Decorated proofs for states and exceptions
Dominique Duval
with J.-G. Dumas, L. Fousse, J.-C. Reynaud

LJK, University of Grenoble

June 13, 2012
IFIP WG1.3 meeting, Salamanca

Effects

Several approaches for managing a large specification (/program):

» Modularity. Breaking down the specification into modules.
e Each module is right:
its semantics is a “part” of the intended semantics.
» Refinement. Stepwise transformation of specifications.
e Each step is right:
its semantics is a “generalization” of the intended semantics.
» Effects. Approximations, stepwise improved.
e Each step is wrong:
its “apparent” semantics may be far from the intended
semantics.
e Ex.: states, exceptions, ...

States and exceptions

“pure” states exceptions

Monads

XY [FiX=(YxS)S |[fiXoY+E

Lawvere theories + “handlers”

’ operations ‘ lookup, update ‘ raise, (handle)

Decorations

f:X=>Y | f: XxS—=YxS§ fX+E—=Y+E

operations lookup, update raise, catch, handle

Moggi 91, Plotkin-Power 02,
Schroder-Mossakowski 04, Levy 06, Plotkin-Pretnar 09, ...

Semantics of effects

Several kinds of semantics for computational effects

» mathematical (past Aussois meeting)
» logical (this Salamanca meeting)

» operational (some next meeting?...)

Outline

States

A property of imperative languages
The annihilation lookup-update property:

‘ the command X := X does not modify the state

Proof. Let n be the value of X in the current state.
» First “X" (on the right) is evaluated as n.

» Then “X :=" (on the left) puts the value of X to n,
without modifying the value of other locations.

Hence the state is not modified. O

A property of imperative languages
The annihilation lookup-update property:

‘ the command X := X does not modify the state

Proof. Let n be the value of X in the current state.
» First “X" (on the right) is evaluated as n.

» Then “X :=" (on the left) puts the value of X to n,
without modifying the value of other locations.

Hence the state is not modified. O

Remark. Observational equality of states:
a state is characterized by the values of all locations.

Simplification. In this talk, there is only one location X:
a state is characterized by the value of the location X.

A proof
Specification.
Sorts: N, U (Unit)
Operations: ¢: U — N (lookup)
u:N—U (update)
Equation: lfou=idy
Property: ¢ "mono” (= is observation wrt /)

A proof
Specification.
Sorts: N, U (Unit)
Operations: ¢: U — N (lookup)
u:N—U (update)
Equation: lfou=idy

Property: ¢ "mono” (= is observation wrt /)
fheerem
Proof. lou=id
(subst) ————
(mono) fouol=/

uol=id

A proof
Specification.
Sorts: N, U (Unit)
Operations: ¢: U — N (lookup)
u:N—U (update)

Equation: lfou=idy
Property: ¢ "mono” (= is observation wrt /)
fheerem
Proof. (SUbSt) fou ELd
(mono) fouol=/
uol=id
Remark. A shorter proof (since U = Unit):
.y uol:U—=U
(onit) = o7 =

The first proof looks “good”, this one looks “bad”!?

A decorated logic for states
Terms are classified:
» f(0): fis pure if it cannot use nor modify the state.
» (1): fis an accessor if it can use the state, not modify it.

» (2. fis a modifier if it can use and modify the state.
_ £00) £(1)
Hierarchy rules: O OR
Equations are classified:
» f = g: strong equation: f and g return the same value
and they have the same effect on the state.
» f ~ g: weak equation: f and g return the same value
but they may have different effects on the state.

f=
Hierarchy rule: 7 £

~

A decorated proof

Specification.

Sorts:

Operations:

Equation:
Property:

N, U (Unit)

(MU= N (lookup)

u® N —= U (update)

louridy (same value)

/ "mono” (= is observation wrt /)

A decorated proof
Specification.

Sorts: N, U (Unit)
Operations: (1) : U — N (lookup)
u® N —= U (update)
Equation: louridy (same value)
Property: / "mono” (= is observation wrt ()
Theorem.

Proof. .
(subst) _lou~id ‘
(mono) fouofwé
uol =id

A decorated proof
Specification.

Sorts: N, U (Unit)
Operations: (1) : U — N (lookup)
u® N —= U (update)
Equation: louridy (same value)
Property: / "mono” (= is observation wrt ()
Theorem.

Proof. .
(subst) _lou~id ‘
(mono) fouofwé
uol =id

Remark. A “good” proof is a proof which can be decorated.

An explicit proof

Specification.
Sorts:
Projections:
Operations:

Equation:
Property:

N, U (Unit) and S (the sort of states)
valx : X <+ X x 8§ — S :stx

{:S— N (lookup)

u:NxS—S (update)

fou=valy

¢ mono (= is observation wrt /)

An explicit proof

Specification.

