Decorated semantics
for an imperative language with exceptions

Dominique Duval,
with Jean-Guillaume Dumas, Burak Ekici,
Damien Pous and Jean-Claude Reynaud

Work in progress

GdT Plume, ENS Lyon, 21 mars 2016

The language IMP-EX

Syntax
Arithmetic expressions:
an=0|1]-1|2|=2|...]4|l]|---|]atala—alaxa
Boolean expressions:
b = true|false|-b|bAb|bVb|la=ala>a
Commands:
skip | c;c| ¥ :=a|
c = if(b)then(c)else(c) | while(b)do(c) |
throw(exn;) | try(c)catch(exn; = c)
Programs:
pg = c;return(a) | ¢;return(b)
Semantics
Denotational: in the category of sets and partial functions
Operational: small-step, big-step
Predicate transformer semantics, ...
Theorem “All semantics for IMP-EX coincide”.

Aims and tools
Aims.

> Design a "kind of” equational logic £, close to the syntax, for
reasoning about imperative programs with exceptions.

» Translate the syntax of IMP-EX into the logic L.

> Prove properties of programs of IMP-EX in the logic L.

» Implement this proof system in Coq.

Tools.

> [Moggi 1989] “effects as monads".

Terms of type B with a parameter of type A

are not interpreted by morphisms from A to B
but by morphisms from A to T(B) for some monad T.

» Here, more generally, “effects as functors”.
Terms of type B with a parameter of type A
are not interpreted by morphisms from A to B
but by morphisms from H(A) to H(B) for some functor H.

Outline

Logic and categories

» Syntax and equational semantics: a theory Th
(a category with a congruence =)
generated by a signature and equations.

» Denotational semantics: a model M : Th — C
(a functor mapping = to =)
where C is “given by mathematics”
(e.g., C = Set or C = Part).

theory Th]. + 2 =
modeIJ Ml I
category ¢ 1+2 =

Soundness: granted

Remark: usually structured categories and functors

Decorated logic: theories and models
Simply “enlarge” the previous diagram

-

N

Tho —=—s Thy —= Th,
MO(EL I\/IJ(
0 1
}»‘Cl M,
e,

where the functor Th;_1 C Th;
> is the identity on objects
» preserves = and is “=-faithful": forall f,g : X — Y in Th;_1
f=ginThi_1 < f=ginTh
Decoration of terms (notation): (%) iff f € Thy
conversions: f(4) — f(d+1)

Soundness: if each H; is faithful

Full image

The full image of a functor H : C;_1 — C; is the category im(H)
with:

> the same objects as C;_;
» anarrow f : X — Y for each f : H(X) — H(Y) in C;.

Thi—1 —= Thi (X=Y)— (X—=Y)

ol N]

Cii—H—im(H) | (X=Y)— (X—=Y)

xl)

C: (HX = HY)

Soundness: if H is faithful

Kleisli category

The Kleisli category of a monad T : C — C is the category C1
with:

» the same objects as C

» anarrow f : X — Y foreach f : X — T(Y) inC.

Thi—1 = Thi — Thiss (X=Y) = (X—=Y) — (X—=Y)
Milk MIJ(J M1 1{ I I
CesCr—im(T)] (XY (X V) (X Y)

\i i I
C (X=TY)» (TX—=TY)

Soundness: if each component of the unit n : Id = T is mono

Decorated logic: decorated equations

Notation: |f e g = g o f | when o e £ .4

In each theory:

> a congruence =:
— equivalence relation between parallel terms
— compatible with composition
g1=g — fegieh=fegreh
> a weak congruence (or several):
— extends =
— preorder relation between parallel terms
— “sometimes” symmetry
— “sometimes” substitution
g =g — feg=feg
— “sometimes” replacement
g1=g — greh=geh

Outline

The language XS-IMP

Syntax
Expressions:

ax=0]1[-1]2|-2]...]1¢]s(a)]| p(a)

b ::= true|false|—-b|a=0|a>0
e n=alb
Commands:
¢ == skip|cc|l:=a
Programs:
pg = c;return(e)

Restrictions (easy to remove):
» only one location ¢

> no binary operation on expressions
Later:

> exceptions, conditionals, loops

Decorated logic for states

Comonad ‘ D(X)=S5x X‘

c

Tho Thy Tha

N

X=Y)H—— (X=2Y)——— (X—=Y)

! I I

(XﬁY)i—)(XjY)i—MX%Y)

!

