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This talk presents some

diagrammatic techniques

in computer science

In the field of categorical logic

with emphasis on sketches rather than categories

i.e., on specifications rather than complete theories
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– I – Some basic examples

– II – Definitions and theorems

– III – An application to overloading
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– I –

Some examples
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In these examples, basically:

A specification S is

a directed graph, made of:

• points

(vertices, sorts, types,. . . )

• arrows

(edges, operations, functions,. . . )

U
z // I

s

��

p

[[

A model M of S interprets:

• points as sets

• arrows as maps

{u}
u7→0 // Z

x7→x+1

��

x7→x−1

[[
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In these examples, actually:

A specification S is

a composition graph

i.e., a directed graph where:

• a point X

can have an identity arrow

idX : X → X

• a pair (f : X → Y, g : Y → Z)

can have a composed arrow

g ◦ f : X → Z

I

idI

pp

I
s //

p◦s

66I
p // I
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In a model M of S

• an identity arrow becomes

an identity map

• a composed arrow becomes

a composed map

Z

x7→x

qq

Z
x7→x+1 //

x7→x

66Z
x7→x−1 // Z
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A specification S freely generates

a theory F (S) with:

• all identity arrows

• all composed arrows

(paths, terms,. . . )

so that F (S) is a category

U

z

��
s◦z

%%s◦s◦z //...

...

99 I ...

Fact (soundness)

Mod(S) = Mod(F (S))
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The theory F (S) is generated from the specification S

by applying some deduction rules:

XON MLHI JK //{{
Q_m

X
idXqqON MLHI JK

X
f // Y

g // Z
_^ ]\XY Z[ //{{

Q_m
X

f //

g◦f

33Y
g // Z

_^ ]\XY Z[
A deduction rule

is a morphism of specifications

which becomes

an isomorphism of theories

H //{{
Q_m

C

H // C

F (H) //{{
F (C)
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In addition

In a specification S

some pairs of parallel terms

can be called equations

I

p◦s

**

idI

44≡ I p ◦ s ≡ idI

In a model M of S

equations become equalities Z
x7→x // Z

In the theory F (S)

equations generate congruences
U

p◦s◦z

**

z

44≡ I p ◦ s ◦ z ≡ z
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Products

In a specification S

some projective cones

can be called potential products

I

I2

xkkXXXXXXXXXX

yssffffffffff

I

In a model M of S

a potential product becomes

a cartesian product

Z

Z2

(x,y)7→xllXXXXXXXXXX

(x,y)7→yrrffffffffff

Z

In the theory F (S)

a potential product becomes

an equiv-product
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A potential product generates:

• new arrows (pairs)

• and new equations

according to the existence rule

X

Z

f
??~~~~~~~

g
��@

@@
@@

@@
X × Y

x

ccGGGGGGGGG

y
{{ww

ww
ww

ww
w

Y

�~ }|
xy z{

//{{
Q_m

X

Z

f
??~~~~~~~

g
��@

@@
@@

@@

(f,g) //

≡

≡

X × Y

x

ccGGGGGGGGG

y
{{ww

ww
ww

ww
w

Y

�~ }|
xy z{

and to the unicity rule
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Constants

Besides binary products,

there can be n-ary products for any n, including n = 0.

In a specification S the vertex of

a nullary potential product

is called a potential terminal point

U

In a model M of S

it becomes a singleton
{u}

Hence, a constant is an arrow from U U
z // I
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A potential terminal point generates:

• new arrows

• and new equations

according to the existence rule

Z UON MLHI JK //{{
Q_m

Z // UON MLHI JK
and to the unicity rule

Z
))
55 UON MLHI JK //{{

Q_m
Z

))
55≡ UON MLHI JK
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Sums

In a specification S

some inductive cones

can be called potential sums

Ui

rreeeeeeeeeee

N

N∗j

llYYYYYYYYYY

In a model M of S

a potential sum becomes

a disjoint union

{u}⊇

ssffffffffff

N

N∗⊇

llYYYYYYYYYYY

In the theory F (S)

a potential sum becomes

an equiv-sum
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A potential sum generates:

• new arrows (“if. . . then. . . else. . . ”)

• and new equations

according to the existence rule

X

i

{{ww
ww

ww
ww

w
f

��@
@@

@@
@@

X + Y Z

Y

j

ccGGGGGGGGG g

??~~~~~~~

�~ }|
xy z{

//{{
Q_m

X

i

{{ww
ww

ww
ww

w
f

��@
@@

@@
@@

X + Y
[f,g] // Z

≡

≡

Y

j

ccGGGGGGGGG g

??~~~~~~~

�~ }|
xy z{

and to the unicity rule
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Initiality

In a specification S

some parts

can be called potentially initial

U
z ��
N

N

s
OO

In a model M of S

potential initiality becomes

actual initiality

{u}

u7→0 ��
N

N

x7→x+1
OO
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A potential initiality generates:

• new arrows defined by induction

• and new equations proven by induction

according to the existence rule

U

z

��

U

a

��
N X

N

s

OO

X

f

OO

�~ }|
xy z{

//{{
Q_m

U

z

��

idU // U

a

��
N

rec(a,f) //

≡

≡

X

N

s

OO

rec(a,f) // X

f

OO

�~ }|
xy z{

and to the unicity rule
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Terminality

