Relative Hilbert-Post completeness for exceptions

Dominique Duval with J.-G. Dumas, B. Ekici, D. Pous, J.-C. Reynaud

LJK University of Grenoble-Alpes and ENS Lyon

November 12., 2015 — MACIS 2015, Berlin

This talk is about a completeness result

Theorem.

The decorated theory for exceptions is relatively Hilbert-Post complete.

In the paper:

- a detailed proof of this theorem
- \blacktriangleright and the key features for its verification in Coq

In this talk:

- the framework for this theorem
- and its meaning

Outline

The framework

Decorated logic for exceptions

Relative Hilbert-Post completeness

Conclusion and references

Framework

The general issue: semantics of programming languages

More precisely: equational semantics of programming languages with computational effects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

IMPEX is a basic imperative language with exceptions:

$$c \quad ::= \quad \mathrm{skip} \ \mid x := a \mid c; c \mid \mathrm{if} \ b \ \mathrm{then} \ c \ \mathrm{else} \ c \mid \mathrm{while} \ b \ \mathrm{do} \ c$$

 $| \text{ throw } e | \text{ try } c \text{ catch } e \Rightarrow c$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

IMPEX is a basic imperative language with exceptions:

$$c$$
 ::= skip $| x := a | c; c |$ if b then c else $c |$ while b do c

 $| \text{ throw } e | \text{ try } c \text{ catch } e \Rightarrow c$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$c: 1 \rightarrow 1$$
, because c has no argument and no result?

IMPEX is a basic imperative language with exceptions:

$$c$$
 ::= skip $| x := a | c; c |$ if b then c else $c |$ while b do c

| throw e | try c catch $e \Rightarrow c$

- $c: 1 \rightarrow 1$, because c has no argument and no result?
- $c: S \rightarrow S$, because c may use and modify the state?

IMPEX is a basic imperative language with exceptions:

c ::= skip | x := a | c; c | if b then c else c | while b do c

| throw e | try c catch $e \Rightarrow c$

- $c: 1 \rightarrow 1$, because c has no argument and no result?
- $c: S \rightarrow S$, because c may use and modify the state?
- $c: S \rightarrow S$, because c may not terminate?

IMPEX is a basic imperative language with exceptions:

c ::= skip | x := a | c; c | if b then c else c | while b do c

 $| \text{ throw } e | \text{ try } c \text{ catch } e \Rightarrow c$

What is the interpretation of a command?

- $c: 1 \rightarrow 1$, because c has no argument and no result?
- $c: S \rightarrow S$, because c may use and modify the state?
- $c: S \rightarrow S$, because c may not terminate?
- $c: S \rightarrow S \times (1 + E)$, because c may raise an exception?

IMPEX is a basic imperative language with exceptions:

c ::= skip | x := a | c; c | if b then c else c | while b do c

 $| \text{ throw } e | \text{ try } c \text{ catch } e \Rightarrow c$

- $c: 1 \rightarrow 1$, because c has no argument and no result?
- $c: S \rightarrow S$, because c may use and modify the state?
- $c: S \rightarrow S$, because c may not terminate?
- $c: S \rightarrow S \times (1 + E)$, because c may raise an exception?
- c : S × (1 + E) → S × (1 + E), for sequences ";" and for the catch part of the try-catch block?

Three effects for IMPEX

- State. $f : X \to Y$ stands for $f : S \times X \to S \times Y$
- Partiality. $f: X \rightarrow Y$ stands for $f: X \rightarrow Y$
- Exceptions. $f : X \to Y$ stands for $f : X + E \to Y + E$

Goal.

Prove equivalence of commands in a logic where $c: 1 \rightarrow 1$ (effects are "hidden", as in the syntax).

For instance, prove that:

```
if b is "pure" then

(x := a; x := b) \equiv (x := b)
```

or that:

```
while b \operatorname{do} c \equiv

try (repeat (if b \operatorname{then} c \operatorname{else} \operatorname{throw} e))

catch e \Rightarrow \operatorname{skip}

where repeat c is while true do c.
```

Goal (for IMPEX)

Prove equivalence of commands in a logic where $c:1\to 1$ (effects are "hidden", as in the syntax) and implement this logic in Coq

Method.

- 1. Design a decorated logic for each effect.
- 2. Combine the three logics.

Here: a decorated logic for the exceptions effect:

A term $f : X \to Y$ is interpreted as a function $[[f]] : [[X]] + E \to [[Y]] + E$ where E is the set of exception names. (notation: now, [[]] is omitted)

The framework

Decorated logic for exceptions

Relative Hilbert-Post completeness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion and references

Decorations and conversions

The decorated logic for exceptions is built from types, terms and equations, with

three kinds of terms:

• a pure term
$$f^{(0)} \colon X \to Y$$
 is interpreted as $f \colon X \to Y$

- a propagator $f^{(1)}: X \to Y$ as $f: X \to Y + E$
- ► a catcher $f^{(2)}: X \to Y$ as $f: X + E \to Y + E$ with conversions $\frac{f^{(0)}}{f^{(1)}}, \frac{f^{(1)}}{f^{(2)}}$

and two kinds of equations:

- ► a strong equation $f^{(2)} \equiv g^{(2)} : X \to Y$ is interpreted as $f = g : X + E \to Y + E$
- a weak equation $f^{(2)} \sim g^{(2)} : X \to Y$ is interpreted as $f \circ inl_X = g \circ inl_X : X \to Y + E$

with conversions $\frac{f \equiv g}{f \sim g}$, $\frac{f^{(1)} \sim g^{(1)}}{f \equiv g}$

