Y-\varepsilon_{Y} \longrightarrow Y
$$

$\sim_{s t}$ satisfies substitution and pure replacement:

$$
g_{1} \sim_{s t} g_{2} \Longrightarrow f \bullet g_{1} \bullet h^{(0)} \sim_{s t} f \bullet g_{2} \bullet h^{(0)}
$$

Pure operations and equations

The pure theory $\mathcal{T} h_{0}$ contains:

- sorts $\mathbb{1}, A, B$
- operations $0,1,-1, \ldots: \mathbb{1} \rightarrow A, s, p: A \rightarrow A$, true, false : $\mathbb{1} \rightarrow B$, not : $B \rightarrow B$, null?, pos? : $A \rightarrow B$
- equations $s(0) \equiv 1, p(0) \equiv-1, \ldots, s \bullet p \equiv i d_{A}, p \bullet s \equiv i d_{A}$, true \bullet not \equiv false, \ldots
$M_{0}: \mathcal{T} h_{0} \rightarrow \operatorname{Set}$ interprets A as the set A of integers, B as the set B of truth values, etc

Operations and equations for states

In Set: a set of states S with (here) $S \cong A$, denoted $x \leftrightarrow x$ Then $\mathcal{T} h_{1}$ and $\mathcal{T} h_{2}$ are generated from $\mathcal{T} h_{0}$ by two operations:

lookup $^{(1)}: \mathbb{1} \rightarrow A$	update $^{(2)}: A \rightarrow \mathbb{1}$
lookup $: S \rightarrow A$	update $: S \times A \rightarrow S$
lookup : $X \mapsto x$	update $:(x, y) \mapsto \boxed{y}$

one weak equation:

$$
\begin{aligned}
& \text { update } \bullet \text { lookup } \sim_{s t} i d_{A} \\
& \hline \text { update } \bullet \text { lookup }=\varepsilon_{A} \\
& (\boxed{x}, y) \mapsto \sqrt[y]{y} \mapsto y
\end{aligned}
$$

and decorated rules...

Translation

Expressions: $e \mapsto e^{(1)}: \mathbb{1} \rightarrow$ Expr (where Expr is A or B)
$-0,1, \ldots \mapsto 0^{(0)}, 1^{(0)}, \ldots$ true, false \mapsto true $^{(0)}$, false ${ }^{(0)}$

- $s(a) \mapsto a \bullet s^{(0)}, p(a) \mapsto a \bullet p^{(0)}, \neg b \mapsto b \bullet \operatorname{not}^{(0)}, \ldots$
- $\ell \mapsto$ lookup ${ }^{(1)}$

Commands: $c \mapsto c^{(2)}: \mathbb{1} \rightarrow \mathbb{1}$

- skip $\mapsto i d_{\mathbb{1}}^{(0)}$
- $c_{1} ; c_{2} \mapsto c_{1} \bullet c_{2}$
- $\ell:=a \mapsto a \bullet u p d a t e ~^{(2)}$

Programs: $p g \mapsto p g^{(2)}: \mathbb{1} \rightarrow$ Expr

- c; return $(e) \mapsto c \bullet e$

Forward semantics

Given a program $p g^{(2)}: \mathbb{1} \rightarrow$ Expr,
find a result $r{ }^{(0)}: \mathbb{1} \rightarrow$ Expr such that $p g \sim_{s t} r s$
This means that $p g: S \rightarrow S \times$ Expr and $r s: \mathbb{1} \rightarrow$ Expr satisfy:

$$
p g(s)=\left(s^{\prime}, r s(x)\right) \text { for some } s^{\prime}
$$

This requires an initialization of the state and the derived strong equation: for each $u^{(0)}: \mathbb{1} \rightarrow A$

```
u\bulletupdate \bulletlookup \equivu\bulletupdate \bulletu
```

Method:

- first \equiv is used inductively, by replacement
- until finally $\sim_{s t}$ can be used, by pure replacement

This corresponds to an operational semantics.

Forward semantics: an example

Initialization: $\ell:=u^{(0)}$ for any $u^{(0)}: \mathbb{1} \rightarrow A$
The given program is

$$
\ell:=u ; \ell:=s(\ell) ; \text { return }(p(\ell))
$$

translated as:
$p g^{(2)}=u^{(0)} \bullet$ update $^{(2)} \bullet$ lookup ${ }^{(1)} \bullet s^{(0)} \bullet$ update $^{(2)} \bullet$ lookup $^{(1)} \bullet p^{(0)}$

Conclusion: $p g^{(2)} \sim_{s t} r s^{(0)}$ where $r s^{(0)}=u$. The result is u

