
Diagrammatic logic and effects:

the example of exceptions

Dominique Duval

joint work with Christian Lair and Jean-Claude Reynaud

MAP — january 13, 2005

0-0

Logic and categories

• Logic can be based on category theory:

(Lawvere, Ehresmann, 1960’s).

• One major result: simply typed lambda-calculus is equivalent

to cartesian closed categories (Lambek and Scott).

• Many other results: “some logic is equivalent

to some family of categories”.

For dealing (also) with computational effects, such as exceptions,

overloading, . . . , several logics are needed – schematically, at least:

— a logic (with effects) for the language,

— a logic (explicit) for the user.

Thus, a category of logics is needed.

This talk

1. The category of diagrammatic logics

(also used by César Domı́nguez in the next talk).

2. An application to exceptions

(involving three diagrammatic logics).

1. The category of diagrammatic logics

Graphs

A (directed multi-)graph is made of:

• a set of points, a set of arrows,

• source and target maps, both from the arrows to the points.

Example:

u
0 // g

−

��
g2+oo

The definition of graphs can be illustrated by the following graph

SGr:

Point Arrow
source

qq

target

mm
_^]\XY Z[

Categories

A category is a graph where:

• each point X has an identity arrow idX : X → X,

• each pair of consecutive arrows f : X → Y , g : Y → Z has a

composed arrow g ◦ f : X → Z,

• with the usual associativity and unitarity axioms.

Basic examples.

Set: points are sets and arrows are maps.

Gr: points are graphs and arrows are morphisms of graphs.

Cat: points are categories and arrows are functors.

The definition of categories can be illustrated by the following

graph SCat:

Point

selId

99Arrow
source

qq

target

mm Consecutive
first

rr

second

ll

comp

ff
gf ed`a bc

with the additional information that the cone below represents a

limit:

Consecutive
firstuukkkk second))SSSS

Arrow

target))SSSSS Arrow
sourceuukkkkk

Point

and with several equalities of maps:

source ◦ comp = source ◦ first, target ◦ comp = target ◦ second,. . .

A graph together with some distinguished cones (potential limits)

and with some equalities among terms, is a projective sketch.

Graphs and categories

From the definition, every category is a graph;

there is an omitting (or forgetful) functor:

Gr Cat
U

kk

which corresponds to the inclusion of projective sketches:

SGr
⊆ // SCat

On the other hand, every graph generates a category;

there is a generating functor:

Gr
F

++
Cat

The pair (F, U) is an adjunction:

HomGr(Γ, U∆) ∼= HomCat(FΓ, ∆) .

Compositive graphs

A compositive graph is a graph where:

• some points have an identity arrow,

• some pairs of consecutive arrows have a composed arrow.

This definition can be illustrated by a projective sketch SComp:

SGr
// SComp // SCat

So, there are adjunctions:

Gr
F′

,,
Comp

U′

kk
F′′

++
Cat

U′′

ll

Moreover, for every graph Γ and every category ∆:

U′F′Γ ∼= Γ and F′′U′′∆ ∼= ∆ :

an instance of the decomposition theorem (Duval, Lair, 2002).

Propagators

The realizations of a projective sketch S are the morphims from S

to Set, they form a category Real(S). E.g., Real(SGr) = Gr,. . .

Every morphism of projective sketches M : S → S ′ defines an

omitting functor:

Real(S) Real(S ′)
UM

mm

Theorem (Ehresmann, 1965) The functor UM has a left-adjoint:

Real(S)
FM

--
Real(S ′)

UM

mm

A propagator is a morphism of projective sketches P : S → S such

that, for each realization ∆ of S:

FP UP ∆ ∼= ∆ .

Diagrammatic logics

Let P : S → S be a propagator.

• P -specifications: Spec(P) = Real(S).

• P -domains: Dom(P) = Real(S).

• P -deduction rules: arrows from S.

• P -deduction steps are morphisms σ : Σ → Σ′ such that

FP (σ) is an isomorphism (see next slides).

• P -models of a specification Σ with values in a domain ∆:

Mod(Σ, ∆) = Hom(Γ, UP ∆) ∼= Hom(FP Γ, ∆).

Soundness. If σ is a deduction step, then Mod(σ, ∆) is a bijection.

Deduction rules

Theorem (Hébert, Adámek and Rosický, 2001)

A propagator consists of adding inverses to arrows.

