Zooms for Effects

Dominique Duval

Udine, September 11., 2009 IFIP W.G.1.3. meeting

Outline

Introduction

Diagrammatic logics

Parameterization

Sequential product

Conclusion

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Wanted. A framework for the semantics of effects.

Monads. For two kinds of morphisms:

- ▶ in general $f: X \rightarrow Y$ "stands for" some $f': X \rightarrow T(Y)$
- ► sometimes $v: X \rightarrow Y$ is pure, then $v' = \eta \circ v$

Wanted. Several kinds of objects, of arrows, of equations,... each kind "stands for" something...

In this talk

A category of logics

- objects: "logics" with models and proofs
- morphisms: "stands for" should be a morphism

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

"stands for"?

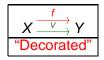
E.g., a monad.

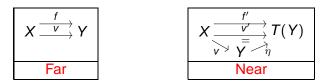
▶ in general $f: X \to Y$ "stands for" some $f': X \to T(Y)$

"stands for" is part of a "zoom"

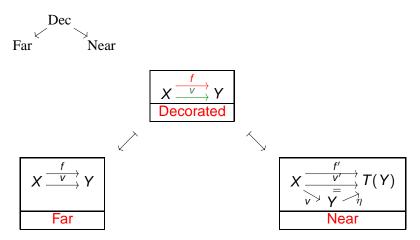
E.g., a monads

- ▶ in general $f: X \rightarrow Y$ "stands for" some $f': X \rightarrow T(Y)$
- ► sometimes $v: X \rightarrow Y$ is pure, then $v' = \eta \circ v$





"zooms" are spans



Slogan. First be wrong,

then add corrections,

in order to finally get right.

This talk

- Diagrammatic logics (categories...) with Christian Lair.
- Zooms for parameterization with César Domínguez.
- A zoom for sequential product with Jean-Guillaume Dumas and Jean-Claude Reynaud.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

Introduction

Diagrammatic logics

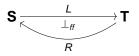
Parameterization

Sequential product

Conclusion

A diagrammatic logic

Definition. A logic *L* is a functor with a full and faithful right adjoint *R*:



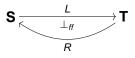
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

In addition, this is induced by a morphism of limit sketches.

Properties.

- R makes T a full subcategory of S
- $L(R(\Theta)) \cong \Theta$ for each theory Θ
- S and T have colimits, and L preserves colimits

Models



Definitions.

- S is the category of specifications
- ► T is the category of theories
- Σ presents Θ when $\Theta \cong L(\Sigma)$.
- Σ and Σ' are equivalent when $L(\Sigma) \cong L(\Sigma')$.

Models. Mod
$$(\Sigma, \Theta) = \mathbf{T}[L(\Sigma), \Theta] \cong \mathbf{S}[\Sigma, R(\Theta)]$$

The models form a category iff **T** is a 2-category.

Proofs

Theorem. [Gabriel-Zisman 1967] (for homotopy theory) Up to equivalence, L is a localization: it adds inverses to some morphisms in **S**.

Definition. An entailment is $\tau : \Sigma \to \Sigma'$ in **S** such that $L(\tau)$ is invertible in **T**. Then Σ and Σ' are equivalent.

Hence: the bicategory of fractions S2.

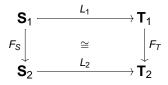
Definition. A proof is a fraction.

$$\begin{bmatrix} \text{in } \mathbf{S2} : \\ \Sigma \xrightarrow{\sigma} \Sigma_{1}^{\prime} \xleftarrow{\tau} \Sigma_{1} \end{bmatrix}$$

$$\begin{bmatrix} \text{in } \mathbf{S} : \\ \Sigma \xrightarrow{\sigma} \Sigma_{1}^{\prime} \xleftarrow{\tau} \Sigma_{1} \end{bmatrix} \begin{bmatrix} \text{in } \mathbf{T} : \\ L\Sigma \xrightarrow{L\sigma} L\Sigma_{1}^{\prime} \xleftarrow{(L\tau)^{-1}} L\Sigma_{1} \end{bmatrix}$$

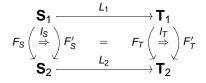
Morphisms of logics

Definition. A morphism of logics $F: L_1 \rightarrow L_2$ is a pair of functors (F_S, F_T) such that:



In addition, they are induced by morphisms of limit sketches.

Definition. A 2-morphism of logics $\ell: F \Rightarrow F': L_1 \rightarrow L_2$ is a pair of natural transformations (ℓ_S, ℓ_T) such that:



Altogether...

A 2-category of logics DiaLog with a 2-functor that focuses on the theories:

 $\textbf{DiaLog} \rightarrow \textbf{Cat}$

 $(L: \mathbf{S} \to \mathbf{T}) \mapsto \mathbf{T}$

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

 "Everything" happens in the bicategory of fractions: a specification Σ should be seen up to equivalence.