Backward semantics

Given a program $p g=c ;$ return $($ post $): \mathbb{1} \rightarrow$ Expr, find an expression pre: $\mathbb{1} \rightarrow$ Expr such that $p g \sim_{s t}$ return(pre) This means that c, post and pre satisfy:

$$
\begin{aligned}
& \operatorname{post}(c(s))=\operatorname{pre}(s) \\
& \underset{p r e^{(1)} \downarrow}{S} \quad c^{(2)} \quad S \\
& \text { Expr } \underset{i d^{(0)}}{ } \text { Expr }
\end{aligned}
$$

This requires only the weak equation:

$$
\text { update } \bullet \text { lookup }_{\sim_{s t}} i d_{A}
$$

Method:

- $\sim_{s t}$ is used inductively, by substitution and pure replacement
- until finally \equiv is used for simplifying pure terms

When Expr $=B$ this corresponds to a weakest precondition semantics (here with a restricted language for conditions)

Backward semantics: an example

The given program is

$$
\ell:=s(\ell) ; \ell:=s(\ell) ; \text { return }(p(\ell))
$$

translated as:
$p g^{(2)}=$ lookup $^{(1)} \bullet s^{(0)} \bullet$ update $^{(2)} \bullet$ lookup $^{(1)} \bullet s^{(0)} \bullet$ update $^{(2)} \bullet$ lookup ${ }^{(1)} \bullet p^{(0)}$

Conclusion: $p g^{(2)} \sim_{s t}$ lookup $\bullet s^{(0)}$. The "pre-expression" is $s(\ell)$

Outline

The language XS-IMP-EX

Syntax
Expressions:
as in XS-IMP
Commands:

$$
c::=\operatorname{skip}|c ; c| \ell:=a \mid \text { throw } \mid \operatorname{try}(c) \operatorname{catch}(c)
$$

Programs:

$$
p g::=c ; r e t u r n(e)
$$

Restriction (easy to remove):

- only one exception name (thus, omitted)

Decorated logic for exceptions (only)

Monad $T(X)=X+E$

$(X \rightarrow Y) \longmapsto(X \underset{\sim}{\rightarrow} Y) \longmapsto(X \rightarrow Y)$

$$
(X \rightarrow Y+E) \mid \cdots \cdots(X+E \rightarrow Y+E)
$$

Weak equations $f_{1} \sim_{e x} f_{2}: X \rightarrow Y$ interpreted as: $\eta_{X} \bullet f_{1}=\eta_{X} \bullet f_{2}: X \rightarrow Y+E$

$$
X=\eta x \longrightarrow X+E=f_{1} \longrightarrow Y+E
$$

$\sim_{e x}$ satisfies replacement and pure substitution:

$$
g_{1} \sim_{e x} g_{2} \Longrightarrow f^{(0)} \bullet g_{1} \bullet h \sim_{e x} f^{(0)} \bullet g_{2} \bullet h
$$

Operations and equations for exceptions (only)

In Set: a set of exceptions E with (here) $\mathbb{1} \cong E$, denoted $\star \leftrightarrow \notin$ Then $\mathcal{T} h_{1}$ and $\mathcal{T} h_{2}$ are generated from $\mathcal{T} h_{0}$ by two operations:

$\operatorname{tag}^{(1)}: \mathbb{1} \rightarrow \mathbb{0}$	untag $^{(2)}: \mathbb{O} \rightarrow \mathbb{1}$
$\operatorname{tag}: \mathbb{1} \rightarrow E$	untag $: E \rightarrow \mathbb{1}+E$
$\operatorname{tag}: \star \mapsto \circledast$	untag : $\star \mapsto \star$

one weak equation:

$$
\begin{array}{|l}
\hline \text { tag } \bullet \text { untag } \sim_{e x} i d_{\mathbb{1}} \\
\hline \operatorname{tag} \bullet \text { untag }=\eta_{\mathbb{1}} \\
\star \mapsto \circledast \mapsto \star \text { and } \Theta \mapsto \circledast \mapsto \star
\end{array}
$$

and decorated rules...

Decorated logic for states and exceptions

Duality is broken!

Functor $T(D(X))=S \times X+S \times E$
$\mathcal{T} h_{0} \xrightarrow{\subseteq} \mathcal{T} h_{1} \xrightarrow{\subseteq} \mathcal{T} h_{2} \xrightarrow{\subseteq} \mathcal{T} h_{3} \xrightarrow{\subseteq} h_{4}$

pure
state
exception

Operations for states and exceptions: summary

- $f^{(1)}$: may use the state
- $f^{(2)}$: may use and modify the state
- $f^{(3)}$: may use and modify the state, may raise exceptions and must propagate exceptions
- $f^{(4)}$: may use and modify the state, may raise exceptions and must propagate exceptions, may recover from exceptions

Decorated equations for states and exceptions

Weak equations

$$
S X \longrightarrow \eta_{S X} \rightarrow S X+S E=f_{1} \longrightarrow S Y+S E-\varepsilon_{Y}+S E \rightarrow Y+S E
$$