The corresponding rules H
C

are illustrated as follows (//__ only in S):

H

r=s−1

''n
i d _ Z U

P

Cs
oo

Or via the Yoneda contravariant morphism (//__ only in Dom(P)):

YS(H)
YS(s)

// YS(C)

YS(s)−1

xx
S

Y_e
k

Example: X
f // Y

g // Z
WV UTPQ RS //��

M_
q

X
f //

g◦f

44Y
g // Z

WV UTPQ RS

Deduction steps

Let Σ be a P -specification. The P -deduction step associated to the

P -deduction rule H

r=s−1

!!s
_ K

Cs
oo , applied to an x ∈ Σ(H), is the

morphism τs(x) in the pushout of Y(s) and x:

Y(H)
Y(s)

//

x

��

Y(C)

cs(x)

��
Σ

τs(x)
// Σs(x)

Proposition. FP (τs(x)) is an isomorphism.

Morphisms of diagrammatic logics

Let P1 : S1 → S1 and P2 : S2 → S2 be two propagators.

A morphism of propagators P1 → P2 is a pair (α, α) of morphisms

of projective sketches such that:

S1
P1 //

α

��
=

S1

α

��
S2

P2 // S2

In this way, we get a category of diagrammatic logics, as required.

2. An application to exceptions

The issue

Formalizing the exception mechanism.

Previous work:

algebraic specifications, monads (Moggi, 1996), (Haskell).

Plotkin and Power, 2001: “Evident futher work is to consider how

other operations such as those for handling exceptions should be

modelled. That might involve going beyond monads, as Moggi has

suggested to us.”

Our approach is influenced by the monads approach, although

quite different.

Three logics

Three denotational semantics

Pdeco: decorated logic

direct semantics

undecoration
δxxpppppppppp

expansion
χ

&&NNNNNNNNNNN

Pbasic: basic logic

näıve semantics

Pexpl: explicit logic

monadic semantics

Example, over the naturals, with z (for 0) and s (for successor):

Exception e

p(x) = case x of [s(y) ⇒ y | z ⇒ raise e] handle [e ⇒ z]

The basic logic

Without any exceptions.

With sum types.

p0(x) = case x of [s(y) ⇒ y | z ⇒ z] : Nat → Nat

Nat
s

vv
id

,,YYYYYYYYYYYYYYYYYYYYY

≡

Nat p0
// Nat

1
z

ii

z

22eeeeeeeeeeeeeeeeeeeeee

≡

The case construction

More generally, the case construction uses the extensivity property

of sums (Carboni, Lack and Walters, 1993):

t(x) = case u(x) of [j1(y) ⇒ t1(x, y) | j2(y) ⇒ t2(x, y)]

= [i1(x) ⇒ t1(x, y) | i2(x) ⇒ t2(x, y)]

X1
i1

ww

//

≡

t1

&&

Y1
j1

ww
X u //

t --Y

≡

≡

Z

X2

i2

gg

//
≡

t2

88

Y2

j2

gg

The decorated logic: raise

Exception e

1
ec

// 0

p1(x) = case x of [s(y) ⇒ y | z ⇒ raise e]

Nat
sv

vv
idv

,,YYYYYYYYYYYYYYYYYYYYY

≡

Nat pc

1
// Nat

1
zv

ii

ec

//
≡

0
raisev

66mmmmmmmmm

where:

raisev
X = []vX : 0 → X .

The decorated logic: handle

p(x) = p1(x) handle [e ⇒ z]

= casec p1 of [id ⇒ id | raise ⇒ u]

where u = casee e of [e ⇒ z]

Nat
sv

xx

idv

//

≡

id

%%

Nat
idv

xx
Nat pc

1
//

p
--Nat

≡

≡

Nat

1
zv

gg

ec

//
≡

u

99

0
raisev

gg

So, pc ≡ [s ⇒ id | z ⇒ u]

and on the other hand uc ≡ z.

Finally:

p ≡ [s ⇒ id | z ⇒ z] ≡ p0.

The decorated logic: proofs and models

• Proofs can be made in the decorated logic.

• Models can be defined in the decorated logic, although there is

no canonical interesting domain of sets.

• Decorations for arrows: v, c,

this is rather similar to the monads approach.

• Decorations for the case rule: v, c, e,

this is new.

• The morphism δ : Pdeco → Pbasic is simply the undecoration.

The explicit logic

Similar to the basic logic, but with a distinguished type E for

exceptions: “exceptions are explicit”.

A (partial) description of the expansion morphism

χ : Pdeco → Pexpl:

• A value tv : X → Y becomes a term t : X → Y .

• A computation tc : X → Y becomes a term t : X → Y + E.

For example, an exception ec : 1 → 0 becomes e : 1 → E.

• The composition of these terms is done in the Kleisli way, as in

the monads approach.

Conclusion

Mathematics:

categories, adjunction, sketches,. . .

Algorithms:

can be formalized, even when they are not functional.

Proofs:

a framework for proofs of programs using effects.

