Decorated semantics
for an imperative language with exceptions

Dominique Duval,
with Jean-Guillaume Dumas, Burak Ekici,
Damien Pous and Jean-Claude Reynaud

Work in progress

GdT Plume, ENS Lyon, 21 mars 2016



The language IMP-EX

Syntax
Arithmetic expressions:
an=0|1]-1|2|=2|...]4|l]|---|]atala—alaxa
Boolean expressions:
b = true|false|-b|bAb|bVb|la=ala>a
Commands:
skip | c;c| ¥ :=a|
c = if(b)then(c)else(c) | while(b)do(c) |
throw(exn;) | try(c)catch(exn; = c)
Programs:
pg = c;return(a) | ¢;return(b)
Semantics
Denotational: in the category of sets and partial functions
Operational: small-step, big-step
Predicate transformer semantics, ...
Theorem “All semantics for IMP-EX coincide”.



Aims and tools
Aims.

> Design a "kind of” equational logic £, close to the syntax, for
reasoning about imperative programs with exceptions.

» Translate the syntax of IMP-EX into the logic L.

> Prove properties of programs of IMP-EX in the logic L.

» Implement this proof system in Coq.

Tools.

> [Moggi 1989] “effects as monads".

Terms of type B with a parameter of type A

are not interpreted by morphisms from A to B
but by morphisms from A to T(B) for some monad T.

» Here, more generally, “effects as functors”.
Terms of type B with a parameter of type A
are not interpreted by morphisms from A to B
but by morphisms from H(A) to H(B) for some functor H.
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Logic and categories

» Syntax and equational semantics: a theory Th
(a category with a congruence =)
generated by a signature and equations.

» Denotational semantics: a model M : Th — C
(a functor mapping = to =)
where C is “given by mathematics”
(e.g., C = Set or C = Part).

theory Th ]. + 2 =
modeIJ Ml I
category ¢ 1+2 =

Soundness: granted

Remark: usually structured categories and functors



Decorated logic: theories and models
Simply “enlarge” the previous diagram

-

N

Tho —=—s Thy —= Th,
MO(EL I\/IJ(
0 1
}»‘Cl M,
e,

where the functor Th;_1 C Th;
> is the identity on objects
» preserves = and is “=-faithful": forall f,g : X — Y in Th;_1
f=ginThi_1 < f=ginTh
Decoration of terms (notation): (%) iff f € Thy
conversions: f(4) — f(d+1)

Soundness: if each H; is faithful



Full image

The full image of a functor H : C;_1 — C; is the category im(H)
with:

> the same objects as C;_;
» anarrow f : X — Y for each f : H(X) — H(Y) in C;.

Thi—1 —= Thi (X=Y)— (X—=Y)

ol N ]

Cii—H—im(H) | (X=Y)— (X—=Y)

xl )

C: (HX = HY)

Soundness: if H is faithful



Kleisli category

The Kleisli category of a monad T : C — C is the category C1
with:

» the same objects as C

» anarrow f : X — Y foreach f : X — T(Y) inC.

Thi—1 = Thi — Thiss (X=Y) = (X—=Y) — (X—=Y)
Milk MIJ( J M1 1{ I I
CesCr—im(T)] (XY (X V) (X Y)

\i i I
C (X=TY)» (TX—=TY)

Soundness: if each component of the unit n : Id = T is mono



Decorated logic: decorated equations

Notation: |f e g = g o f | when o e £ .4

In each theory:

> a congruence =:
— equivalence relation between parallel terms
— compatible with composition
g1=g — fegieh=fegreh
> a weak congruence (or several):
— extends =
— preorder relation between parallel terms
— “sometimes” symmetry
— “sometimes” substitution
g =g — feg=feg
— “sometimes” replacement
g1=g — greh=geh
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The language XS-IMP

Syntax
Expressions:

ax=0]1[-1]2|-2]...]1¢]s(a)]| p(a)

b ::= true|false|—-b|a=0|a>0
e n=alb
Commands:
¢ == skip|cc|l:=a
Programs:
pg = c;return(e)

Restrictions (easy to remove):
» only one location ¢

> no binary operation on expressions
Later:

> exceptions, conditionals, loops



Decorated logic for states

Comonad ‘ D(X)=S5x X‘

c

Tho Thy Tha

N

X=Y)H—— (X=2Y)——— (X—=Y)

! I I

(XﬁY)i—)(XjY)i—MX%Y)

!

