
Decorated specifications for states and exceptions

Dominique Duval
with J.-G. Dumas, L. Fousse, J.-C. Reynaud

LJK, University of Grenoble

January 7, 2011
IFIP WG1.3 meeting, Aussois

Outline

Introduction

Effects as decorated specifications

States

Exceptions

Conclusion

Semantics of programming languages

I several paradigms (functional, imperative, object-oriented,...)

I several kinds of semantics (denotational, operational,...)

Semantics of functional languages
The Curry-Howard-Lambek correspondence

logic programming categories

propositions types objects

proofs terms morphisms

intuitionistic

logic

simply typed

lambda calculus

cartesian closed

categories

Semantics of non-functional languages?

Semantics of computational effects

Computational effects = non-functional features
Ex. states, exceptions, input-output, . . .

I effects as monads:
Moggi [1989,. . .], Haskell

I effects as Lawvere theories:
Plotkin & Power [2001,. . .]

Here:

I effects as decorated specifications:
Duval & Lair & Reynaud [2003,. . .]

Underlying the three approaches:

category theory

Outline

Introduction

Effects as decorated specifications

States

Exceptions

Conclusion

Beyond monads (1)

[Moggi 1991, section 1]

The basic idea behind the categorical semantics below is that, in
order to interpret a programming language in a category C, we
distinguish the object A of values (of type A) from the object TA
of computations (of type A), and take as denotations of programs
(of type A) the elements of TA. In particular, we identify the type
A with the object of values (of type A) and obtain the object of
computations (of type A) by applying an unary type-constructor T
to A. We call T a notion of computation, since it abstracts away
from the type of values computations may produce. There are
many choices for TA corresponding to different notions of
computations.

Beyond monads (2)

[Moggi 1991, section 1]

Since the denotation of programs of type B are supposed to be
elements of TB, programs of type B with a parameter of type A
ought to be interpreted by morphisms with codomain TB, but for
their domain there are two alternatives, either A or TA, depending
on whether parameters of type A are identified with values or
computations of type A. We choose the first alternative, because it
entails the second. Indeed computations of type A are the same as
values of type TA.

The examples proposed by Moggi include

I the states monad TA = (A× St)St

where St is the set of states

I the exceptions monad TA = A + Exc
where Exc is the set of exceptions

Beyond monads (3)

Yes a morphism A→ B + Exc provides a denotation
for a program A→ B which may throw an exception
by mapping a ∈ A to e ∈ Exc

And a morphism A + Exc → B + Exc provides a denotation
for a program A→ B which may catch an exception
by mapping e ∈ Exc to b ∈ B

We keep, and even emphasize, Moggi’s distinction
between several kinds of programs:

For states and for exceptions we distinguish
3 kinds of programs and 2 kinds of equations

The decorations (keywords or colors)
are used for denoting this distinction

The bank account example

Class BankAccount {...
int balance () const ;

void deposit (int) ;

...}
from this C++ syntax to a signature?

I apparent signature ACCapp

balance : void→ int

deposit : int→ void

the intended interpretation is not a model

I explicit signature ACCexp

balance : acc st→ int

deposit : int× acc st→ acc st

the intended interpretation is a model,
but the object-oriented flavour is lost

Decorations

m for modifiers

a for accessors (const methods)

p for pure functions

I decorated signature ACCdec

balancea : void→ int

depositm : int→ void

the intended interpretation is a model
and the object-oriented flavour is preserved
but this is not a signature

It is called a decorated signature

Morphisms

forget

the decorations

explain

the decorations

ACCdec

ba : void→ int

dm : int→ void
2

yyrrrrrr �
%%LLLLLL

ACCapp ACCexp

b : void→ int

d : int→ void

b : acc st→ int

d : int× acc st→ acc st

Outline

Introduction

Effects as decorated specifications

States

Exceptions

Conclusion

States as effects

In imperative programming the state of the memory
may be observed (lookup) and modified (update)

However, the state never appears explicitly in the syntax:
there no “type of states”

We define three specifications for dealing with states

Notations

Loc = the set of locations

1 = the unit type

The apparent specification

From the syntax we get the apparent specification STapp

• For each location i ∈ Loc:

type Vi for the values of i

operations lookup li : 1→ Vi

update ui : Vi → 1

equations li ◦ ui ≡ idVi

lj ◦ ui ≡ lj ◦ ()Vi
for all j 6= i

EFFECT: the intended semantics is not a model of STapp.

