Decorated proofs for states and exceptions

Dominique Duval
with J.-G. Dumas, L. Fousse, J.-C. Reynaud
LJK, University of Grenoble
June 13, 2012

IFIP WG1.3 meeting, Salamanca

Effects

Several approaches for managing a large specification (/program):

- Modularity. Breaking down the specification into modules.
- Each module is right: its semantics is a "part" of the intended semantics.
- Refinement. Stepwise transformation of specifications.
- Each step is right:
its semantics is a "generalization" of the intended semantics.
- Effects. Approximations, stepwise improved.
- Each step is wrong:
its "apparent" semantics may be far from the intended semantics.
- Ex.: states, exceptions, ...

States and exceptions

"pure"	states	exceptions
Monads		
$f: X \rightarrow Y$	$f: X \rightarrow(Y \times S)^{S}$	$f: X \rightarrow Y+E$
Lawvere theories + "handlers"		
operations	lookup, update	raise, (handle)
Decorations		
$f: X \rightarrow Y$ operations	$f: X \times S \rightarrow Y \times S$ lookup, update	$f: X+E \rightarrow Y+E$ raise, catch, handle

Moggi 91, Plotkin-Power 02,
Schröder-Mossakowski 04, Levy 06, Plotkin-Pretnar 09, ...

Semantics of effects

Several kinds of semantics for computational effects

- mathematical (past Aussois meeting)
- logical (this Salamanca meeting)
- operational (some next meeting?...)

Outline

States

Exceptions

Diagrammatic logics

A property of imperative languages

The annihilation lookup-update property:

$$
\text { the command } X:=X \text { does not modify the state }
$$

Proof. Let n be the value of X in the current state.

- First " X " (on the right) is evaluated as n.
- Then " $X:=$ " (on the left) puts the value of X to n, without modifying the value of other locations.
Hence the state is not modified. \square

A property of imperative languages

The annihilation lookup-update property:

$$
\text { the command } X:=X \text { does not modify the state }
$$

Proof. Let n be the value of X in the current state.

- First " X " (on the right) is evaluated as n.
- Then " $X:=$ " (on the left) puts the value of X to n, without modifying the value of other locations.
Hence the state is not modified.
Remark. Observational equality of states:
a state is characterized by the values of all locations.
Simplification. In this talk, there is only one location X :
a state is characterized by the value of the location X.

A proof

Specification.
Sorts: $\quad N, U$ (Unit)
Operations: $\quad \ell: U \rightarrow N$ (lookup)
$u: N \rightarrow U \quad$ (update)
Equation: $\quad \ell \circ u \equiv i d_{N}$
Property: $\quad \ell$ "mono" (\equiv is observation wrt ℓ)

A proof

Specification.

Sorts:
Operations:

$$
\begin{array}{ll}
\ell: U \rightarrow N & \text { (lookup) } \\
u: N \rightarrow U & \text { (update) }
\end{array}
$$

Equation: $\quad \ell \circ u \equiv i d_{N}$
Property: $\quad \ell$ "mono" (\equiv is observation wrt ℓ)
Theorem.

$$
\begin{aligned}
& u \circ \ell \equiv i d u \\
& \text { (subst) } \frac{\ell \circ u \equiv i d}{\ell \circ u \circ \ell \equiv \ell} \\
& \text { (mono) } \frac{\ell \circ \ell \equiv i d}{u \circ}
\end{aligned}
$$

A proof

Specification.
Sorts:

$$
N, U \text { (Unit) }
$$

Operations: $\quad \ell: U \rightarrow N$ (lookup)

$$
u: N \rightarrow U \quad \text { (update) }
$$

Equation: $\quad \ell \circ u \equiv i d_{N}$
Property: $\quad \ell$ "mono" (\equiv is observation wrt ℓ)
Theorem.

$$
u \circ \ell \equiv i d_{u}
$$

Proof.

$$
\begin{aligned}
& (\text { subst }) \frac{\ell \circ u \equiv i d}{\ell \circ u \circ \ell \equiv \ell} \\
& \text { (mono) } \frac{\ell \circ \ell \equiv i d}{u \circ}
\end{aligned}
$$

Remark. A shorter proof (since $U=U n i t$):

$$
\text { (unit) } \frac{u \circ \ell: U \rightarrow U}{u \circ \ell \equiv i d}
$$

The first proof looks "good", this one looks "bad"!?

A decorated logic for states

Terms are classified:

- $f^{(0)}: f$ is pure if it cannot use nor modify the state.
- $f^{(1)}: f$ is an accessor if it can use the state, not modify it.
- $f^{(2)}: f$ is a modifier if it can use and modify the state.

Hierarchy rules: $\frac{f^{(0)}}{f^{(1)}}, \frac{f^{(1)}}{f^{(2)}}$.
Equations are classified:

- $f \equiv g$: strong equation: f and g return the same value and they have the same effect on the state.
- $f \sim g$: weak equation: f and g return the same value but they may have different effects on the state.
Hierarchy rule: $\frac{f \equiv g}{f \sim g}$.