(5xX = Y)i »(SXX = SxY)

Weak equations‘ i~ b X — Y‘

interpreted as: fLecy = Hhecy : SXxX =Y

—f—
SxX f SXY —ev—Y
~t satisfies substitution and pure replacement:

81 ~st 82 — f.gl L4 h(o) ~st f'gz L4 h(o)



Pure operations and equations

The pure theory Thy contains:
» sorts 1, A, B
» operations 0,1,—-1,...: 1 > A, s,p: A=A,
true,false:1 — B, not: B — B, null? pos?: A— B
» equations s(0) =1, p(0) = —1,..., sep = ida, pes = ida,
trueenot = false, ...

My : Thg — Set interprets A as the set A of integers,
B as the set B of truth values, etc



Operations and equations for states

In Set: a set of states S with (here) S = A, denoted [ x| <+ x
Then Thy and Thy are generated from Thy by
two operations:

lookup® : 1 — A | update® : A — 1

lookup:S — A |update: SxA— S
lookup : [x|+— x |update: )= [y] .

one weak equation:

update e lookup ~g idp

update e lookup = €4

% y)b—)b—>y

and decorated rules...



Translation

Expressions: | e — e(!) : 1 — Expr (where Expr is A or B)

» 0,1,...—~ 00 10 true, false — true®, false(®
> s(a) — 305(0), p(a) — a.p(O), —b bOnot(o),
» ¢ lookup()

Commands: ’c =1 1‘

> skip — id(lo)

> C1;, 00— C1®C

» (= a+— aeupdate®

Programs: | pg +— pg® 1 1 — Expr

» c;return(e) > cee



Forward semantics

Given a program pg(® : 1 — Expr,
find a result rs(® : 1 — Expr such that [pg ~e rs

This means that pg: S — S x Expr and rs : 1 — Expr satisfy
pg(s) = (s', rs(x)) for some s’
5 g

S x Expr
€1l lsExpr
1 m Expr

This requires an initialization of the state
and the derived strong equation: for each u(® : 1 — A

’ u e update e lookup = ueupdatee u
Method:

» first = is used inductively, by replacement

» until finally ~4 can be used, by pure replacement
This corresponds to an operational semantics.



Forward semantics: an example

Initialization: ¢ := u© for any u(® :1 — A
The given program is
C:=u; £:=5(¢); return(p(¥))
translated as:
pg(2) =u® e update(2) . lookup(l) s e update(2) o lookup(l) ° p(o)

1 u A update 1 lookup A s A update 1 lookup A P A
L‘. u A up(it e 1 u /U\ s A update 1 lookup A P A
1 u A update -U. u A s j update ues /‘4‘ P A
1 u A update 1 u A s A update L‘- f /‘4‘
! “ ! - A

Conclusion: pg(z) ~st rs(©) where rs(® = y. The result is u



Backward semantics

Given a program pg = ¢; return(post) : 1 — Expr,

find an expression pre : 1 — Expr such that ’ pg ~st return(pre)‘

This means that ¢, post and pre satisfy:

e

S S
Pfe(l)l = lpost(l)
Expr Expr

post(c(s)) = pre(s)

This requires only the weak equation:

’update e lookup ~g idg ‘
Method:

> ~g is used inductively, by substitution and pure replacement

» until finally = is used for simplifying pure terms

When Expr = B this corresponds to a weakest precondition
semantics (here with a restricted language for conditions)



Backward semantics: an example

The given program is
0:=s(0); £ :=s({); return(p(¥))
translated as:
pg(2) = lookup(l) o5 oupdate(z) ° lookup(l) o5 oupdate(z) ° lookup(l) ° p(o)

lookup A s A update 1 lookup A s A update 1 lookup A P A
lookup A s A update 1 lookup A s /‘4‘ ;; /‘4‘ P A
N S U\ o U\ A i A—L s
lookup ‘ ‘ f /‘4‘

