Decorated proofs for states and exceptions

Dominique Duval with J.-G. Dumas, L. Fousse, J.-C. Reynaud

LJK, University of Grenoble

June 13, 2012 IFIP WG1.3 meeting, Salamanca

Effects

Several approaches for managing a large specification (/program):

- Modularity. Breaking down the specification into modules.
 Each module is right: its semantics is a "part" of the intended semantics.
- ▶ Refinement. Stepwise transformation of specifications.
 - Each step is right:

its semantics is a "generalization" of the intended semantics.

- Effects. Approximations, stepwise improved.
 - Each step is wrong:

its "apparent" semantics may be far from the intended semantics.

• Ex.: states, exceptions, ...

States and exceptions

"pure"	states	exceptions	
Monads			
$f:X\to Y$	$f:X\to (Y\times S)^S$	$f: X \to Y + E$	
Lawvere theories + "handlers"			
operations	lookup, update	raise, (handle)	
Decorations			
$f:X\to Y$	$f: X \times S \to Y \times S$	$f: X + E \to Y + E$	
operations	lookup, update	raise, catch, handle	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Moggi 91, Plotkin-Power 02, Schröder-Mossakowski 04, Levy 06, Plotkin-Pretnar 09, ...

Semantics of effects

Several kinds of semantics for computational effects

- mathematical (past Aussois meeting)
- logical (this Salamanca meeting)
- operational (some next meeting?...)

Outline

States

Exceptions

Diagrammatic logics

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

A property of imperative languages

The annihilation lookup-update property:

the command X := X does not modify the state

Proof. Let n be the value of X in the current state.

- ▶ First "X" (on the right) is evaluated as *n*.
- ► Then "X :=" (on the left) puts the value of X to n, without modifying the value of other locations.

Hence the state is not modified.

A property of imperative languages

The annihilation lookup-update property:

the command X := X does not modify the state

Proof. Let n be the value of X in the current state.

- ▶ First "X" (on the right) is evaluated as *n*.
- ► Then "X :=" (on the left) puts the value of X to n, without modifying the value of other locations.

Hence the state is not modified.

Remark. Observational equality of states: a state is characterized by the values of all locations.

Simplification. In this talk, there is only one location X: a state is characterized by the value of the location X.

A proof

Specification.

Sorts:	<i>N</i> , <i>U</i> (Unit)	
Operations:	$\ell: U \to N$	(lookup)
	$u: N \to U$	(update)
Equation:	$\ell \circ u \equiv id_N$	
Property:	ℓ "mono"	(\equiv is observation wrt ℓ)

A proof

Specification.

Sorts:	<i>N</i> , <i>U</i> (Unit)	
Operations :	$\ell: U \to N$	(lookup)
	$u: N \to U$	(update)
Equation:	$\ell \circ u \equiv id_N$	
Property:	ℓ "mono"	(\equiv is observation wrt $\ell)$
Theorem.	u	$v \circ \ell \equiv id_U$
Proof.	(subs (mon	st) $\frac{\ell \circ u \equiv id}{\ell \circ u \circ \ell \equiv \ell}$ o) $\frac{\mu \circ \ell \equiv id}{\mu \circ \ell \equiv id}$

A proof

Specification.

Sorts:	<i>N</i> , <i>U</i> (Unit)	
Operations:	$\ell: U \to N$	(lookup)
	$u: N \to U$	(update)
Equation:	$\ell \circ u \equiv id_N$	
Property:	ℓ "mono"	(\equiv is observation wrt ℓ)
Theorem.	L	$u \circ \ell \equiv id_U$
Proof. (subst) $\frac{\ell \circ u \equiv id}{\ell \circ u \circ \ell \equiv \ell}$ (mono) $\frac{\ell \circ u \circ \ell \equiv id}{u \circ \ell \equiv id}$		
Remark. A shorter proof (since $U = Unit$):		
	(unit)	$) \frac{u \circ \ell : U \to U}{u \circ \ell \equiv id}$
The first proof	f looks "good"	, this one looks "bad"!?

A decorated logic for states

Terms are classified:

- $f^{(0)}$: f is pure if it cannot use nor modify the state.
- $f^{(1)}$: f is an accessor if it can use the state, not modify it.
- $f^{(2)}$: f is a modifier if it can use and modify the state.

Hierarchy rules: $\frac{f^{(0)}}{f^{(1)}}, \frac{f^{(1)}}{f^{(2)}}.$

Equations are classified:

- $f \equiv g$: strong equation: f and g return the same value and they have the same effect on the state.
- $f \sim g$: weak equation: f and g return the same value but they may have different effects on the state.

