
From AXIOM down to IMP

Dominique Duval

with the help of Jean-Guillaume Dumas, Burak Ekici,
Alexis Laouar, Damien Pous, Jean-Claude Reynaud

Algebraic Algorithms and Applications – Pisa – 31 March 2017

Happy birthday Patrizia!

AXIOM

��

IMP

DiaLog

��

AXIOM

77

Effects

$$

IMP

DiaLog

Th = F (Sp)

mod
��

Dom
Effects and IMP

Th

mod
��

// Th′

mod ′
��

// Th′′

mod ′′
��

Dom // Dom′ // Dom′′

Outline

Diagrammatic Logics

Computational effects

Proofs for an IMPerative language

From Axiom to DiaLog

AXIOM is (loosely) based on abstract data types (ADT)
and algebraic specifications (booleans, integers, lists, ...)
[developped by the ADJ group at IBM Research]

Question.
Can we find a more powerful, more accurate, theoretical basis?

I Institutions are too close to algebraic specifications
[Goguen, Burstall]

I We have proposed the framework of Diagrammatic Logics
[Doḿınguez, Duval, Lair]

“An inference rule is a (categorical) fraction”

The modus ponens rule

Written AS a fraction
A A⇒ B

B

“if A implies B and A is true, then B is true”

or in two steps:

“(A implies B and A is true) if and only if
(A implies B and A is true and B is true),

and [obviously] if (A implies B and A is true and B is true)
then (B is true)”

This rule IS a fraction

{A, A⇒ B} ⊆
// {A, A⇒ B, B}

if and only if
oo {B}⊇

if then
oo

Rules as fractions

A rule, written AS a fraction
H

C
, actually IS a fraction

c

h

H

C
or H

h // H ′oo C
coo or

c

h

where H ′ = “H and C ”, with respect to a functor S
F // T

• Solid arrows H
h // H ′ C

coo are in S

• Dashed arrow H H ′oo stands for F (H) F (H ′)
F (h)−1

oo in T

– S is the category of specifications
– T is the category of theories
– F (Sp) is the theory generated by the specification Sp

Logic as adjunction

Definition?
A diagrammatic logic is an adjunction F a G such that
the counit F ◦ G ⇒ IdT is an iso, i.e., G is full and faithful

S
F // T

G

⊥
ee

In addition, this adjunction must be “syntactic”

Definition!

A diagrammatic logic is [determined by] a morphism of
limit sketches which simply adds inverses to some arrows.

Models

Given a diagrammatic logic

A model of Th in Dom is a morphism mod : Th→ Dom in T

Thus, if Th = F (Sp) (i.e., Th is presented by Sp) then
a model of Th in Dom is a morphism mod : Sp → Dom in S

Sp � F //

mod

��

Th = F (Sp)

mod

��

Dom = G (Dom) Dom�Goo

Morphisms as fractions

Given a diagrammatic logic

if Th1 = F (Sp1) and Th2 = F (Sp2) then
each morphism of theories th : Th1 → Th2

is presented by a fraction

Sp1

sp1 // Sp2
′

// Sp2

sp2oo

i.e., th = F (sp2)−1 ◦ F (sp1)

Th1
F (sp1) // Th2

′ F (sp2)
−1

// Th2

Example: implementation of the operations in Sp1

using the operations in Sp2

Outline

Diagrammatic Logics

Computational effects

Proofs for an IMPerative language

From DiaLog to computational effects

There is a simple and powerful notion of morphism of
diagrammatic logics.

This allows to deal with situations where the syntax and the
semantics do not fit.

Example. In an imperative language with exceptions, a piece of
program p : x → y is interpreted as a partial function
JpK : S × JxK ⇀ S × JyK + S × E

A computational effect involves several kinds of terms
(values and computations, or pure and effectful)
and here in addition

“A computational effect involves several kinds of equations”

State

Our first motivation for building diagrammatic logic
was to get a proof system for programs involving states

In an imperative language, we can distinguish 3 kinds of terms:
– pure terms
– accessors or read-only
– modifiers or read-write

A term x // y in the syntax is interpreted
using the set S of states:
– pure: x // y