Conclusion: pg(® ~¢; 1ookup e s(9). The “pre-expression” is s(¢)
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The language XS-IMP-EX

Syntax
Expressions:
as in XS-IMP
Commands:
¢ == skip| ¢;c | ¢ := a| throw | try(c)catch(c)
Programs:
pg = c;return(e)

Restriction (easy to remove):

» only one exception name (thus, omitted)



Decorated logic for exceptions (only)

Monad | T(X) = X + E|

c

N

Tho Thy Tha
X=Y)r—— (X=>Y)——> (X=Y)
1 I 1
X=>YVMrFH—— X =2 Y)———— (X = Y)
I 1
(X = Y+E)I »(X+E — Y+E)

Weak equations‘ l~ex b X — Y‘

interpreted as: nx efi =nxefh: X = Y+E
X s X+E 1T T YHE

~ex Satisfies replacement and pure substitution:
gl ~ex g2 e f(o).gl.hNeX f(o).g2.h




Operations and equations for exceptions (only)
In Set: a set of exceptions E with (here) 1 = E, denoted x <+ (»
Then Thy and Thy are generated from Thg by
two operations:

tag®™ :1 — 0| untag®:0—1
tag:1—E |untag: E—1+4+E
tag:x+— (» |untag: @ +—

one weak equation:

tag e untag ~ey id1

tageuntag =1
k> ®—*xand G — @ *

and decorated rules...



Decorated logic for states and exceptions
Duality is broken!

Functor | T(D(X)) = Sx X + SxE |

Tho — Thy ——— Thy —— Ths = The
(X=Y)————— (X=Y)i (X—=Y)
X=>Y)——— (X = Y)i (X—=Y)

l 1
(XX = SxY)——— (S§xX = S5xY)
1

(SXX+SXE - SxY+SXE)

pure state exception



Operations for states and exceptions: summary

lookup update  tag untag

Tho —=— Thy —=— Thy —— Ths —=— Tha

pure state exception

» () may use the state
» £(@: may use and modify the state

» £(3): may use and modify the state,
may raise exceptions and must propagate exceptions

» ). may use and modify the state,
may raise exceptions and must propagate exceptions,
may recover from exceptions



Decorated equations for states and exceptions

Weak equations
SX nsx — SX+SE

>’f1~exf2:X—>Y\

gH SY+SE —eytSE—s Y+ SE

interpreted as: nsx e fi = nsx @ >
Birvegr = fPegiehng fPegeh
> i~ hi X o Y]
interpreted as: f; ® (cy+SE) = f, e (¢y+SE)
g~ g = fogieh® ~gfegehl
> A ~sex i X 2 Y|

interpreted as: nsx e f ® (cy+SE) = nsx @ f» ® (cy+SE)
81 ~stex 82 — %) e g1e® h(©) ~st,ex f2 e g2 e h(©)



Equations for states and exceptions: summary

C C C
Tho —— Thy —— Tho Thy ———— Thy
\ ~ex
~st ~st ~st
\
~st,ex
pure state exception



Translation

Expressions:

e e 1 — Expr

as for XS-IMP
Commands: | ¢ +— ¢®) 1 - 1‘ (really (3), not (4))

> skip, ¢1; 0, £ := a:
as for XS-IMP

» throw — tag(®) e [](10)
pretends that the exception has type 1, instead of O

» try(ci)catch(c) — (| (c1 o [id1|untag®) e ] )©)
(next slide)

Programs:

pg pg(3) : 1 — Expr

as for XS-IMP

(really (3), not (4))



Translation of try-catch
try(c1)catch(c) — (| (c1 o [id1 | untag® e ¢;]))

Uses: the decorated coproduct 1 =140

1 ,
. idl o id
11— 1 —[idjuntagecs]
0T =

0O——1
untag

(]

and the “downcast” operator |

(L (F))3) is such that f ~ey LF

» | f is the same as f on non-exceptional arguments
» | f propagates exceptions while f may recover from exceptions
Rules for | include: | (A) =] () <= A ~« F