In a specification S

some parts can be

called potentially terminal

N

F

h

OO

t ��
F

In a model M of S

potential terminality becomes

actual terminality

N

Nω

(x0,x1,...)7→x0

OO

(x0,x1,...)7→(x1,...) ��
Nω
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A potential terminality generates:

• new arrows defined by coinduction

• and new equations proven by coinduction

according to the existence rule

N N

X

a

OO

f

��

F

h

OO

t

��
X F

�~ }|
xy z{

//{{
Q_m

N
idN // N

X
corec(a,f)//

a

OO

f

��

≡

≡

F

h

OO

t

��
X

corec(a,f)// F

�~ }|
xy z{

and to the unicity rule
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Exponentials

In a specification S

some parts can be called

potential exponentials

Y X

X

Y X×X

q

ccHHHHHHHHHp
llXXXXXXXXXXXXXXX

apply
ttjjjjjjjjjjjjjjj

Y
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A potential exponential generates:

• new arrows (abstractions)

• and new equations (beta-equivalence)

according to the existence rule

Z Y X

X

Z × X

z

EE�������
x 77ppppp

f ""D
DD

DD
DD

Y X×X

q

[[7777777phhRRRRR

applyzzttt
tt

tt
t

Y

�~ }|
xy z{

//{{
Q_m

Z
λ x.f// Y X

X

Z × X

z

EE�������
x 77ppppp

f ""D
DD

DD
DD ((λ x.f)◦z,x)

// Y X×X

q

[[7777777phhRRRRR

applyzzttt
tt

tt
t

≡

Y

�~ }|
xy z{

and to the unicity rule
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– II –

Definitions and theorems
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Diagrammatic specifications generalize Ehresmann’s sketches:

1. a part of a specification S can be distinguished (“colored”)

2. this results in constraints upon the models of S

3. and a related enrichment of the theory of S

For instance:

1. a projective cone of a specification S is colored

2. it must become a cartesian product in every model of S

3. and it gives rise to tuple of arrows in the theory of S
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Definition

A sketch is a composition graph with

• potential limits (generalized products)

• potential colimits (generalized sums)

Theorem

Sketches ' First-Order Logic

Fact

Diagrammatic specifications generalize sketches
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Definition

A projective sketch is a composition graph with

• potential limits (generalized products)

Theorem

Projective Sketches ' Horn Clauses Logic

Fact

Diagrammatic specifications are defined from projective sketches
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A basic example

The directed graphs are the models of the projective sketch

EGr = Pt Ar
scerr

tgt

ll
_^ ]\XY Z[

All the specifications and theories in the previous examples

are directed graphs with additional features

i.e., they are models of projective sketches extending EGr
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Propagators

Definition

A propagator is a morphism of projective sketches

P : E → E

For instance PComp2Cat : EComp → ECat where

• the models of EComp are the composition graphs

• the models of ECat are the categories

• PComp2Cat is the inclusion

“A propagator is some kind of “logical level” ”
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Basically

• Meta-specification level

A projective sketch : EComp = Pt Ar . . .

sce
rr

tgt

ll

A model S of E : S = {U, N} {z, s} . . .

z 7→U,s7→N
qq

z 7→N,s7→N

mm

• Specification level

S is also a specification : S = U
z // N

s

qq

A model M of S : M = {u}
u7→0 // N

x7→x+1

qq
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The definitions

With respect to a propagator

P : E → E

• A P -specification S is a model of E

Spec(P ) = Mod(E)

• A P -domain ∆ is a model of E

Dom(P ) = Mod(E)

A P -domain ∆ has an underlying P -specification G(∆)

• A P -model of S with values in ∆ is a morphism

M : S → G(∆)
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For instance, with respect to the propagator

PComp2Cat : EComp → ECat

• A P -specification S is a composition graph

• A P -domain ∆ is a category

A category ∆ has an underlying composition graph G(∆)

• A P -model of S with values in ∆ is a functor M : S → G(∆)

When S = U
z // N

s

qq and ∆ = Set

one P -model M of S with values in ∆ is such that:

M(S) = {u}
u 7→0 // N

x7→x+1

qq
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Adjunction

Theorem (Ehresmann)

The omitting functor G : Dom(P ) → Spec(P )

has a left-adjoint F : Spec(P ) → Dom(P )

Spec(P )
F --

Dom(P )
G

mm

F (S) is freely generated by S, i.e., F (S) is the theory of S

Theorem (adjunction)

A P -model of S with values in ∆ is a morphism

M : S → G(∆) or, equivalently, M : F (S) → ∆
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A note on dynamic evaluation

This result is false when P : E → E

for non-projective sketches E and E

However, several theorems by Guitart and Lair generalize it

When E and E have sums (but no general colimits),

there is a discrete family of P -domains

“instead of” just one P -domain F (S)

For instance, there is one initial ring (with unit) Z,

but several locally initial fields : the prime fields F2, F3, F5,. . . , Q.
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Decomposition of a propagator