- $f_{1} \sim_{\text {ex }} f_{2}: X \rightarrow Y$
interpreted as: $\eta_{S X} \bullet f_{1}=\eta_{S X} \bullet f_{2}$

$$
g_{1} \sim_{e x} g_{2} \Longrightarrow f^{(2)} \bullet g_{1} \bullet h \sim_{e x} f^{(2)} \bullet g_{2} \bullet h
$$

- $f_{1} \sim_{s t} f_{2}: X \rightarrow Y$
interpreted as: $f_{1} \bullet\left(\varepsilon_{Y}+S E\right)=f_{2} \bullet\left(\varepsilon_{Y}+S E\right)$

$$
g_{1} \sim_{s t} g_{2} \Longrightarrow f \bullet g_{1} \bullet h^{(0)} \sim_{s t} f \bullet g_{2} \bullet h^{(0)}
$$

- $f_{1} \sim_{s t, e x} f_{2}: X \rightarrow Y$
interpreted as: $\eta_{S X} \bullet f_{1} \bullet\left(\varepsilon_{Y}+S E\right)=\eta_{S X} \bullet f_{2} \bullet\left(\varepsilon_{Y}+S E\right)$

$$
g_{1} \sim_{s t, e x} g_{2} \Longrightarrow f^{(2)} \bullet g_{1} \bullet h^{(0)} \sim_{s t, e x} f^{(2)} \bullet g_{2} \bullet h^{(0)}
$$

Equations for states and exceptions: summary

$$
\begin{aligned}
& \mathcal{T} h_{0} \xrightarrow{\subseteq} \mathcal{T} h_{1} \xrightarrow{\subseteq} \mathcal{T} h_{2} \xrightarrow{\subseteq} \mathcal{T} h_{3} \xrightarrow{\subseteq} \mathcal{T} h_{4}
\end{aligned}
$$

> pure
> state
> exception

Translation

Expressions: $e \mapsto e^{(1)}: \mathbb{1} \rightarrow$ Expr
as for $X S$-IMP
Commands: $c \mapsto c^{(3)}: \mathbb{1} \rightarrow \mathbb{1}$ (really (3), not (4))

- skip, $c_{1} ; c_{2}, \ell:=a$: as for XS-IMP
- throw $\mapsto \operatorname{tag}^{(3)} \bullet[]_{\mathbb{I}}^{(0)}$ pretends that the exception has type $\mathbb{1}$, instead of $\mathbb{0}$
$-\operatorname{try}\left(c_{1}\right) \operatorname{catch}\left(c_{2}\right) \mapsto\left(\downarrow\left(c_{1} \bullet\left[i d_{\mathbb{1}} \mid \operatorname{untag}^{(4)} \bullet c_{2}\right]\right)^{(3)}\right.$ (next slide)
Programs: $p g \mapsto p g^{(3)}: \mathbb{1} \rightarrow$ Expr (really (3), not (4)) as for XS-IMP

Translation of try-catch

$$
\operatorname{try}\left(c_{1}\right) \operatorname{catch}\left(c_{2}\right) \mapsto\left(\downarrow\left(c_{1} \bullet\left[i d_{\mathbb{1}} \mid \text { untag }^{(4)} \bullet c_{2}\right]\right)^{(3)}\right.
$$

Uses: the decorated coproduct $\mathbb{1}=\mathbb{1}+\mathbb{0}$

and the "downcast" operator \downarrow
$\left(\downarrow\left(f^{(4)}\right)\right)^{(3)}$ is such that $f \sim_{e x} \downarrow f$

- $\downarrow f$ is the same as f on non-exceptional arguments
- $\downarrow f$ propagates exceptions while f may recover from exceptions

Rules for \downarrow include: $\downarrow\left(f_{1}\right) \equiv \downarrow\left(f_{2}\right) \Longleftrightarrow f_{1} \sim_{e x} f_{2}$

Translation of XS-IMP-EX: summary

Backward semantics

Predicate transformer semantics [Claude Marché, MPRI 2012]
Hoare triples: $\{P\} \subset\{Q \mid R\}$ is valid if:
if c is executed in a state satisfying P then:

- if c terminates normally in a state s^{\prime} then s^{\prime} satisfies Q
- if c terminates abruptly in a state s^{\prime} then s^{\prime} satisfies R

This means that $P \sim_{s t, e x} c \bullet[Q \mid$ untag $\bullet R]$

Outline

The language IMP-EX: syntax, revisited

Expressions:

$$
\begin{aligned}
& a::=0|1|-1|2|-2|\ldots| \ell|s(a)| p(a) \\
& b::=\text { true } \mid \text { false }|\neg b| a=0 \mid a>0 \\
& e::=a \mid b
\end{aligned}
$$