The explicit specification

Notation

St = the “type of states” (e.g., St =
∏

i∈Loc Vi)

From the semantics we get the explicit specification STexp

• For each location i ∈ Loc:

type Vi for the values of i

operations lookup li : St → Vi

update ui : Vi × St → St

equations li ◦ ui ≡ pri
lj ◦ ui ≡ lj ◦ pr′i for all j 6= i

EFFECT: the intended semantics is a model of STexp

but STexp does not fit with the syntax
because of the “type of states” St

The decorated specification

Decorations for functions:

m for modifiers

a for accessors (= inspectors)

p for pure functions

AND decorations for equations

∼ for weak equations (equality on values only)

≡ for strong equations (equality on values and state)

With the decorations we get the decorated specification STdec

• For each location i ∈ Loc:

type Vi for the values of i

operations lookup lai : 1→ Vi

update um
i : Vi → 1

equations lai ◦ um
i ∼ id

p
Vi

laj ◦ um
i ∼ laj ◦ ()pVi

for all j 6= i

Morphisms

forget

the decorations

explain

the decorations

STdec

lai : 1→ Vi

um
i : Vi → 1

2 weak equations
2

yyrrrrrr �
%%LLLLLL

STapp STexp

li : 1→ Vi

ui : Vi → 1

2 equations

li : St → Vi

ui : Vi × St → St

2 equations

Relevance of decorations

CLAIM

The decorated specification STdec is “the most relevant”:

I both the apparent and the explicit specification
may be recovered from STdec

I STdec fits with the syntax (no type St)

I the intended semantics is a “decorated model” of STdec

I “decorated proofs” may be performed from STdec , e.g.

um
i ◦ lai ≡ id1

NOTE

Decorated models and decorated proofs refer to
a decorated logic defined in the categorical framework
of diagrammatic logics [Duval & Lair & Reynaud 2003. . .]

Outline

Introduction

Effects as decorated specifications

States

Exceptions

Conclusion

Exceptions as dual of states?

Monads:

states T (X) = (X × St)St

exceptions T (X) = X + Exc

Lawvere theories:

states

lookup : Val → Loc

update : 1→ Loc × Val

with 7 equations

exceptions
raisee : 0→ 1 for e ∈ Exc

with no equation

Exceptions as dual of states!

I States involve the functor X × St
for some distinguished “type of states” St

I Exceptions involve the functor X + Exc
for some distinguished “type of exceptions” Exc

CLAIM

The duality between X × St and X + Exc
extends as a duality between states and exceptions

li lookup dual to ti “throw”

ui update dual to ci “catch”

Exceptions as effects

An exception may be raised (raise or throw)
and handled (handle or try/catch)

The “type of exceptions” does not appear explicitly
in the type of programs

For dealing with exceptions:

I first dualize the specifications for states
→ two key functions for exceptions

I then encapsulate the key functions
→ the usual functions for exceptions

Notations for exceptions

0 = the empty type

Etype = the set of exceptional types

Pi = the type of parameters for exceptions of type i

Exc = the “type of exceptions” (e.g., Exc =
∑

i∈Etype Pi)

Decorations for functions:

m for functions which may catch exceptions

a for functions which propagate exceptions

p for pure functions

AND decorations for equations

∼ for weak equations (equality on non-exceptional arguments)

≡ for strong equations (equality on all arguments)

Raising an exception, explicit

For raising an exception (of type i) into a type Y ,

I first the key operation ti builds the exception

I then this exception is converted to type Y + Exc

raise i ,Y = inY ◦ ti

Pi

raise i,Y

=
((

ti
// Exc

inY
// Y + Exc

Raising an exception, decorated

For raising an exception (of type i) into a type Y ,

I first the key operation tai builds the exception (of type i)

I then this exception is converted to type Y

raiseai ,Y = []pY ◦ ti
a

Pi

raise i,Y

=
&&

ti
// 0

[]
// Y

Handling an exception, explicit (1)

