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This talk is about a completeness result

Theorem.

The decorated theory for exceptions
is relatively Hilbert-Post complete.

In the paper:

> a detailed proof of this theorem

» and the key features for its verification in Coq
In this talk:

» the framework for this theorem

> and its meaning
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Framework

The general issue:
semantics
of programming languages

More precisely:
equational semantics
of programming languages with computational effects
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Work in progress: IMPEX

IMPEX is a basic imperative language with exceptions:

c

= skip | x:=a| c;c|if bthen celse ¢ | while bdo ¢

| throw e | try ¢ catch e = ¢

What is the interpretation of a command?

>

>

>

C.

O o o o

:Sx (14 E)— S x(1+ E), for sequences “;

1 — 1, because ¢ has no argument and no result?

:S — S, because ¢ may use and modify the state?
: S — S, because ¢ may not terminate?

: S — S x (14 E), because ¢ may raise an exception?

and for the catch part of the try-catch block?



Three effects for IMPEX

» State. f: X — Y standsforf :Sx X —>5xY
» Partiality. f: X — Y standsforf: X =Y
» Exceptions. f: X — Y standsfor f : X+ E —- Y+ E

Goal.
Prove equivalence of commands in a logic where ¢ : 1 — 1
(effects are "hidden”, as in the syntax).
For instance, prove that:
if bis “pure” then
(x :=a;x:=b) = (x:=b)
or that:
while bdo ¢ =
try (repeat (if b then c else throw e))
catch e = skip
where repeat ¢ is while true do c.



Goal (for IMPEX)

Prove equivalence of commands in a logic where c: 1 — 1
(effects are "hidden”, as in the syntax)
and implement this logic in Coq

Method.
1. Design a decorated logic for each effect.

2. Combine the three logics.
Here: a decorated logic for the exceptions effect:

A term f : X — Y is interpreted as
a function [[f]] : [X]] + E = [[Y]] + E
where E is the set of exception names.

(notation: now, [[]] is omitted)
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Decorations and conversions

The decorated logic for exceptions is built from
types, terms and equations, with
> three kinds of terms:

» a pure term f(©: X — Y is interpreted as f: X — Y
» a propagator f0: X - Yasf: X - Y+E
» acatcher f@: X 5 Yasf: X+E—Y+E
) _ £(0)  £(1)
with conversions ORe)
» and two kinds of equations:
» a strong equation f® = g@: X — Y is interpreted as
f=g: X+E—-Y+E
» a weak equation f® ~ g(@: X — Y is interpreted as
foinlx =goinlx: X =Y+ E
f=g W ~gl

with conversions ,
f~g f=g




A decorated logic for exceptions

The logic Lg has no type of exceptions
It is generated by any pure signature and
for each exception name e (with type of parameters P,):

> a propagator taggl) P — 0

interpreted as tag, : Pe = E
denoted a — [a],

> and a catcher untaggz) 0 — Pe
interpreted as untag, : E — P. + E
related by weak equations:
> untag, o tag, ~ idp,
» untag, o tag, ~ []p, o tag, when & # e
which mean that untag, : E — P + E satisfies:
B
{E]e, > [a], when e’ # e



A conversion in the opposite direction

£(1)
The conversion —— means that
£(2)
each function f : X — Y 4 E can be extended as
f': X+ E — Y + E, by propagating exceptions.
In the opposite direction
each function g : X + E — Y + E can be restricted as
goinl: X - Y+ E.

This is expressed in the decorated logic by the downcast
construction:
fA.X =Y
LAHD: X =Y

with F@ ~ () £



throw and try-catch

The core operations tag(el) : Pe = 0 and untag(ez) 0= P
are used for expressing the usual constructs:
» throw:
for each Y, throw(l) :P.— Yis

e
throw.y = []y o tag,

it raises the exception e and pretends that it has type Y.

» try-catch:
for each fM : X = Yand gV : P, = Y
(try f catche = g)M) : X = Yis

try f catche =g = ([idy | g ountag] o f)

it is also a propagator: the catcher untag(ez) is encapsulated
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About completeness

Fact. The decorated logic for exceptions is sound
with respect to its interpretation:
Provable — Valid

Question. Is it complete?
For which notion of completeness?

» Semantic completeness?
Valid = Provable

» Syntactic completeness?
Every added unprovable sentence introduces an inconsistency,
where inconsistency means:
> either negation inconsistency:
there is a sentence ¢ such that ¢ and —y are provable
» or Hilbert-Post inconsistency:
every sentence is provable

Here. Relative Hilbert-Post completeness



(Absolute) Hilbert-Post completeness

In a given logic:
> a theory is a set of sentences which is deductively closed

» a theory T is consistent if it does not contain all sentences

> a theory T is H-P complete if:

» T is consistent and
> any sentence added to T generates an inconsistent theory

So, H-P completeness is maximal consistency
Example. (H-P completeness is very strong)
Signature: N, 0: 1 —= N, s: N— N
» The theory generated from the axiom sos=s
is not H-P complete

> The theory generated from sos=s and soc0=0
is H-P complete: it is made of all equations but s = idy



Relative Hilbert-Post completeness

In a given logic L:
» a theory T is H-P complete if:

» T is consistent and
» any sentence added to T generates an inconsistent theory

In a given logic L extending a sublogic Lg:
> a theory T of L is relatively H-P complete wrt Ly if:

» T is consistent and
» for any sentence e of L there is a set Ey of sentences of Lg
which is T-equivalent to e

Theorem.

In the logic Lg, under suitable assumptions [...],
the decorated theory for exceptions

is relatively H-P complete wrt the pure sublogic
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Conclusion

See the paper for:

>

>

the implementation of the logic for exceptions in Coq
a proof of the Theorem, checked with Coq

To improve:

>

weaken the assumptions in the Theorem

A question:

>

Relative H-P completeness seems more interesting in practice
than absolute H-P completeness: why?

Work in progress: IMPEX

>

>

>

exceptions: this talk
states: essentially dual to exceptions
non-termination: well-known(?)

combination of the three logics...
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