
Decorated proofs for states and exceptions

Dominique Duval
with J.-G. Dumas, L. Fousse, J.-C. Reynaud

LJK, University of Grenoble

June 13, 2012
IFIP WG1.3 meeting, Salamanca

Effects

Several approaches for managing a large specification (/program):

I Modularity. Breaking down the specification into modules.
• Each module is right:
its semantics is a “part” of the intended semantics.

I Refinement. Stepwise transformation of specifications.
• Each step is right:
its semantics is a “generalization” of the intended semantics.

I Effects. Approximations, stepwise improved.
• Each step is wrong:
its “apparent” semantics may be far from the intended
semantics.
• Ex.: states, exceptions, . . .

States and exceptions

“pure” states exceptions

Monads

f : X → Y f : X → (Y × S)S f : X → Y + E

Lawvere theories + “handlers”

operations lookup, update raise, (handle)

Decorations

f : X → Y f : X × S → Y × S f : X + E → Y + E

operations lookup, update raise, catch, handle

Moggi 91, Plotkin-Power 02,
Schröder-Mossakowski 04, Levy 06, Plotkin-Pretnar 09, . . .

Semantics of effects

Several kinds of semantics for computational effects

I mathematical (past Aussois meeting)

I logical (this Salamanca meeting)

I operational (some next meeting?. . .)

Outline

States

Exceptions

Diagrammatic logics

A property of imperative languages
The annihilation lookup-update property:

the command X := X does not modify the state

Proof. Let n be the value of X in the current state.

I First “X” (on the right) is evaluated as n.

I Then “X :=” (on the left) puts the value of X to n,
without modifying the value of other locations.

Hence the state is not modified. �

Remark. Observational equality of states:
a state is characterized by the values of all locations.

Simplification. In this talk, there is only one location X :
a state is characterized by the value of the location X .

A property of imperative languages
The annihilation lookup-update property:

the command X := X does not modify the state

Proof. Let n be the value of X in the current state.

I First “X” (on the right) is evaluated as n.

I Then “X :=” (on the left) puts the value of X to n,
without modifying the value of other locations.

Hence the state is not modified. �

Remark. Observational equality of states:
a state is characterized by the values of all locations.

Simplification. In this talk, there is only one location X :
a state is characterized by the value of the location X .

A proof
Specification.

Sorts: N, U (Unit)

Operations: ` : U → N (lookup)

u : N → U (update)

Equation: ` ◦ u ≡ idN

Property: ` “mono” (≡ is observation wrt `)

Theorem.
u ◦ ` ≡ idU

Proof. ` ◦ u ≡ id(subst)
` ◦ u ◦ ` ≡ `(mono)
u ◦ ` ≡ id

Remark. A shorter proof (since U = Unit):
u ◦ ` : U → U(unit)
u ◦ ` ≡ id

The first proof looks “good”, this one looks “bad”!?

A proof
Specification.

Sorts: N, U (Unit)

Operations: ` : U → N (lookup)

u : N → U (update)

Equation: ` ◦ u ≡ idN

Property: ` “mono” (≡ is observation wrt `)
Theorem.

u ◦ ` ≡ idU

Proof. ` ◦ u ≡ id(subst)
` ◦ u ◦ ` ≡ `(mono)
u ◦ ` ≡ id

Remark. A shorter proof (since U = Unit):
u ◦ ` : U → U(unit)
u ◦ ` ≡ id

The first proof looks “good”, this one looks “bad”!?

A proof
Specification.

Sorts: N, U (Unit)

Operations: ` : U → N (lookup)

u : N → U (update)

Equation: ` ◦ u ≡ idN

Property: ` “mono” (≡ is observation wrt `)
Theorem.

u ◦ ` ≡ idU

Proof. ` ◦ u ≡ id(subst)
` ◦ u ◦ ` ≡ `(mono)
u ◦ ` ≡ id

Remark. A shorter proof (since U = Unit):
u ◦ ` : U → U(unit)
u ◦ ` ≡ id

The first proof looks “good”, this one looks “bad”!?

A decorated logic for states
Terms are classified:

I f (0): f is pure if it cannot use nor modify the state.
I f (1): f is an accessor if it can use the state, not modify it.
I f (2): f is a modifier if it can use and modify the state.

Hierarchy rules:
f (0)

f (1)
,
f (1)

f (2)
.

Equations are classified:

I f ≡ g : strong equation: f and g return the same value
and they have the same effect on the state.

I f ∼ g : weak equation: f and g return the same value
but they may have different effects on the state.

Hierarchy rule:
f ≡ g

f ∼ g
.