(5xX = Y)i »(SXX = SxY)

Weak equations‘ i~ b X — Y‘

interpreted as: fLecy = Hhecy : SXxX =Y

—f—
SxX f SXY —ev—Y
~t satisfies substitution and pure replacement:

81 ~st 82 — f.gl L4 h(o) ~st f'gz L4 h(o)

Pure operations and equations

The pure theory Thy contains:
» sorts 1, A, B
» operations 0,1,—-1,...: 1 > A, s,p: A=A,
true,false:1 — B, not: B — B, null? pos?: A— B
» equations s(0) =1, p(0) = —1,..., sep = ida, pes = ida,
trueenot = false, ...

My : Thg — Set interprets A as the set A of integers,
B as the set B of truth values, etc

Operations and equations for states

In Set: a set of states S with (here) S = A, denoted [x| <+ x
Then Thy and Thy are generated from Thy by
two operations:

lookup® : 1 — A | update® : A — 1

lookup:S — A |update: SxA— S
lookup : [x|+— x |update:)= [y] .

one weak equation:

update e lookup ~g idp

update e lookup = €4

% y)b—)b—>y

and decorated rules...

Translation

Expressions: | e — e(!) : 1 — Expr (where Expr is A or B)

» 0,1,...—~ 00 10 true, false — true®, false(®
> s(a) — 305(0), p(a) — a.p(O), —b bOnot(o),
» ¢ lookup()

Commands: ’c =1 1‘

> skip — id(lo)

> C1;, 00— C1®C

» (= a+— aeupdate®

Programs: | pg +— pg® 1 1 — Expr

» c;return(e) > cee

Forward semantics

Given a program pg(® : 1 — Expr,
find a result rs(® : 1 — Expr such that [pg ~e rs

This means that pg: S — S x Expr and rs : 1 — Expr satisfy
pg(s) = (s', rs(x)) for some s’
5 g

S x Expr
€1l lsExpr
1 m Expr

This requires an initialization of the state
and the derived strong equation: for each u(® : 1 — A

’ u e update e lookup = ueupdatee u
Method:

» first = is used inductively, by replacement

» until finally ~4 can be used, by pure replacement
This corresponds to an operational semantics.

Forward semantics: an example

Initialization: ¢ := u© for any u(® :1 — A
The given program is
C:=u; £:=5(¢); return(p(¥))
translated as:
pg(2) =u® e update(2) . lookup(l) s e update(2) o lookup(l) ° p(o)

1 u A update 1 lookup A s A update 1 lookup A P A
L‘. u A up(it e 1 u /U\ s A update 1 lookup A P A
1 u A update -U. u A s j update ues /‘4‘ P A
1 u A update 1 u A s A update L‘- f /‘4‘
! “ ! - A

Conclusion: pg(z) ~st rs(©) where rs(® = y. The result is u

Backward semantics

Given a program pg = ¢; return(post) : 1 — Expr,

find an expression pre : 1 — Expr such that ’ pg ~st return(pre)‘

This means that ¢, post and pre satisfy:

e

S S
Pfe(l)l = lpost(l)
Expr Expr

post(c(s)) = pre(s)

This requires only the weak equation:

’update e lookup ~g idg ‘
Method:

> ~g is used inductively, by substitution and pure replacement

» until finally = is used for simplifying pure terms

When Expr = B this corresponds to a weakest precondition
semantics (here with a restricted language for conditions)

Backward semantics: an example

The given program is
0:=s(0); £ :=s({); return(p(¥))
translated as:
pg(2) = lookup(l) o5 oupdate(z) ° lookup(l) o5 oupdate(z) ° lookup(l) ° p(o)

lookup A s A update 1 lookup A s A update 1 lookup A P A
lookup A s A update 1 lookup A s /‘4‘ ;; /‘4‘ P A
N S U\ o U\ A i A—L s
lookup ‘ ‘ f /‘4‘