A decorated proof

Specification.
Sorts: $\quad N, U$ (Unit)

Operations: $\quad \ell^{(1)}: U \rightarrow N$ (lookup)
$u^{(2)}: N \rightarrow U$ (update)
Equation: $\quad \ell \circ u \sim i d_{N} \quad$ (same value)
Property: \quad "mono" (\equiv is observation wrt ℓ)

A decorated proof

Specification.
Sorts:
Operations:

N, U (Unit)

$\ell^{(1)}: U \rightarrow N$ (lookup)
$u^{(2)}: N \rightarrow U$ (update)
Equation: $\quad \ell \circ u \sim i d_{N} \quad$ (same value)
Property: \quad "mono" (\equiv is observation wrt ℓ)
Theorem.

$$
u \circ \ell \equiv i d_{u}
$$

Proof.

$$
\begin{aligned}
& (\text { subst }) \frac{\ell \circ u \sim i d}{\ell \circ u \circ \ell \sim \ell} \\
& \text { (mono) } \frac{u \circ \ell \equiv i d}{}
\end{aligned}
$$

A decorated proof

Specification.
Sorts: $\quad N, U$ (Unit)
Operations: $\quad \ell^{(1)}: U \rightarrow N$ (lookup)

$$
u^{(2)}: N \rightarrow U \quad \text { (update) }
$$

Equation: $\quad \ell \circ u \sim i d_{N} \quad$ (same value)
Property: $\quad \ell$ "mono" (\equiv is observation wrt ℓ)
Theorem.

$$
u \circ \ell \equiv i d_{u}
$$

Proof.

$$
\begin{aligned}
& \left(\text { subst) } \frac{\ell \circ u \sim i d}{\ell \circ u \circ \ell \sim \ell}\right. \\
& (\text { mono }) \frac{u \circ \ell \equiv i d}{}
\end{aligned}
$$

Remark. A "good" proof is a proof which can be decorated.

An explicit proof

Specification.
Sorts: $\quad N, U$ (Unit) and \underline{S} (the sort of states)
Projections: $\quad v a l_{X}: X \leftarrow X \times \underline{S} \rightarrow \underline{S}: s t_{X}$
Operations: $\quad \ell: \underline{S} \rightarrow N \quad$ (lookup)
$u: N \times \underline{S} \rightarrow \underline{S} \quad$ (update)
Equation: $\quad \ell \circ u \equiv v a l_{N}$
Property: $\quad \ell$ mono $\quad(\equiv$ is observation wrt ℓ)

An explicit proof

Specification.
Sorts: $\quad N, U$ (Unit) and \underline{S} (the sort of states)
Projections: \quad val ${ }_{X}: X \leftarrow X \times \underline{S} \rightarrow \underline{S}: s t_{X}$
Operations: $\quad \ell: \underline{S} \rightarrow N \quad$ (lookup)

$$
u: N \times \underline{S} \rightarrow \underline{S} \quad \text { (update) }
$$

Equation: $\quad \ell \circ u \equiv v a l_{N}$
Property: $\quad \ell$ mono $\quad(\equiv$ is observation wrt ℓ)
Theorem.

$$
u \circ\left\langle\ell, i d_{s}\right\rangle \equiv i d_{s}
$$

Proof.

$$
\begin{aligned}
& \text { (subst) } \frac{\ell \circ u \equiv v a l}{\text { (trans) } \frac{\ell \circ u \circ\left\langle\ell, i d_{s}\right\rangle \equiv \text { val } \circ\left\langle\ell, i d_{s}\right\rangle}{} \quad \text { (proj) } \frac{}{\text { val } \circ\left\langle\ell, i d_{s}\right\rangle \equiv \ell}} \frac{(\text { mono }) \frac{\ell \circ u \circ\left\langle\ell, i_{s}\right\rangle \equiv \ell}{u \circ\left\langle\ell, i d_{s}\right\rangle \equiv i d}}{}
\end{aligned}
$$

A span for states

A span in a category of logics:

A span for states

A span in a category of logics:

Does the intended semantics form a model?

Do the proofs respect the effect?

Outline

States

Exceptions

Diagrammatic logics

Duality

Fact. There is a duality between states and exceptions.
[Dumas\&Duval\&Fousse\&Reynaud'12] MSCS (4 p.)
Consequence. A span for exceptions.

A decorated logic for exceptions

Terms are classified:

- $f^{(0)}: f$ is pure if it cannot throw nor catch exceptions.
- $f^{(1)}: f$ is a propagator if it can throw exceptions, not catch them.
- $f^{(2)}: f$ is a catcher if it can throw and catch exceptions.

Hierarchy rules: $\frac{f^{(0)}}{f^{(1)}}, \frac{f^{(1)}}{f^{(2)}}$.
Equations are classified:

- $f \equiv g$: strong equation: f and g coincide on ordinary values and on exceptions.
- $f \sim g$: weak equation: f and g coincide on ordinary values but they may be different on exceptions.
Hierarchy rule: $\frac{f \equiv g}{f \sim g}$.