Hierarchy rule: $\frac{f \equiv g}{f \sim \sigma}$.

Specification.

Sorts:	<i>N</i> , <i>U</i> (Unit)	
Operations:	$\ell^{(1)}: U o N$	(lookup)
	$u^{(2)}:N ightarrow U$	(update)
Equation:	$\ell \circ u \sim id_N$	(same value)
Property:	ℓ "mono"	(\equiv is observation wrt ℓ

)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Specification.

Sorts:	<i>N</i> , <i>U</i> (Unit)	
Operations:	$\ell^{(1)}: U o N$	(lookup)
	$u^{(2)}:N ightarrow U$	(update)
Equation:	$\ell \circ u \sim id_N$	(same value)
Property:	ℓ "mono"	(\equiv is observation wrt ℓ
Theorem.		

$$u \circ \ell \equiv id_U$$

Proof.

$$(subst) \frac{\ell \circ u \sim id}{\ell \circ u \circ \ell \sim \ell}$$
$$(mono) \frac{u \circ \ell \sim \ell}{u \circ \ell \equiv id}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Specification.

Sorts:	<i>N</i> , <i>U</i> (Unit)	
Operations:	$\ell^{(1)}: U o N$	(lookup)
	$u^{(2)}:N ightarrow U$	(update)
Equation:	$\ell \circ u \sim id_N$	(same value)
Property:	ℓ "mono"	$(\equiv$ is observation wrt ℓ
Theorem.		

$$u \circ \ell \equiv id_U$$

Proof.

$$(subst) \frac{\underbrace{\ell \circ u \sim id}}{\underbrace{\ell \circ u \circ \ell \sim \ell}}{u \circ \ell \equiv id}$$

Remark. A "good" proof is a proof which can be decorated.

An explicit proof

Specification.

Sorts:	<i>N</i> , <i>U</i> (Unit)	and \underline{S} (the sort of states)
Projections:	$\mathit{val}_X: X \leftarrow X imes$	$\underline{S} \rightarrow \underline{S}$: st_X
Operations:	$\ell: \underline{S} \to N$	(lookup)
	$u: N \times \underline{S} \to \underline{S}$	(update)
Equation:	$\ell \circ u \equiv val_N$	
Property:	ℓ mono	(\equiv is observation wrt ℓ)

An explicit proof

Specification.

Sorts:N, U (Unit)and \underline{S} (the sort of states)Projections: $vaI_X : X \leftarrow X \times \underline{S} \rightarrow \underline{S} : st_X$ Operations: $\ell : \underline{S} \rightarrow N$ (lookup) $u : N \times \underline{S} \rightarrow \underline{S}$ (update)Equation: $\ell \circ u \equiv vaI_N$ Property: ℓ mono(\equiv is observation wrt ℓ)Theorem.

Proof.

$$(subst) \frac{\frac{\ell \circ u \equiv val}{\ell \circ u \circ \langle \ell, id_S \rangle \equiv val \circ \langle \ell, id_S \rangle} \quad (proj) \frac{}{val \circ \langle \ell, id_S \rangle \equiv \ell}}{(mono) \frac{\ell \circ u \circ \langle \ell, id_S \rangle \equiv \ell}{u \circ \langle \ell, id_S \rangle \equiv id}}$$

A span for states

A span in a category of logics:

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

A span for states

Does the intended semantics form a model?

Do the proofs respect the effect?

・ロト ・四ト ・ヨト ・ヨト

э

Outline

States

Exceptions

Diagrammatic logics

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = 目 - のへで

Duality

Fact. There is a duality between states and exceptions.

[Dumas&Duval&Fousse&Reynaud'12] MSCS (4 p.)

Consequence. A span for exceptions.

A decorated logic for exceptions

Terms are classified:

- $f^{(0)}$: f is pure if it cannot throw nor catch exceptions.
- $f^{(1)}$: f is a propagator if it can throw exceptions, not catch them.
- $f^{(2)}$: f is a catcher if it can throw and catch exceptions. Hierarchy rules: $\frac{f^{(0)}}{f^{(1)}}, \frac{f^{(1)}}{f^{(2)}}.$

Equations are classified:

- $f \equiv g$: strong equation: f and g coincide on ordinary values and on exceptions.
- $f \sim g$: weak equation: f and g coincide on ordinary values but they may be different on exceptions.