Conclusion: pg(® ~¢; 1ookup e s(9). The “pre-expression” is s(¢)

Outline

The language XS-IMP-EX

Syntax
Expressions:
as in XS-IMP
Commands:
¢ == skip| ¢;c | ¢ := a| throw | try(c)catch(c)
Programs:
pg = c;return(e)

Restriction (easy to remove):

» only one exception name (thus, omitted)

Decorated logic for exceptions (only)

Monad | T(X) = X + E|

c

N

Tho Thy Tha
X=Y)r—— (X=>Y)——> (X=Y)
1 I 1
X=>YVMrFH—— X =2 Y)———— (X = Y)
I 1
(X = Y+E)I »(X+E — Y+E)

Weak equations‘ l~ex b X — Y‘

interpreted as: nx efi =nxefh: X = Y+E
X s X+E 1T T YHE

~ex Satisfies replacement and pure substitution:
gl ~ex g2 e f(o).gl.hNeX f(o).g2.h

Operations and equations for exceptions (only)
In Set: a set of exceptions E with (here) 1 = E, denoted x <+ (»
Then Thy and Thy are generated from Thg by
two operations:

tag®™ :1 — 0| untag®:0—1
tag:1—E |untag: E—1+4+E
tag:x+— (» |untag: @ +—

one weak equation:

tag e untag ~ey id1

tageuntag =1
k> ®—*xand G — @ *

and decorated rules...

Decorated logic for states and exceptions
Duality is broken!

Functor | T(D(X)) = Sx X + SxE |

Tho — Thy ——— Thy —— Ths = The
(X=Y)————— (X=Y)i (X—=Y)
X=>Y)——— (X = Y)i (X—=Y)

l 1
(XX = SxY)——— (S§xX = S5xY)
1

(SXX+SXE - SxY+SXE)

pure state exception

Operations for states and exceptions: summary

lookup update tag untag

Tho —=— Thy —=— Thy —— Ths —=— Tha

pure state exception

» () may use the state
» £(@: may use and modify the state

» £(3): may use and modify the state,
may raise exceptions and must propagate exceptions

»). may use and modify the state,
may raise exceptions and must propagate exceptions,
may recover from exceptions

Decorated equations for states and exceptions

Weak equations
SX nsx — SX+SE

>’f1~exf2:X—>Y\

gH SY+SE —eytSE—s Y+ SE

interpreted as: nsx e fi = nsx @ >
Birvegr = fPegiehng fPegeh
> i~ hi X o Y]
interpreted as: f; ® (cy+SE) = f, e (¢y+SE)
g~ g = fogieh® ~gfegehl
> A ~sex i X 2 Y|

interpreted as: nsx e f ® (cy+SE) = nsx @ f» ® (cy+SE)
81 ~stex 82 — %) e g1e® h(©) ~st,ex f2 e g2 e h(©)

Equations for states and exceptions: summary

C C C
Tho —— Thy —— Tho Thy ———— Thy
\ ~ex
~st ~st ~st
\
~st,ex
pure state exception

Translation

Expressions:

e e 1 — Expr

as for XS-IMP
Commands: | ¢ +— ¢®) 1 - 1‘ (really (3), not (4))

> skip, ¢1; 0, £ := a:
as for XS-IMP

» throw — tag(®) e [](10)
pretends that the exception has type 1, instead of O

» try(ci)catch(c) — (| (c1 o [id1|untag®) e])©)
(next slide)

Programs:

pg pg(3) : 1 — Expr

as for XS-IMP

(really (3), not (4))

Translation of try-catch
try(c1)catch(c) — (| (c1 o [id1 | untag® e ¢;]))

Uses: the decorated coproduct 1 =140

1 ,
. idl o id
11— 1 —[idjuntagecs]
0T =

0O——1
untag

(]

and the “downcast” operator |

(L (F))3) is such that f ~ey LF

» | f is the same as f on non-exceptional arguments
» | f propagates exceptions while f may recover from exceptions
Rules for | include: | (A) =] () <= A ~« F