– read-only: S × x // y

– read-write: S × x // S × y

Denotational semantics of states

Models in relevant logics involve the product comonad
S ×− : Set→ Set

pure //

��

read-only //

��

read-write

��

Set //

S×−
++

Kl // Im

��

Set

(x → y) � //
_
��

(x → y) � //
_

��

(x → y)
_

��

(x → y)
� ++

(S×x → y)
� ,,

(S×x → S×y)

“up-to-state” quasi-equations

The rules involve 2 kinds of “equations” on read-write terms:
– strong equations: f1 ≡ f2 : x → y ,

interpreted as f1 = f2 : S × x → S × y
– “up-to-state” quasi-equations: f1 ∼ f2 : x → y ,

interpreted as pr ◦ f1 = pr ◦ f2 : S × x → y

with different rules:
– strong equations form a congruence:
an equivalence relation compatible with composition:

g1 ≡ g2
h ◦ g1 ◦ f ≡ h ◦ g2 ◦ f

– “up-to-state” quasi-equations form a “weak” congruence:
an equivalence relation “weakly” compatible with composition:

g1 ∼ g2
h(pure) ◦ g1 ◦ f ∼ h(pure) ◦ g2 ◦ f

Operations on states

Let Loc = {X ,Y , ...} be the set of locations (or “variables”)
(assumed of type integer Z)
– lookupX : 1→ Z is an accessor
– updateX : Z → 1 is a modifier
Quasi-equations:{

lookupX ◦ updateX ∼ idZ

lookupY ◦ updateX ∼ lookupY (if Y 6= X)

Interpretation as required, when S = ZLoc =
∏

X∈Loc Z
– JlookupX K : S → Z such that s 7→ s(X)
– JupdateX K : S × Z→ S such that (s, n) 7→ s[n/X]

States and exceptions: duality

Then we realized that by duality from states
we get a proof system for programs involving exceptions

We distinguish 3 kinds of terms:
– pure terms
– propagators (that may throw and must propagate exceptions)
– catchers (that may recover from exceptions)

A term x // y in the syntax is interpreted
using the set E of exceptions:
– pure: x // y

– propagator: x // y + E

– catcher: x + E // y + E

Denotational semantics of exceptions

Models in relevant logics involve the coproduct monad
−+ E : Set→ Set

pure //

��

propagator //

��

catcher

��

Set //

−+E
,,

Kl // Im

��

Set

(x → y) � //
_
��

(x → y) � //
_

��

(x → y)
_

��

(x → y)
� ++

(x → y +E)
� ,,

(x +E → y +E)

“up-to-exceptions” quasi-equations

The rules involve 2 kinds of “equations” on catchers:
– strong equations: f1 ≡ f2 : x → y ,

interpreted as f1 = f2 : x + E → y + E
– “up-to-exceptions” quasi-equations: f1 ∼ f2 : x → y ,

interpreted as f1 ◦ in = f2 ◦ in : x → y + E

with different rules:
– strong equations form a congruence:
an equivalence relation compatible with composition:

g1 ≡ g2
h ◦ g1 ◦ f ≡ h ◦ g2 ◦ f

– “up-to-exceptions” quasi-equations form a “weak” congruence:
an equivalence relation “weakly” compatible with composition:

g1 ∼ g2
h ◦ g1 ◦ f (pure) ∼ h ◦ g2 ◦ f (pure)

Operations on exceptions

Let Exc = {e, e ′, ...} be the set of exception names
(assumed with parameter of type integer Z)
– tage : Z → 0 is a propagator
– untage : 0→ Z is a catcher
Equations: {

untage ◦ tage ∼ idZ

untage ◦ tage′ ∼ tage′ (if e ′ 6= e)

Then tage and untage have to be encapsulated for getting
the required throw and try/catch constructions

What is a computational effect?

Effect = strong monad [Moggi]
Effect = Lawvere theory [Plotkin, Power, Hyland]
Effect = ?? I do not know...

Some features appear:

– several kinds of terms
– several kinds of “quasi-equations”

Th(0) //

mod (0)
��

Th(1) //

mod (1)
��

...

Dom(0) // Dom(1) // ...

Combinaison of effects may look systematic by composition,
but combinaison of quasi-equations is not systematic

Outline

Diagrammatic Logics

Computational effects

Proofs for an IMPerative language

From computational effects to IMP

Goal.