For handling an exception (of type i) raised by f : X → Y + Exc
using g : Pi → Y + Exc , the handling process builds

try{f } catch i {g} : X → Y + Exc

using 2 nested conditionals

For each x ∈ X , (try{f } catch i {g})(x) ∈ Y + Exc is

compute y = f (x) ∈ Y + Exc ;
if y ∈ Y

then return y ∈ Y ⊆ Y + Exc
else // y is denoted e

if e has type i
then let a ∈ Pi be such that e = ti (a)

return g(a) ∈ Y + Exc
else return e ∈ Exc ⊆ Y + Exc

Handling an exception, explicit (2)

The key operation ci : Exc → Pi + Exc

I recognizes whether the given exception e has type i

I if so, returns a in Pi such that e = ti (a)

I otherwise, returns e ∈ Exc

which means that

ci ◦ ti ≡ ini

ci ◦ tj ≡ in′i ◦ tj for all j 6= i

DUAL to:

li ◦ ui ≡ pri
lj ◦ ui ≡ lj ◦ pr′i for all j 6= i

Handling an exception, explicit (3)

The handling process builds try{f } catch i {g} : X → Y + Exc
using

I the key operation ci
I and 2 nested conditionals

For each x ∈ X , (try{f } catch i {g})(x) ∈ Y + Exc is

compute y = f (x) ∈ Y + Exc ;
if y ∈ Y

then return y ∈ Y ⊆ Y + Exc
else

compute z = ci (y) ∈ Pi + Exc ;
if z ∈ Pi

then return g(z) ∈ Y + Exc
else return z ∈ Exc ⊆ Y + Exc

Handling an exception, decorated (1)

For handling an exception (of type i) raised by f a : X → Y
using ga : Pi → Y , the handling process builds
(try{f } catch i {g})a : X → Y using

I the key operation cm
i

I and 1 conditional

where the key operation cm
i : 0→ Pi satisfies

ci
m ◦ ti

a ∼ id
p
Pi

ci
m ◦ tj

a ∼ []pPi
◦ tj

a for all j 6= i

DUAL to:

lai ◦ um
i ∼ id

p
Vi

laj ◦ um
i ∼ laj ◦ ()pVi

for all j 6= i

Handling an exception, decorated (2)

(try{f } catch i {g})a using cm
i and 1 conditional

Catching: (catch i {g})m: catch with ga an exception of type i

Y
id

��

id

((
∼

Y
catch i {g}

// Y

0

[]
OO

ci
// Pi

g

99

≡

Handling: (try{f } catch i {g})a: compute f a, then (catch i {g})m,
don’t forget that exceptions “from outside” must be propagated!

X
f

//

try{f } catch i {g}
∼ --

Y
catch i {g}

// Y

Morphisms

forget

the decorations

explain

the decorations

EXCdec

ti
a : Pi → 0

ci
m : 0→ Pi

2 weak equations
2

yyrrrrrr �
%%LLLLLL

EXCapp EXCexp

ti : Pi → 0

ci : 0→ Pi

2 equations

ti : Pi → Exc

ci : Exc → Pi + Exc

2 equations

Outline

Introduction

Effects as decorated specifications

States

Exceptions

Conclusion

Effect = decorated specification =
apparent mismatch between syntax and semantics

I a new point of view on states

I a categorical formalization of exceptions with handling

I a duality between states and exceptions

Future work:

I other effects

I combining effects

I operational semantics

Some papers

I J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud.
States and exceptions are dual effects.
Workshop on Categorical Logic, Brno, 2010.

I J.-G. Dumas, D. Duval, J.-C. Reynaud.
Cartesian effect categories are Freyd-categories.
JSC (2010).

I C. Dominguez, D. Duval.
Diagrammatic logic applied to a parameterization process.
MSCS 20(04) p. 639-654 (2010).

I D. Duval, J.-C. Reynaud.
Dynamic logic and exceptions: an introduction.
Mathematics, Algorithms, Proofs. Dagstuhl Seminar 05021 (2005).

I D. Duval.
Diagrammatic Specifications.
MSCS (13) 857-890 (2003).

	Introduction
	Effects as decorated specifications
	States
	Exceptions
	Conclusion