The propagator

P0 = PGr2Cat : EGr → ECat

is such that

G0(F0(G)) 6= G and F0(G0(C)) 6= C

Fact

The propagator P0 can be decomposed as P0 = P2 ◦ P1

EGr
P0 //

P1

--
ECat

=
EComp P2

88

where

G1(F1(G)) ∼= G and F2(G2(C)) ∼= C
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Decomposition of all propagators

Theorem (Duval-Lair)

Every propagator P : E → E can be decomposed as P = P2 ◦ P1

E
P //

P1

//
E

=

E ′
P2

==

where

F1 “trivial” and G1 ◦ F1
∼= idE and F2 ◦ G2

∼= idE

Theorem (Hébert-Adámek-Rosický)

The propagator P2 : E ′ → E is (essentially) made of

the inversion of some arrows
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Deduction rules

Definition

A fractioning propagator P : E → E is such that

F ◦ G ∼= idE

i.e., P is made of the inversion of some arrows

(for instance PComp2Cat : EComp → ECat )

Illustration

A fractioning propagator P is illustrated by a copy of E

together with a dashed arrow for each inverse added in E :

H

c−1

''n i d _ Z U P
C

coo

Then H =hypotheses and C =conclusion and c−1 = the rule H
C
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Deduction rules : the Yoneda functor

The Yoneda contravariant functor for projective sketches (Lair)

maps

H

c−1

''n i d _ Z U P
C

coo

to P -specifications

Y (H)
Y (c) // Y (C)

Y (c−1)

tt W[_ch

For instance

XON MLHI JK //{{
Q_m

X
idXqqON MLHI JK
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– III –

An application to overloading

with Hélène Kirchner and Christian Lair
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Now, for simplicity, a specification is just

a composition graph (with equations)

Overloading occurs in a specification

when several arrows share the same name

In order to make a clear distinction between an arrow and its name,

the names are considered as arrows in another specification, and

the fact of naming the arrows as a morphism of specifications.

Definition

An overloaded specification is a morphim of specifications
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For instance, the overloaded specification

Z = P

p

��

s

mm

U
z // N

s

VV

s

mm

gf ed`a bc
is considered as a morphism ζ : T → S

P

p′

��

s′

mm

U
z′

// N

s′′

VV

s′′′

mm

gf ed`a bc
ζ // U

z // X
s

cc

p{{_^ ]\XY Z[
Static type-checking is done in S : p ◦ z is accepted

Dynamic type-checking is done in T : p ◦ z is rejected
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A (not-overloaded) specification is a model of

EComp = Pt Ar
scerr

tgt

ll ..._^ ]\XY Z[
Proposition

An overloaded specification is a model of

E =

Pt1

��
==

Ar1

sce1rr

tgt
1

ll

��

...

Pt0 Ar0

sce0rr

tgt
0

ll ...

gf ed
`a bc
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What are the models of an overloaded specification ζ : T → S?

Naive view : Mod(ζ) = Mod(T )?

P

p′

��

s′

mm

U
z′

// N

s′′

VV

s′′′

mm

gf ed`a bc
ζ // U

z // X
s

cc

p{{_^ ]\XY Z[
N∗

x7→x−1

��

x7→x+1

mm

{u}
u7→0 // N

x7→x+1

UU

x7→x+1

mm
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One semantics of overloading

Identification rule :

two arrows with the same name, source and target,

must have the same interpretation

For instance p ◦ s ◦ s ◦ z : U → N

P
s′

// P
p′

  @
@@

@@
@@

U
z′

// N
s′′′

//

s′′

>>}}}}}}}
N

s′′

>>~~~~~~~
N
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What are the models of an overloaded specification ζ : T → S?

ζ : T → S generates F (ζ) : T ′ → F (S)

where T ′ 6= F (T ) because of the identification rule

Definition

Mod(ζ) = Mod(T ′)

Proposition (“non-soundness”)

Mod(T ) 6= Mod(ζ)

The semantics of T is an approximation of the semantics of ζ
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The diamond example

Y ′

u′

%%KKKKKK

X ′

t′
99rrrrrr

t′′ %%LLLLLL Z ′

Y ′′
u′′

99ssssss

gf ed
`a bc

ζ // X
t // Y

u // ZON MLHI JK

in F (T ): Y ′

u′

%%KKKKKK

X ′

t′
99rrrrrr

t′′ %%LLLLLL

u′◦t′

++

u′◦t′′

33 Z ′

Y ′′
u′′

99ssssss

gf ed
`a bc

in T ′: Y ′

u′

%%KKKKKK

X ′

t′
99rrrrrr

t′′ %%LLLLLL

u′◦t′

++

u′◦t′′

33≡ Z ′

Y ′′
u′′

99ssssss

gf ed
`a bc
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Conclusion

Diagrammatic specifications are both

simple and powerful

They are not restricted to graph-based specifications

(cf. applications to overloading

with H. Kirchner and C. Lair)

Specifications with respect to several propagators

can easily be mixed together

(cf. applications to zooming

with C. Lair, C. Oriat and J.-C. Reynaud)
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