Translation of XS-IMP-EX: summary

l ¢:=  throw try-catch
Tho ~= Thy ~=» Thy —= Ths = Thy
Set l v

m Set

pure state exception



Backward semantics

Predicate transformer semantics [Claude Marché, MPRI 2012]
Hoare triples: {P} c {Q|R} is valid if:
if ¢ is executed in a state satisfying P then:

— if ¢ terminates normally in a state s’ then s’ satisfies @
— if ¢ terminates abruptly in a state s’ then s’ satisfies R

This means that | P ~st ox ¢ ® [Q | untag e R]
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The language IMP-EX: syntax, revisited

Expressions:
an=0|1]-1|2]|=-2]...]¢]|s(a)|p(a)

b ::= true|false|—-b|a=0|a>0
e n=al|b
Commands:

skip| c;c|l:=a|
¢ == ¢ throw | try(c)catch(c) |
if(b)then(c)else(c) | repeat(c)
Programs:
pg = c;return(e)

» As before: only one location, no binary operation on
expressions, only one exception name

» In addition: repeat(c) “instead of” while(b)do(c)



Decorated logic for non-termination

Partiality
Tho —=—Thy (X=Y)— (X Y)
Set = Part — — — +im(t1) (X —=Y)r— (X = Y)

~ — |
—

1T -~ ¥
> Set

Weak equations are inequations ‘fl =fh X — Y‘

interpreted as: f; > f, : X = Y (as partial functions)
Part with > is a 2-category

= satisfies replacement and substitution:
1= —> fegieh=fegreh



Operations and equations for non-termination

Thy is generated from Thg by
one operation constructor:

loop(c)® : X — X for each ¢V : X — X

loop(c) : X — X is the least fixed point of f +— c e f

one strong equation:

loop(c) = c @ 1loop(c)

and decorated rules, including:

’fzcof = f%loop(c)‘




A weak congruence

The “weakest” congruence for states, exceptions and
non-termination is <s: ex. For instance:

f<stex U0 X =Y

is a concise way to express the following:

f:SXX+SXE —=SxY+SXE and u: X — Y are such that:

if f(s, x) is defined, then it returns (s', u(x)) for some s’.

SX— X L SX4SE— "  syysE_r°F L y.SE

ns XJ/ AN T”IY

X Y

u

This is the kind of relation required
between a “program” f and its “result” u



Translation

Translation is obvious:

» repeat(c) — loop(c)

Example ‘repeat(throw) = throw‘

repeat(throw) is translated as r = loop(tage[]1)

1 - 1
I |
1 1

tag

I =
-

0
1—= 0 ] 1
because r (like all commands) propagates exceptions




Decorated logic for conditions

Weak equations are conditional equations
(A~hHh:X—Yifb]

where ~ is any of the previous (strong or weak) congruence

and b is a boolean expression.

For replacement, conditional ~ has the same properties as ~.

Thy is generated from Thy by
two operation constructors ( “conditional non-determinism”):

choose(cy, &) : X — Y for each c( ), M. x>y
b (C)(O) : X — Y foreachc® : X 5 Y

[alo] : X+X =Y
ib ([C1|C2]) =be [C1|C2] X=Y




Decorated logic for IMP-EX

Combine the decorated logics for:
> states
> exceptions
» non-termination
» and “conditional non-determinism"

by composing the corresponding functors
and extending the corresponding weak congruences
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Conclusion

Remark.

Effects as functors, with their weak congruences, can be seen as a
kind of generalization of 2-categories, with decorated categorical
notions as a generalization of lax categorical notions.

To do...
> “work in progress”:
— which is the best order for composing the effects?

» Define while loops by:
while(b)do(c) =
try (repeat(if(b)then(c)else(throw)))catch(skip)
Prove that indeed such a while loop is the least fixed point
of f — if(b)then(c; f)else(skip)
» Complete the implementation in Coq

» Towards richer languages (C, C++, Java,...)
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