A decorated proof
Specification.

Sorts: N, U (Unit)

Operations: `(1) : U → N (lookup)

u(2) : N → U (update)

Equation: ` ◦ u ∼ idN (same value)

Property: ` “mono” (≡ is observation wrt `)

Theorem.

u ◦ ` ≡ idU

Proof. ` ◦ u ∼ id(subst)
` ◦ u ◦ ` ∼ `(mono)
u ◦ ` ≡ id

Remark. A “good” proof is a proof which can be decorated.

A decorated proof
Specification.

Sorts: N, U (Unit)

Operations: `(1) : U → N (lookup)

u(2) : N → U (update)

Equation: ` ◦ u ∼ idN (same value)

Property: ` “mono” (≡ is observation wrt `)
Theorem.

u ◦ ` ≡ idU

Proof. ` ◦ u ∼ id(subst)
` ◦ u ◦ ` ∼ `(mono)
u ◦ ` ≡ id

Remark. A “good” proof is a proof which can be decorated.

A decorated proof
Specification.

Sorts: N, U (Unit)

Operations: `(1) : U → N (lookup)

u(2) : N → U (update)

Equation: ` ◦ u ∼ idN (same value)

Property: ` “mono” (≡ is observation wrt `)
Theorem.

u ◦ ` ≡ idU

Proof. ` ◦ u ∼ id(subst)
` ◦ u ◦ ` ∼ `(mono)
u ◦ ` ≡ id

Remark. A “good” proof is a proof which can be decorated.

An explicit proof
Specification.

Sorts: N, U (Unit) and S (the sort of states)

Projections: valX : X ← X × S → S : stX
Operations: ` : S → N (lookup)

u : N × S → S (update)

Equation: ` ◦ u ≡ valN
Property: ` mono (≡ is observation wrt `)

Theorem.
u ◦ 〈`, idS〉 ≡ idS

Proof.

` ◦ u ≡ val(subst)
` ◦ u ◦ 〈`, idS〉 ≡ val ◦ 〈`, idS〉

(proj)
val ◦ 〈`, idS〉 ≡ `

(trans)
` ◦ u ◦ 〈`, idS〉 ≡ `

(mono)
u ◦ 〈`, idS〉 ≡ id

An explicit proof
Specification.

Sorts: N, U (Unit) and S (the sort of states)

Projections: valX : X ← X × S → S : stX
Operations: ` : S → N (lookup)

u : N × S → S (update)

Equation: ` ◦ u ≡ valN
Property: ` mono (≡ is observation wrt `)

Theorem.
u ◦ 〈`, idS〉 ≡ idS

Proof.

` ◦ u ≡ val(subst)
` ◦ u ◦ 〈`, idS〉 ≡ val ◦ 〈`, idS〉

(proj)
val ◦ 〈`, idS〉 ≡ `

(trans)
` ◦ u ◦ 〈`, idS〉 ≡ `

(mono)
u ◦ 〈`, idS〉 ≡ id

A span for states

A span in a category of logics:

decorated

))RRRRRRR
uukkkkkkkk

apparent explicit

Does the intended semantics form a model?

YES

''OOOOOO

xxpppppp

NO YES

Do the proofs respect the effect?

YES

&&MMMMMM
wwoooooo

YES no

A span for states

A span in a category of logics:

decorated

))RRRRRRR
uukkkkkkkk

apparent explicit

Does the intended semantics form a model?

YES

''OOOOOO

xxpppppp

NO YES

Do the proofs respect the effect?

YES

&&MMMMMM
wwoooooo

YES no

Outline

States

Exceptions

Diagrammatic logics

Duality

Fact. There is a duality between states and exceptions.

[Dumas&Duval&Fousse&Reynaud’12] MSCS (4 p.)

Consequence. A span for exceptions.

decorated

))RRRRRRR
uukkkkkkkk

apparent explicit

A decorated logic for exceptions
Terms are classified:
I f (0): f is pure if it cannot throw nor catch exceptions.
I f (1): f is a propagator if it can throw exceptions, not catch

them.
I f (2): f is a catcher if it can throw and catch exceptions.

Hierarchy rules:
f (0)

f (1)
,
f (1)

f (2)
.

Equations are classified:
I f ≡ g : strong equation: f and g coincide on ordinary values

and on exceptions.
I f ∼ g : weak equation: f and g coincide on ordinary values

but they may be different on exceptions.

Hierarchy rule:
f ≡ g

f ∼ g
.

A decorated proof
Simplification. There is only one type of exceptions.