Design a proof assistant for imperative or object-oriented languages
(based on Coq, for example)

– close to the syntax
– for proving equivalence of parts of programs

A case study.

The basic IMPerative language IMP: with the state effect

[and IMP-EX: with the state and the exceptions effects]

Actually, it is convenient to

“Consider conditionals and loops as effects”

IMP syntax

IMP is a very simple IMPerative language

Loc = {X ,Y , ...} is the set of locations (or “variables”)

Expressions:
a ::= 0 | 1 | −1 | ... | X | Y | ... | a + a | ...
b ::= true | false | b ∧ b | ... | a = a | ...

Commands:
c ::= skip | c ; c | X := a | if b then c else c | while b do c

IMP syntax, categorically: expressions

• “types” A, B as objects,
• “type” unit or void as initial object 1
• expressions as arrows
• binary operations using products

EXPRESSION a or b 1 a // A or 1 b // B

binary operation a1 + a2 A

1

a1
=

55

a2

=

))

// A2

OO

��

+
// A

A

IMP syntax, categorically: commands

• commands as arrows
• conditionals using coproducts

COMMAND c 1 c // 1

do-nothing skip 1 id // 1

sequence c1; c2 1
c1 // 1

c2 // 1

assignment X := a 1 a // A
X := // 1

conditional if b then c1 else c2 1
true ��

c1
=

))1 b // B // 1

1
false
OO

c2

=
55

IMP denotational semantics

S = ZLoc =
∏

X∈Loc Z is the set of states

Expressions interpreted as total maps
JaK : S → Z = {...,−1, 0, 1, ...} e.g. JX K(s) = s(X)
JbK : S → B = {true, false}

Commands interpreted as partial maps
JcK : S ⇀ S

JX := aK(s) = s [JaK(s)/X]

Jif b then c1 else c2K(s) = if JbK(s) then Jc1K(s) else Jc2K(s)

Jwhile b do cK = fix(FJbK,JcK)
i.e., the least fixed-point of FJbK,JcK where
(FJbK,JcK(f))(s) = if JbK(s) then f (JcK(s)) else s

IMP denotational semantics, categorically

EXPRESSION S
a // A or S

b // B

binary operation A

S

a1

=

33

a2

=

++

// A2

OO

��

+
// A

A

COMMAND S
c / S

do-nothing S
id // S

sequence S
c1 / S

c2 / S

assignment S
〈id,a〉
// S × A

X := // S

conditional S
��

c1

= +S
〈id,b〉

// S × B
∼= // S + S // S

S

OO

c2

=
3

Effects in IMP

pure //

��

X //

��

X := //

��

if... //

��

while...

��

Set //

S×−
++

Kl // Im //

��

Im //

��

Im

��

Set
id

// Set

incl ''
Pfn

(x → y)
_
��

(x → y)
_
��

(x → y)
_
��

(x → y)
_
��

(x → y)
_
��

(x → y) (S×x→y) (S×x→S×y) (S×x→S×y) (S×x⇀S×y)

Quasi-equations for IMP

Programs: p ::= c ; return (a)

interpreted as S
c / S

a // A

– Quasi-equations for state: p1∼ p2 : 1→ A
interpreted as p1 = p2 : S ⇀ A

– Quasi-equations for conditionals: c1≡b c2 : 1→ 1,
interpreted as c1|Sb = c2|Sb : Sb ⇀ S

where Sb = {s ∈ S | b(s) = true} ⊆ S

– Quasi-equations for loops: c1≤ c2 : 1→ 1,
interpreted as c1 ≤ c2 : S ⇀ S in Pfn

Combining quasi-equations

Example: combining ∼ (state) and ≤ (loop):

Quasi-equation 4 with p1 4 p2 : 1→ A
interpreted as p1 ≤ p2 : S ⇀ A

In particular:
if p : 1→ A is a program and r : 1→ A a pure expression, then

p 4 r ⇐⇒ r is the result of p

Properties of quasi-equations

≡ ∼ ≡b ≤ 4
reflexive V V V V V

transitive V V V V V

symmetric V V V X X

substitution V V X V V

continuation V X V V X

Conclusion

I categories of fractions for logic

I quasi-equations for computational effects

I conditionals and loops as effects for IMP

THANK YOU!

	Diagrammatic Logics
	Computational effects
	Proofs for an IMPerative language