A decorated logic for exceptions

The logic L_E has no type of exceptions It is generated by any pure signature and for each exception name e (with type of parameters P_e):

▶ a propagator
$$tag_e^{(1)} : P_e \to 0$$

interpreted as $tag_e : P_e \to E$
denoted $a \mapsto \boxed{a}_e$

And a catcher untag⁽²⁾ : 0 → P_e interpreted as untag_e : E → P_e + E

related by weak equations:

 $\blacktriangleright \text{ untag}_e \circ \texttt{tag}_e \sim \textit{id}_{P_e}$

• $\operatorname{untag}_e \circ \operatorname{tag}_{e'} \sim []_{P_e} \circ \operatorname{tag}_{e'}$ when $e' \neq e$ which mean that $\operatorname{untag}_e : E \to P_e + E$ satisfies:

$$\begin{cases} \boxed{a}_e \mapsto a \\ \boxed{a}_{e'} \mapsto \boxed{a}_{e'} \text{ when } e' \neq e \end{cases}$$

A conversion in the opposite direction

The conversion $\frac{f^{(1)}}{f^{(2)}}$ means that each function $f : X \to Y + E$ can be extended as $f' : X + E \to Y + E$, by propagating exceptions.

In the opposite direction

each function $g: X + E \rightarrow Y + E$ can be restricted as $g \circ inl: X \rightarrow Y + E$.

This is expressed in the decorated logic by the downcast construction:

$$rac{f^{(2)}:X o Y}{(\downarrow f)^{(1)}:X o Y}$$
 with $f^{(2)}\sim (\downarrow f)^{(1)}$

throw and try-catch

The core operations $tag_e^{(1)}: P_e \to 0$ and $untag_e^{(2)}: 0 \to P_e$ are used for expressing the usual constructs:

• throw: for each Y, throw $_{e,Y}^{(1)}: P_e \to Y$ is

$$\texttt{throw}_{e,Y} = []_Y \circ \texttt{tag}_e$$

it raises the exception e and pretends that it has type Y.

▶ try-catch: for each $f^{(1)}: X \to Y$ and $g^{(1)}: P_e \to Y$ (try f catch $e \Rightarrow g$)⁽¹⁾: $X \to Y$ is try f catch $e \Rightarrow g = \downarrow ([id_Y | g \circ untag] \circ f)$

it is also a propagator: the catcher $untag_e^{(2)}$ is encapsulated

Outline

The framework

Decorated logic for exceptions

Relative Hilbert-Post completeness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion and references

About completeness

Fact. The decorated logic for exceptions is sound with respect to its interpretation:

 $\mathsf{Provable} \implies \mathsf{Valid}$

Question. Is it complete?

For which notion of completeness?

- ► Semantic completeness? Valid ⇒ Provable
- Syntactic completeness?
 Every added unprovable sentence introduces an inconsistency, where inconsistency means:
 - ► either negation inconsistency: there is a sentence φ such that φ and ¬φ are provable
 - or Hilbert-Post inconsistency: every sentence is provable

Here. Relative Hilbert-Post completeness

(Absolute) Hilbert-Post completeness

In a given logic:

- a theory is a set of sentences which is deductively closed
- ► a theory *T* is consistent if it does not contain all sentences
- ► a theory *T* is H-P complete if:
 - T is consistent and
 - \blacktriangleright any sentence added to ${\mathcal T}$ generates an inconsistent theory

So, H-P completeness is maximal consistency

Example. (H-P completeness is very strong) Signature: N, $0: 1 \rightarrow N$, $s: N \rightarrow N$

- The theory generated from the axiom s s = s is not H-P complete
- The theory generated from s∘s≡s and s∘0≡0 is H-P complete: it is made of all equations but s ≡ id_N

Relative Hilbert-Post completeness

In a given logic L:

- ► a theory *T* is H-P complete if:
 - T is consistent and
 - \blacktriangleright any sentence added to ${\cal T}$ generates an inconsistent theory

In a given logic L extending a sublogic L_0 :

- a theory T of L is relatively H-P complete wrt L_0 if:
 - T is consistent and
 - ▶ for any sentence e of L there is a set E₀ of sentences of L₀ which is T-equivalent to e

Theorem.

In the logic L_E , under suitable assumptions [...], the decorated theory for exceptions is relatively H-P complete wrt the pure sublogic

Outline

The framework

Decorated logic for exceptions

Relative Hilbert-Post completeness

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion and references

Conclusion

See the paper for:

- the implementation of the logic for exceptions in Coq
- a proof of the Theorem, checked with Coq

To improve:

- weaken the assumptions in the Theorem
- A question:
 - Relative H-P completeness seems more interesting in practice than absolute H-P completeness: why?

- Work in progress: IMPEX
 - exceptions: this talk
 - states: essentially dual to exceptions
 - non-termination: well-known(?)
 - combination of the three logics...

Some references

- A. Tarski. On some fundamental concepts in mathematics (1956).
- E. Moggi. Notions of Computation and Monads (1991).
- G.D. Plotkin, J. Power. Notions of Computation Determine Monads (2002).
- M. Pretnar. The Logic and Handling of Algebraic Effects (2010).
- C. Domínguez, D. Duval. Diagrammatic logic applied to a parameterisation process (2010).
- J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud. A duality between exceptions and states (2012).
- A. Bauer, M. Pretnar. Programming with algebraic effects and handlers (2015).