A decorated proof

Simplification. There is only one type of exceptions. Sorts: $\quad N, 0$ (empty)
Operations: $\quad t^{(1)}: N \rightarrow 0 \quad$ (tag, for throw) $c^{(2)}: 0 \rightarrow N \quad$ (untag, for catch)
Equation: $\cot \sim i d_{N} \quad$ (same on ordinary values)
Property: $\quad t$ "epi" (\equiv is "same on the image of t ")

A decorated proof

Simplification. There is only one type of exceptions.
Sorts: $\quad N, 0$ (empty)
Operations: $\quad t^{(1)}: N \rightarrow 0 \quad$ (tag, for throw) $c^{(2)}: 0 \rightarrow N \quad$ (untag, for catch)
Equation: $\quad c \circ t \sim i d_{N} \quad$ (same on ordinary values)
Property: $\quad t$ "epi" (\equiv is "same on the image of t ")
Theorem.

$$
t \circ c \equiv i d_{0}
$$

Proof.

$$
(\text { repl }) \frac{c \circ t \sim i d}{t(\mathrm{epi})} \frac{t \circ c \circ t \sim t}{t \circ c \equiv i d}
$$

Encapsulation

The public operations throw and try/catch
or raise and handle
are defined in terms of the private operations tag and untag.

- For each Y :

$$
\text { throw }_{Y}=[]_{Y} \circ t: N \rightarrow Y
$$

- For each $f: X \rightarrow Y$ and $g: N \rightarrow Y$:

$$
\begin{gathered}
\operatorname{try}\{f\} \operatorname{catch}\{g\}=\nabla(\operatorname{TRY}\{f\} \operatorname{catch}\{g\}): X \rightarrow Y \\
\quad \text { where } \operatorname{TRY}\{f\} \operatorname{catch}\{g\}=\left[i d_{Y} \mid g \circ c\right] \circ f
\end{gathered}
$$

Encapsulation

The public operations throw and try/catch
or raise and handle
are defined in terms of the private operations tag and untag.

- For each Y :

$$
\text { throw }_{Y}=[]_{Y} \circ t: N \rightarrow Y
$$

- For each $f: X \rightarrow Y$ and $g: N \rightarrow Y$:

$$
\begin{gathered}
\operatorname{try}\{f\} \operatorname{catch}\{g\}=\nabla(\operatorname{TRY}\{f\} \operatorname{catch}\{g\}): X \rightarrow Y \\
\quad \text { where } \operatorname{TRY}\{f\} \operatorname{catch}\{g\}=\left[i d_{Y} \mid g \circ c\right] \circ f
\end{gathered}
$$

Corollary. For each $f: X \rightarrow Y$:

$$
\operatorname{try}\{f\} \text { catch }\left\{\text { throw }_{Y}\right\} \equiv f
$$

Outline

States

Exceptions

Diagrammatic logics

Some category theory

A diagrammatic logic is

- a left adjoint functor between categories with colimits
- and a localization.

induced by a morphism of limit sketches

$$
\mathbf{E}_{S} \xrightarrow{\mathbf{e}} \mathbf{E}_{T}
$$

[Gabriel-Zisman 67, Ehresmann 68]

Models

- \mathbf{S} is the category of specifications
- \mathbf{T} is the category of theories
- the set of models of a specification Σ with values in a theory Θ is:

$$
\operatorname{Mod}_{\mathcal{L}}(\Sigma, \Theta)=\operatorname{Hom}_{\mathbf{T}}(\mathcal{L} \Sigma, \Theta) \cong \operatorname{Hom}_{\mathbf{S}}(\Sigma, \mathcal{R} \Theta)
$$

Proofs

- a rule with hypothesis \mathcal{H} and conclusion \mathcal{C} is a fraction from \mathcal{C} to \mathcal{H}

$$
\mathcal{H} \rightleftarrows---\longrightarrow \mathcal{H}^{\prime} \longleftarrow \mathcal{C}
$$

- an instance of \mathcal{H} in Σ is a fraction from \mathcal{H} to Σ
- an inference step is a composition of fractions

The category of diagrammatic logics

A morphism of diagrammatic logics $F: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ is a pair of locally presentable functors such that:

induced by a commutative square of limit sketches

A span of logics for states

Modifiers

Accessors

$$
X \xrightarrow{f^{(1)}} Y
$$

$$
X \xrightarrow{f} Y
$$

Pure expressions

$$
X \xrightarrow{f^{(0)}} Y
$$

Conclusion

Decorated logics work quite well for effects, mainly because of their notion of morphism.

A morphism of logics
maps specifications to specifications and proofs to proofs.
and it is made of left adjoint functors.
Future work include:

- operational semantics for effects,
- decorated proofs in Coq?...

An assistant for decorated proofs?

It seems quite easy to use Coq for decorated proofs. (Work in progress with Damien Pous)
Remark. This is easy because there is NO rule like:

$$
\frac{f^{(2)} \equiv g^{(0)}}{f^{(0)}}
$$

Property. The extension from "the logic for signatures" to "the logic for specifications", which is conservative for the apparent logic, remains conservative for the decorated logic.
\Rightarrow Towards a notion of signature for diagrammatic logics?
(Work in progress with Arthur Guillon)