Hierarchy rule:
$$\frac{f \equiv g}{f \sim g}$$

Simplification. There is only one type of exceptions.

Sorts:	<i>N</i> , 0 (empty)	
Operations:	$t^{(1)}:N ightarrow 0$	(tag, for throw)
	$c^{(2)}: 0 \rightarrow N$	(untag, for catch)
Equation:	$c \circ t \sim id_N$	(same on ordinary values)
Property:	<i>t</i> "epi"	$(\equiv$ is "same on the image of t ")

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simplification. There is only one type of exceptions.

Sorts:N, 0 (empty)Operations: $t^{(1)}: N \to 0$ (tag, for throw)
 $c^{(2)}: 0 \to N$ (untag, for catch)Equation: $c \circ t \sim id_N$ (same on ordinary values)Property:t "epi"(\equiv is "same on the image of t")

Theorem.

$$t \circ c \equiv id_0$$

Proof.

$$(\operatorname{repl}) \underbrace{\frac{c \circ t \sim id}{t \circ c \circ t \sim t}}_{t \circ c \equiv id}$$

Encapsulation

The public operations throw and try/catch or raise and handle

are defined in terms of the private operations tag and untag.

► For each Y:

throw $_{Y} = []_{Y} \circ t : N \to Y$

• For each $f: X \to Y$ and $g: N \to Y$:

 $try{f}catch{g} = \nabla(TRY{f}catch{g}) : X \to Y$ where $TRY{f}catch{g} = [id_Y | g \circ c] \circ f$

Encapsulation

The public operations throw and try/catch or raise and handle

are defined in terms of the private operations tag and untag.

► For each Y:

throw $_{Y} = []_{Y} \circ t : N \to Y$

• For each $f: X \to Y$ and $g: N \to Y$:

 $try{f}catch{g} = \nabla(TRY{f}catch{g}) : X \to Y$ where $TRY{f}catch{g} = [id_Y | g \circ c] \circ f$

Corollary. For each $f : X \to Y$:

 $try{f}catch{throw_Y} \equiv f$

Outline

States

Exceptions

Diagrammatic logics

Some category theory

- A diagrammatic logic is
 - > a left adjoint functor between categories with colimits
 - and a localization.

$$\mathbf{S} \xrightarrow[]{\mathcal{L}} \mathcal{R} \xrightarrow{\mathcal{L}} \mathbf{T} \quad \text{with } \mathcal{L} \circ \mathcal{R} \cong \mathit{Id}_{\mathbf{T}}$$

induced by a morphism of limit sketches

$$\mathsf{E}_S \xrightarrow{\mathsf{e}} \mathsf{E}_T$$

[Gabriel-Zisman 67, Ehresmann 68]

Models

- **S** is the category of specifications
- **T** is the category of theories
- the set of models of a specification Σ with values in a theory Θ is:

$$Mod_{\mathcal{L}}(\Sigma, \Theta) = Hom_{\mathsf{T}}(\mathcal{L}\Sigma, \Theta) \cong Hom_{\mathsf{S}}(\Sigma, \mathcal{R}\Theta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proofs

► a rule with hypothesis H and conclusion C is a fraction from C to H

$$\mathcal{H} \xrightarrow[\leftarrow - - - -]{} \mathcal{H}' \longleftarrow \mathcal{C}$$

- an instance of \mathcal{H} in Σ is a fraction from \mathcal{H} to Σ
- an inference step is a composition of fractions

The category of diagrammatic logics

A morphism of diagrammatic logics $F : \mathcal{L} \to \mathcal{L}'$ is a pair of locally presentable functors such that:

induced by a commutative square of limit sketches

A span of logics for states

Modifiers

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のんぐ

Accessors

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Pure expressions

Conclusion

Decorated logics work quite well for effects, mainly because of their notion of morphism.

A morphism of logics

maps specifications to specifications and proofs to proofs. and it is made of left adjoint functors.

Future work include:

operational semantics for effects,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

decorated proofs in Coq?...

An assistant for decorated proofs?

It seems quite easy to use Coq for decorated proofs. *(Work in progress with Damien Pous)*

Remark. This is easy because there is NO rule like:

 $\frac{f^{(2)} \equiv g^{(0)}}{f^{(0)}}$

Property. The extension from "the logic for signatures" to "the logic for specifications", which is conservative for the apparent logic, remains conservative for the decorated logic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

⇒ Towards a notion of signature for diagrammatic logics? (Work in progress with Arthur Guillon)