Commands:

$$
c::=\left\{\begin{array}{l}
\operatorname{skip}|c ; c| \ell:=a \mid \\
\operatorname{throw}|\operatorname{try}(c) \operatorname{catch}(c)| \\
\operatorname{if}(b) \operatorname{then}(c) \mathrm{else}(c) \mid \operatorname{repeat}(c)
\end{array}\right.
$$

Programs:

$$
p g::=c ; r e t u r n(e)
$$

- As before: only one location, no binary operation on expressions, only one exception name
- In addition: repeat(c) "instead of" while(b)do(c)

Decorated logic for non-termination

Partiality

Weak equations are inequations $\quad f_{1} \succcurlyeq f_{2}: X \rightarrow Y$ interpreted as: $f_{1} \geq f_{2}: X \rightharpoonup Y$ (as partial functions)

Part with \geq is a 2-category
\succcurlyeq satisfies replacement and substitution:

$$
g_{1} \succcurlyeq g_{2} \Longrightarrow f \bullet g_{1} \bullet h \succcurlyeq f \bullet g_{2} \bullet h
$$

Operations and equations for non-termination

$\mathcal{T} h_{1}$ is generated from $\mathcal{T} h_{0}$ by one operation constructor:

$$
\begin{aligned}
& \hline \operatorname{loop}(c)^{(1)}: X \rightarrow X \text { for each } c^{(1)}: X \rightarrow X \\
& \text { loop }(c): X \rightharpoonup X \text { is the least fixed point of } f \mapsto c \bullet f
\end{aligned}
$$

one strong equation:

$$
\operatorname{loop}(c) \equiv c \bullet \operatorname{loop}(c)
$$

and decorated rules, including:

$$
f \equiv c \bullet f \Longrightarrow f \succcurlyeq \operatorname{loop}(c)
$$

A weak congruence

The "weakest" congruence for states, exceptions and non-termination is $\preccurlyeq_{s t, e x}$. For instance:

$$
f \preccurlyeq s t, e x u^{(0)}: X \rightarrow Y
$$

is a concise way to express the following:
$f: S \times X+S \times E \rightharpoonup S \times Y+S \times E$ and $u: X \rightarrow Y$ are such that: if $f(s, x)$ is defined, then it returns $\left(s^{\prime}, u(x)\right)$ for some s^{\prime}.

This is the kind of relation required between a "program" f and its "result" u

Translation

Translation is obvious:

- repeat $(c) \mapsto$ loop(c)

Example repeat(throw) = throw
repeat(throw) is translated as $r=\operatorname{loop}\left(\operatorname{tag} \bullet[]_{\mathbb{I}}\right)$

because r (like all commands) propagates exceptions

Decorated logic for conditions

Weak equations are conditional equations

$$
f_{1} \sim f_{2}: X \rightarrow Y \text { if } b
$$

where \sim is any of the previous (strong or weak) congruence and b is a boolean expression.
For replacement, conditional \sim has the same properties as \sim.
$\mathcal{T} h_{1}$ is generated from $\mathcal{T} h_{0}$ by two operation constructors ("conditional non-determinism"):

$$
\begin{aligned}
& \text { choose }\left(c_{1}, c_{2}\right)^{(1)}: X \rightarrow Y \text { for each } c_{1}^{(1)}, c_{2}^{(1)}: X \rightarrow Y \\
& \downarrow_{b}(c)^{(0)}: X \rightarrow Y \text { for each } c^{(1)}: X \rightarrow Y \\
& \hline\left[c_{1} \mid c_{2}\right]: X+X \rightarrow Y \\
& \downarrow_{b}\left(\left[c_{1} \mid c_{2}\right]\right)=b \bullet\left[c_{1} \mid c_{2}\right]: X \rightarrow Y \\
& \hline
\end{aligned}
$$

Decorated logic for IMP-EX

Combine the decorated logics for:

- states
- exceptions
- non-termination
- and "conditional non-determinism"
by composing the corresponding functors
and extending the corresponding weak congruences

Outline

Conclusion

Remark.

Effects as functors, with their weak congruences, can be seen as a kind of generalization of 2-categories, with decorated categorical notions as a generalization of lax categorical notions.

To do...

- "work in progress":
- which is the best order for composing the effects?
- Define while loops by:

$$
\text { while }(b) \operatorname{do}(c)=
$$

$$
\operatorname{try}(\text { repeat }(\text { if }(b) \operatorname{then}(c) \text { else(throw }))) \text { catch(skip) }
$$

Prove that indeed such a while loop is the least fixed point of $f \mapsto \operatorname{if}(b)$ then $(c ; f)$ else(skip)

- Complete the implementation in Coq
- Towards richer languages (C, C++, Java,...)