Sorts: N, 0 (empty)

Operations: t(1) : N → 0 (tag, for throw)

c(2) : 0→ N (untag, for catch)

Equation: c ◦ t ∼ idN (same on ordinary values)

Property: t “epi” (≡ is “same on the image of t”)

Theorem.

t ◦ c ≡ id0

Proof.
c ◦ t ∼ id(repl)
t ◦ c ◦ t ∼ t(epi)
t ◦ c ≡ id

A decorated proof
Simplification. There is only one type of exceptions.

Sorts: N, 0 (empty)

Operations: t(1) : N → 0 (tag, for throw)

c(2) : 0→ N (untag, for catch)

Equation: c ◦ t ∼ idN (same on ordinary values)

Property: t “epi” (≡ is “same on the image of t”)

Theorem.

t ◦ c ≡ id0

Proof.
c ◦ t ∼ id(repl)
t ◦ c ◦ t ∼ t(epi)
t ◦ c ≡ id

Encapsulation
The public operations throw and try/catch

or raise and handle
are defined in terms of the private operations tag and untag.

I For each Y :
throwY = []Y ◦ t : N → Y

I For each f : X → Y and g : N → Y :

try{f }catch{g} = O(TRY {f }catch{g}) : X → Y

where TRY {f }catch{g} = [idY | g ◦ c] ◦ f

Corollary. For each f : X → Y :

try{f }catch{throwY } ≡ f

Encapsulation
The public operations throw and try/catch

or raise and handle
are defined in terms of the private operations tag and untag.

I For each Y :
throwY = []Y ◦ t : N → Y

I For each f : X → Y and g : N → Y :

try{f }catch{g} = O(TRY {f }catch{g}) : X → Y

where TRY {f }catch{g} = [idY | g ◦ c] ◦ f

Corollary. For each f : X → Y :

try{f }catch{throwY } ≡ f

Outline

States

Exceptions

Diagrammatic logics

Some category theory

A diagrammatic logic is

I a left adjoint functor between categories with colimits

I and a localization.

S
L //

⊥ T

R

dd with L ◦ R ∼= IdT

induced by a morphism of limit sketches

ES
e // ET

[Gabriel-Zisman 67, Ehresmann 68]

Models

S
L //

⊥ T

R

dd

I S is the category of specifications

I T is the category of theories

I the set of models of a specification Σ
with values in a theory Θ is:

ModL(Σ,Θ) = HomT(LΣ,Θ) ∼= HomS(Σ,RΘ)

Proofs

S
L //

⊥ T

R

dd

I a rule with hypothesis H and conclusion C is
a fraction from C to H

H // H′oo_ _ _ _ _ Coo

I an instance of H in Σ is a fraction from H to Σ
I an inference step is a composition of fractions

H

��

//

(PO)

H′

��

oo_ _ _ _ _ _ C

yyrrrrrrrrrrrr
oo

Σ // ΣH
//

oo_ _ _ _ _ ΣCoo_ _ _ _ _

The category of diagrammatic logics

A morphism of diagrammatic logics F : L → L′
is a pair of locally presentable functors such that:

S
L //

FS

��

∼=

T

FT

��

S′
L′ // T′

induced by a commutative square of limit sketches

A span of logics for states

decorated

&&MMMMMMMMMM

xxppppppppppp

apparent explicit

Modifiers

X
f (2) // Y

?

����
�� �

��
??

??

X
f // Y

X Y

X × S

OO

��

f // Y × S

OO

��

S S

Accessors

X
f (1) // Y

?

����
�� �

��
??

??

X
f // Y

X Y

X × S

OO

��

f // Y × S

OO

��

S
id // S

Pure expressions

X
f (0) // Y

?

����
�� �

��
??

??

X
f // Y

X // Y

X × S

OO

��

f // Y × S

OO

��

S
id // S

Conclusion

Decorated logics work quite well for effects,
mainly because of their notion of morphism.

A morphism of logics
maps specifications to specifications
and proofs to proofs.

and it is made of left adjoint functors.

Future work include:

I operational semantics for effects,

I decorated proofs in Coq?. . .

An assistant for decorated proofs?
It seems quite easy to use Coq for decorated proofs.
(Work in progress with Damien Pous)

Remark. This is easy because there is NO rule like:

f (2) ≡ g (0)

f (0)

Property. The extension
from “the logic for signatures” to “the logic for specifications”,
which is conservative for the apparent logic,
remains conservative for the decorated logic.

⇒ Towards a notion of signature for diagrammatic logics?
(Work in progress with Arthur Guillon)

	Introduction
	States
	Exceptions
	Diagrammatic logics
	Conclusion