Translation of XS-IMP-EX: summary

l ¢:= throw try-catch
Tho ~= Thy ~=» Thy —= Ths = Thy
Set l v

m Set

pure state exception

Backward semantics

Predicate transformer semantics [Claude Marché, MPRI 2012]
Hoare triples: {P} c {Q|R} is valid if:
if ¢ is executed in a state satisfying P then:

— if ¢ terminates normally in a state s’ then s’ satisfies @
— if ¢ terminates abruptly in a state s’ then s’ satisfies R

This means that | P ~st ox ¢ ® [Q | untag e R]

Outline

The language IMP-EX: syntax, revisited

Expressions:
an=0|1]-1|2]|=-2]...]¢]|s(a)|p(a)

b ::= true|false|—-b|a=0|a>0
e n=al|b
Commands:

skip| c;c|l:=a|
¢ == ¢ throw | try(c)catch(c) |
if(b)then(c)else(c) | repeat(c)
Programs:
pg = c;return(e)

» As before: only one location, no binary operation on
expressions, only one exception name

» In addition: repeat(c) “instead of” while(b)do(c)

Decorated logic for non-termination

Partiality
Tho —=—Thy (X=Y)— (X Y)
Set = Part — — — +im(t1) (X —=Y)r— (X = Y)

~ — |
—

1T -~ ¥
> Set

Weak equations are inequations ‘fl =fh X — Y‘

interpreted as: f; > f, : X = Y (as partial functions)
Part with > is a 2-category

= satisfies replacement and substitution:
1= —> fegieh=fegreh

Operations and equations for non-termination

Thy is generated from Thg by
one operation constructor:

loop(c)® : X — X for each ¢V : X — X

loop(c) : X — X is the least fixed point of f +— c e f

one strong equation:

loop(c) = c @ 1loop(c)

and decorated rules, including:

’fzcof = f%loop(c)‘

A weak congruence

The “weakest” congruence for states, exceptions and
non-termination is <s: ex. For instance:

f<stex U0 X =Y

is a concise way to express the following:

f:SXX+SXE —=SxY+SXE and u: X — Y are such that:

if f(s, x) is defined, then it returns (s', u(x)) for some s’.

SX— X L SX4SE— " syysE_r°F L y.SE

ns XJ/ AN T”IY

X Y

u

This is the kind of relation required
between a “program” f and its “result” u

Translation

Translation is obvious:

» repeat(c) — loop(c)

Example ‘repeat(throw) = throw‘

repeat(throw) is translated as r = loop(tage[]1)

1 - 1
I |
1 1

tag

I =
-

0
1—= 0] 1
because r (like all commands) propagates exceptions

Decorated logic for conditions

Weak equations are conditional equations
(A~hHh:X—Yifb]

where ~ is any of the previous (strong or weak) congruence

and b is a boolean expression.

For replacement, conditional ~ has the same properties as ~.

Thy is generated from Thy by
two operation constructors (“conditional non-determinism”):

choose(cy, &) : X — Y for each c(), M. x>y
b (C)(O) : X — Y foreachc® : X 5 Y

[alo] : X+X =Y
ib ([C1|C2]) =be [C1|C2] X=Y

Decorated logic for IMP-EX

Combine the decorated logics for:
> states
> exceptions
» non-termination
» and “conditional non-determinism"

by composing the corresponding functors
and extending the corresponding weak congruences

Outline

Conclusion

Remark.

Effects as functors, with their weak congruences, can be seen as a
kind of generalization of 2-categories, with decorated categorical
notions as a generalization of lax categorical notions.

To do...
> “work in progress”:
— which is the best order for composing the effects?

» Define while loops by:
while(b)do(c) =
try (repeat(if(b)then(c)else(throw)))catch(skip)
Prove that indeed such a while loop is the least fixed point
of f — if(b)then(c; f)else(skip)
» Complete the implementation in Coq

» Towards richer languages (C, C++, Java,...)

	Decorated logics
	States: XS-IMP
	States and exceptions: XS-IMP-EX
	The language IMP-EX
	Conclusion