Sorts: N, U (Unit) and S (the sort of states)
Projections: wvalx : X < X xS§ — S :stx
Operations: (:S — N (lookup)
u:NxS—S (update)
Equation: Lou=valy
Property: ¢ mono (= is observation wrt /)
Theorem.

[uo (t.ids) = ids |

Proof.
{ou=val)
bst
((ilrla:sg touo(l,ids) = val o {(, ids) (proj) val o ({,ids) = ¢

louo(lids) =1
uo (L, ids) = id

(mono)

A span for states

A span in a category of logics:
decorated

apparent explicit

A span for states

A span in a category of logics:
decorated
apparent explicit
Does the intended semantics form a model?

YES

TN

NO YES

Do the proofs respect the effect?

YES

TN

YES no

Outline

Exceptions

Duality

Fact. ‘There is a duality between states and exceptions. ‘
[Dumas&Duval&Fousse&Reynaud'12] MSCS (4 p.)

Consequence. A span for exceptions.

decorated

/

apparent explicit

A decorated logic for exceptions
Terms are classified:
» (O fis pure if it cannot throw nor catch exceptions.
» (1) fis a propagator if it can throw exceptions, not catch

them.
» (). fis a catcher if it can throw and catch exceptions.
_ £00) £(1)
Hierarchy rules: OOk

Equations are classified:
» f = g: strong equation: f and g coincide on ordinary values
and on exceptions.
» f ~ g: weak equation: f and g coincide on ordinary values
but they may be different on exceptions.

Hierarchy rule: r=¢
f~g

A decorated proof

Simplification. There is only one type of exceptions.

Sorts: N, 0 (empty)
Operations: t() : N =0 (tag, for throw)
c®:0—= N (untag, for catch)
Equation: cotn~idy (same on ordinary values)
Property: t “epi” (= is “same on the image of t")

A decorated proof

Simplification. There is only one type of exceptions.

Sorts: N, 0 (empty)
Operations: t() : N =0 (tag, for throw)
c®:0— N (untag, for catch)
Equation: cotn~idy (same on ordinary values)
Property: t “epi” (= is “same on the image of t")
Theorem.
Proof.
cot~id
(erl) Focot~t

Encapsulation

The public operations throw and try/catch
or raise and handle
are defined in terms of the private operations tag and untag.

» For each Y:
throwy = [|Jyot: N =Y

» Foreachf: X —Yandg: N—>Y:

try{f}catch{g} = V(TRY{f}catch{g}): X = Y
where TRY{f}catch{g} =[idy |goc]of

Encapsulation

The public operations throw and try/catch
or raise and handle
are defined in terms of the private operations tag and untag.

» For each Y:
throwy = [|Jyot: N =Y

» Foreachf: X —Yandg: N—>Y:

try{f}catch{g} = V(TRY{f}catch{g}): X = Y
where TRY{f}catch{g} =[idy |goc]of

Corollary. Foreach f: X — Y-

‘try{f}catch{throwy} = f ‘

Outline

Diagrammatic logics

Some category theory

A diagrammatic logic is
> a left adjoint functor between categories with colimits

» and a localization.

S— X T with LoR=Idy

~._t -

R
induced by a morphism of limit sketches
Es— % SET

[Gabriel-Zisman 67, Ehresmann 68]

Models

S— T

R

» S is the category of specifications
» T is the category of theories

> the set of models of a specification
with values in a theory © is:

Mod (5, 0) = Homt(LE,©) = Homg(E, RO)

Proofs

—
\i/
R
> a rule with hypothesis H and conclusion C is

a fraction from C to H

H———H c

> an instance of H in X is a fraction from H to *
> an inference step is a composition of fractions

The category of diagrammatic logics

A morphism of diagrammatic logics F : £ — L’
is a pair of locally presentable functors such that:

s— £ T

F{ - lFT

s —~E T

induced by a commutative square of limit sketches

A span of logics for states

decorated

N

apparent explicit

Modifiers

>
N+ x =X

|

-

n¢+ x =+ =<

(%)

Accessors

>
N+ x =X

(@)
~<

¢+ x =+ =<

(%)

Pure expressions

>
N+ x =X

|

(@)
~<
ne x - <

(%)

Conclusion

Decorated logics work quite well for effects,
mainly because of their notion of morphism.

A morphism of logics
maps specifications to specifications
and proofs to proofs.
and it is made of left adjoint functors.
Future work include:
» operational semantics for effects,

» decorated proofs in Coq?. ..

An assistant for decorated proofs?

It seems quite easy to use Coq for decorated proofs.
(Work in progress with Damien Pous)

Remark. This is easy because there is NO rule like:

Property. The extension

from “the logic for signatures” to “the logic for specifications”,
which is conservative for the apparent logic,

remains conservative for the decorated logic.

=- Towards a notion of signature for diagrammatic logics?
(Work in progress with Arthur Guillon)

	Introduction
	States
	Exceptions
	Diagrammatic logics
	Conclusion

