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This talk is about a completeness result

Theorem.

The decorated theory for exceptions
is relatively Hilbert-Post complete.

In the paper:

I a detailed proof of this theorem

I and the key features for its verification in Coq

In this talk:

I the framework for this theorem

I and its meaning
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Framework

The general issue:
semantics
of programming languages

More precisely:
equational semantics
of programming languages with computational effects



Work in progress: IMPEX

IMPEX is a basic imperative language with exceptions:

c ::= skip | x := a | c ; c | if b then c else c | while b do c

| throw e | try c catch e ⇒ c

What is the interpretation of a command?

I c : 1→ 1, because c has no argument and no result?

I c : S → S , because c may use and modify the state?

I c : S ⇀ S , because c may not terminate?

I c : S ⇀ S × (1 + E ), because c may raise an exception?

I c : S × (1 + E ) ⇀ S × (1 + E ), for sequences “;”
and for the catch part of the try-catch block?
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Three effects for IMPEX

I State. f : X → Y stands for f : S × X → S × Y

I Partiality. f : X → Y stands for f : X ⇀ Y

I Exceptions. f : X → Y stands for f : X + E → Y + E

Goal.
Prove equivalence of commands in a logic where c : 1→ 1
(effects are “hidden”, as in the syntax).

For instance, prove that:
if b is “pure” then

(x := a ; x := b) ≡ (x := b)
or that:

while b do c ≡
try (repeat (if b then c else throw e))
catch e ⇒ skip

where repeat c is while true do c.



Goal (for IMPEX)

Prove equivalence of commands in a logic where c : 1→ 1
(effects are “hidden”, as in the syntax)
and implement this logic in Coq

Method.

1. Design a decorated logic for each effect.

2. Combine the three logics.

Here: a decorated logic for the exceptions effect:

A term f : X → Y is interpreted as
a function [[f ]] : [[X ]] + E → [[Y ]] + E
where E is the set of exception names.

(notation: now, [[ ]] is omitted)



Outline

The framework

Decorated logic for exceptions

Relative Hilbert-Post completeness

Conclusion and references



Decorations and conversions

The decorated logic for exceptions is built from
types, terms and equations, with

I three kinds of terms:
I a pure term f (0) : X → Y is interpreted as f : X → Y
I a propagator f (1) : X → Y as f : X → Y + E
I a catcher f (2) : X → Y as f : X + E → Y + E

with conversions
f (0)

f (1)
,
f (1)

f (2)
I and two kinds of equations:

I a strong equation f (2) ≡ g (2) : X → Y is interpreted as
f = g : X + E → Y + E

I a weak equation f (2) ∼ g (2) : X → Y is interpreted as
f ◦ inlX = g ◦ inlX : X → Y + E

with conversions
f ≡ g

f ∼ g
,
f (1) ∼ g (1)

f ≡ g



A decorated logic for exceptions

The logic LE has no type of exceptions
It is generated by any pure signature and
for each exception name e (with type of parameters Pe):

I a propagator tag
(1)
e : Pe → 0

interpreted as tage : Pe → E
denoted a 7→ a e

I and a catcher untag
(2)
e : 0→ Pe

interpreted as untage : E → Pe + E

related by weak equations:

I untage ◦ tage ∼ idPe

I untage ◦ tage′ ∼ [ ]Pe ◦ tage′ when e ′ 6= e

which mean that untage : E → Pe + E satisfies:{
a e 7→ a

a e′ 7→ a e′ when e ′ 6= e



A conversion in the opposite direction

The conversion
f (1)

f (2)
means that

each function f : X → Y + E can be extended as
f ′ : X + E → Y + E , by propagating exceptions.

In the opposite direction

each function g : X + E → Y + E can be restricted as
g ◦ inl : X → Y + E .

This is expressed in the decorated logic by the downcast
construction:

f (2) : X → Y

(↓ f )(1) : X → Y
with f (2) ∼ (↓ f )(1)



throw and try-catch

The core operations tag
(1)
e : Pe → 0 and untag

(2)
e : 0→ Pe

are used for expressing the usual constructs:

I throw:
for each Y , throw

(1)
e,Y : Pe → Y is

throwe,Y = [ ]Y ◦ tage

it raises the exception e and pretends that it has type Y .

I try-catch:
for each f (1) : X → Y and g (1) : Pe → Y
(try f catch e ⇒ g)(1) : X → Y is

try f catch e ⇒ g = ↓ ([idY | g ◦ untag] ◦ f )

it is also a propagator: the catcher untag
(2)
e is encapsulated
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About completeness

Fact. The decorated logic for exceptions is sound
with respect to its interpretation:

Provable =⇒ Valid

Question. Is it complete?

For which notion of completeness?

I Semantic completeness?
Valid =⇒ Provable

I Syntactic completeness?
Every added unprovable sentence introduces an inconsistency,
where inconsistency means:

I either negation inconsistency:
there is a sentence ϕ such that ϕ and ¬ϕ are provable

I or Hilbert-Post inconsistency:
every sentence is provable

Here. Relative Hilbert-Post completeness



(Absolute) Hilbert-Post completeness

In a given logic:

I a theory is a set of sentences which is deductively closed

I a theory T is consistent if it does not contain all sentences
I a theory T is H-P complete if:

I T is consistent and
I any sentence added to T generates an inconsistent theory

So, H-P completeness is maximal consistency

Example. (H-P completeness is very strong)
Signature: N, 0 : 1→ N, s : N → N

I The theory generated from the axiom s◦s≡s
is not H-P complete

I The theory generated from s◦s≡s and s◦0≡0
is H-P complete: it is made of all equations but s ≡ idN



Relative Hilbert-Post completeness

In a given logic L:
I a theory T is H-P complete if:

I T is consistent and
I any sentence added to T generates an inconsistent theory

In a given logic L extending a sublogic L0:
I a theory T of L is relatively H-P complete wrt L0 if:

I T is consistent and
I for any sentence e of L there is a set E0 of sentences of L0

which is T -equivalent to e

Theorem.
In the logic LE , under suitable assumptions [...],
the decorated theory for exceptions
is relatively H-P complete wrt the pure sublogic
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Conclusion

See the paper for:

I the implementation of the logic for exceptions in Coq

I a proof of the Theorem, checked with Coq

To improve:

I weaken the assumptions in the Theorem

A question:

I Relative H-P completeness seems more interesting in practice
than absolute H-P completeness: why?

Work in progress: IMPEX

I exceptions: this talk

I states: essentially dual to exceptions

I non-termination: well-known(?)

I combination of the three logics...
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