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“the wise thing is for us diligently to train ourselves to lie
thoughtfully, judiciously...”
On the Decay of the Art of Lying, Mark Twain, 1880.

“A lie-to-children is a simplified explanation of technical or
complex subjects as a teaching method for children...”
Lie-to-children, Wikipedia, 2014.
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Lying in Computer Algebra: dynamic evaluation

Re-use code made for fields... with rings

Example:

I Write code for Gaussian elimination modulo p,
for a prime number p

I Use this code for Gaussian elimination modulo m,
for any natural number m (including m composite)

Dynamic evaluation is an automatic case distinction process



Dynamic evaluation for Gaussian elimination mod. m

I Use pivot, as long as they are invertible (not only non-zero)

I In case of non-zero but non-invertible pivot SPLIT the
computation in two parts with m = m1×m2,
where m1 and m2 are coprime

1. Remaining Gaussian elimination modulo m1
2. Remaining Gaussian elimination modulo m2
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Lying in Programming: computational effects

“programs of type B with a parameter of type A ought to be
interpreted by morphisms from A to TB...”
Notions of computation and monads, E. Moggi, 1991

Example:

I Write code as if division by zero may never occur

I Add exceptions for dealing with occasional division by zero

For exceptions let TX = X + E .



Dynamic evaluation via exceptions

1. Add an exception at the arithmetic level
to prevent against zero divisors
...if (gcd != 1) throw ZmzInvByZero(gcd);...

2. Add an exception at the SPLIT location
to allow for recursive continuation
try {...
} catch (ZmzInvByZero e) {

throw GaussNonInvPivot(...);

}
3. Deal with the SPLIT

try {...
} catch (GaussNonInvPivot e) {...
// recursive continuation modulo m1 AND modulo m2

}
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Motivation

I verify properties of programs involving computational effects
such as state and exceptions

I keep close to the syntax: do not make the effects explicit, but
use “decorations” instead (like Moggi’s values and
computations)

I and develop related Coq libraries for such proofs



Decorations for states

For each location T , let VT be the type of values that can be
stored in T . Terms are classified by decorations:

I pure: id
(0)
VT

: VT → VT ,

I accessors: lookup
(1)
T : 1→ VT

I modifiers: update
(2)
T : VT → 1

There are two kinds of equations:

I strong equality (result and effect) f≡g

I weak equality (result only) f∼g

Equational rules are decorated accordingly...



Decorations for exceptions 1: by DUALITY

For each exception name T , let VT be the type of parameters for
exceptions of name T . Terms are classified by decorations:

I pure: id
(0)
VT

: VT → VT ,

I propagators: tag
(1)
T : VT → 0

I catchers: untag
(2)
T : 0→ VT

There are two kinds of equations:

I strong equality (on ordinary and exceptional arguments) f≡g

I weak equality (on ordinary arguments only) f∼g

Equational rules are decorated accordingly...



Decorations for exceptions 2

I Private language (dual to states): tag
(1)
T : VT → 0

and untag
(2)
T : 0→ VT

ordinary value exceptional value

a
tagT // a T

a
untagToo a T

I Public language (without any catcher):
throwT,B : VT → B
and try(f) catch(T⇒ g)T ,A,B : A→ B
for any f : A→ B and g : VT → B



Decorations for exceptions 3

try(f) catch(T⇒ g)T ,A,B : A→ B
for any f : A→ B and g : VT → B
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Decorated proofs in Coq

I Decorated proofs for states

I Decorated proofs for exceptions

I Decorated proofs for the IMP language (states)

I Decorated proofs for the IMP+EXC language (states and
exceptions)



Coq for states

Terms:
Inductive term: Type→ Type→ Type :=
| comp : ∀ {X Y Z : Type}, term X Y → term Y Z → term X Z
| pair : ∀ {X Y Z : Type}, term X Z → term Y Z → term (X×Y ) Z
| tpure : ∀ {X Y : Type}, (X → Y )→ term Y X
| lookup : ∀ i :Loc, term (Val i) unit
| update : ∀ i :Loc, term unit (Val i)

Infix ”o” := comp (at level 60).

Decorations:

Inductive kind := pure | ro | rw.

Term decorations:
Inductive is: kind → ∀ X Y, term X Y → Prop :=
| is tpure: ∀ X Y (f : X → Y ), is pure (@tpure X Y f )
| is comp: ∀ k X Y Z (f : term X Y ) (g : term Y Z), is k f → is k g → is k (f o g)
| is pair : ∀ k X Y Z (f : term X Z) (g : term Y Z), is k f → is k g → is k (pair f g)
| is lookup: ∀ i, is ro (lookup i)
| is update: ∀ i, is rw (update i)
| is pure ro: ∀ X Y (f : term X Y ), is pure f → is ro f
| is ro rw : ∀ X Y (f : term X Y ), is ro f → is rw f.

Hint Constructors is.



Proofs: basic properties

I For states: the usual equations, e.g.
I Annihilation lookup-update
I Commutation update-update

I For exceptions: the dual equations and their public version:
I Annihilation untag-tag
I Annihilation catch-raise
I Commutation untag-untag
I Commutation catch-catch



Proofs: Hilbert-Post completeness

With respect to the decorated logic for states or exceptions:

I A theory T is consistent if it does not contain all equations.

I A theory T ′ is a pure extension of T if it is generated by T
and by equations between pure terms.

I A theory T ′ is a proper extension of T if it contains T and is
not a pure extension of T .

I T is Hilbert-Post complete if is consistent and has no
consistent proper extension.



Theorem.
The core language for exceptions is Hilbert-Post complete.

Proof for states.
Every equation between modifiers or accessors is equivalent to
several equations between pure terms ...

Proof for exceptions (dual).
Every equation between catchers or propagators is equivalent to
several equations between pure terms ...



From IMP to decorated logic

IMP syntax:
Variables:

v ::= X | Y | ...
Arithmetic expressions:

a ::= 0 | 1 | ... | v | a + a | ...
Boolean expressions:

b ::= true | false | b ∧ b | · · · | a = a | . . .
Commands:

c ::= skip | v := a | c ; c | if b then c else c | while b do c

For states:
Expressions are accessors (read-only)
Commands are modifiers (read-write)



From IMP+EXC to decorated logic

IMP+EXC syntax:
Commands:

c ::= throw exc | try c catch exc ⇒ c

For exceptions:
These commands are propagators



Proofs: Dynamic evaluation

Compute the rank of a matrix modulo some composite number,
and check that it returns the required value.

Because of the limitations of IMP+EXC (no kind of function!) this
has been done only for 2× 2 matrices...

Work in progress!



Future work

I From IMP to (part of) C

I Hoare logic with decorations

I Composition of effects



Thanks for your attention!
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