Outline

Introduction

Diagrammatic logics

Parameterization

Sequential product

Conclusion

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Starting point: Sergeraert's software for effective homology.

Goal: formalize the process of:

- adding a parameter to some operations
- then passing a value (an argument) to the parameter

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

A kind of benchmark, that may be treated with monads ($T(X) = X^A$), hidden algebras, coalgebras, institutions...

Parameterization and diagrammatic logics

- Parameterization: a zoom
- Parameter passing: a zoom and a 2-morphism

Example: Differential monoids

A specification of monoids Mon:

type G

- operations $prd: G^2 \rightarrow G, e: \rightarrow G$
- equations prd(x, prd(y, z)) = prd(prd(x, y), z), prd(x, e) = x, prd(e, x) = x

A specification of differential monoids DMon:

- Mon with
- operation $dif: G \rightarrow G$
- equations dif(prd(x,y)) = prd(dif(x), dif(y)), dif(e) = e, dif(dif(x)) = e

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

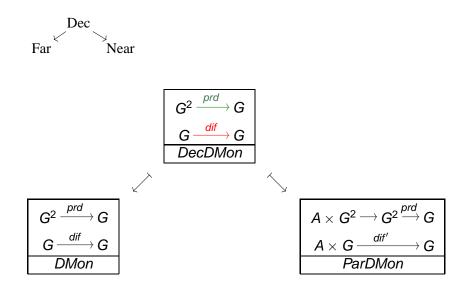
A specification of decorated differential monoids DecDMon:

- Mon with
- operation $dif: G \rightarrow G$
- equations dif(prd(x,y)) = prd(dif(x), dif(y)), dif(e) = e, dif(dif(x)) = e

A specification for monoids with a parameterized differential *ParDMon*:

- Mon with
- type A
- operation $dif' : A \times G \rightarrow G$
- ► equations dif'(p, (prd(x, y))) = prd(dif'(p, x), dif'(p, y)), dif'(p, e) = e, dif'(p, dif'(p, x)) = e

A zoom for parametererizing



Each parameterized differential monoid *PM* together with an argument $\alpha \in PM(A)$ \Rightarrow a differential monoid M_{α} with:

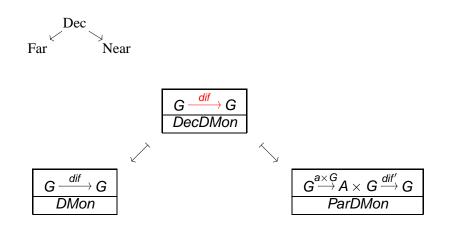
- the same underlying monoid as PM
- the differential $x \mapsto M_{\alpha}(dif)(x) = PM(dif')(\alpha, x)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

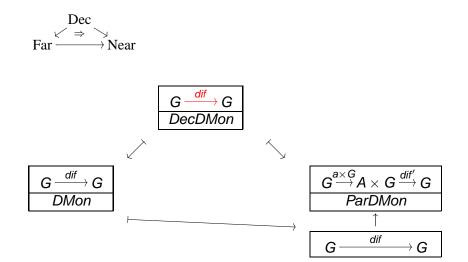
In the specifications:

Add a constant $a: 1 \rightarrow A$ in the "near" logic.

A zoom for parameter passing...



...with a 2-morphism of logics



Outline

Introduction

Diagrammatic logics

Parameterization

Sequential product

Conclusion

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Goal: formalize the fact that the order of evaluation of the arguments does matter when there are effects.

Monads: the strength.

In the framework of diagrammatic logics: A zoom, from an ordinay product to a sequential product.

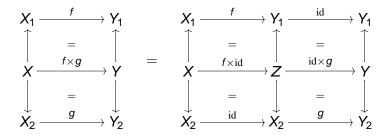
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

There are two kinds of morphisms And two kinds of equations!

About products

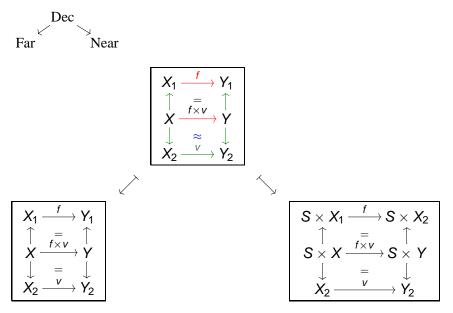
$$X = X_1 \times X_2$$
, $Y = Y_1 \times Y_2$, $Z = Y_1 \times X_2$.
Without effects:

$$g \times f = (\mathrm{id} \times g) \circ (f \times \mathrm{id})$$



◆ロ〉 ◆母〉 ◆臣〉 ◆臣〉 ○臣 ● 今々で

A zoom for the sequential product



Outline

Introduction

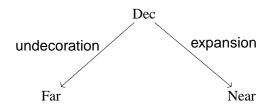
Diagrammatic logics

Parameterization

Sequential product

Conclusion

Zooms



PROOFS MODELS

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

THANK YOU!

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●