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A category of logics?

From the analysis of some computational effects, it follows that the

logic of the language (with the effects: state, exception,. . . ) is

different from the logic of the user (where the effects are made

explicit).

The logic of the language provides the syntax and the deduction

system, the logic of the user provides the intended model(s), and the

soundness of the language with respect to its denotation relies on

some link between both logics.

Hence, there is a need for some kind of

category of logics
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An example

class Account {

int balance () const { }

void deposit (int) { }

}

For the language (“decorated” logic):

balanceconst : void→ int , deposit : int→ void

For the user (logic with a distinguished sort “state”):

balance : state→ int , deposit : int× state→ state

The sort “state” corresponds to the set of states of an object in the

class “Account”.
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Several solutions!

The institutions [Goguen, Burstall 1992]

The diagrammatic logics [Duval, Lair 2002]

The aim of this talk is to present the framework of diagrammatic

logics. It should be clear from this presentation that it is fairly

different from the framework of institutions.
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Abstract

• A propagator is a morphism of limit sketches such that

the corresponding underlying functor is full and faithful.

• A propagator defines a diagrammatic logic:

syntax, models, and a sound deduction system.

• Propagators with their morphisms give rise to

the category of diagrammatic logics.
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Limit sketches (or projective sketches)

[Ehresmann, 1965] A limit sketch is a (directed multi-)graph with:

• some (potential) identities X idXgg

• some (potential) composed arrows X
f //

g.f

44Y
g // Z

• some (potential) limits (or distinguished cones),

e.g. (potential) binary products X

}}{
{

!!C
C

X1 X2

A morphism of limit sketches is a graph morphism that preserves

(potential) identities, composition and limits.

LSketch = the category of limit sketches
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The realizations of a limit sketch

A (set-valued) realization Σ of a limit sketch S is a functor

Σ : S→ Set .

It interprets each point as a set, each arrow as a map, and each

potential . . . as an actual . . .

A morphism of realizations of S is a natural transformation.

Real(S) = the category of realizations of S
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A limit sketch for graphs

Sgr : Pt Ar

sce
ss

tgt

kk

Real(Sgr) ∼= Graph
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A limit sketch for categories

Scat : Pt

selId

AAAr
sce

ss

tgt

kk Cons

1st
ss Z]_adf

2nd

kk da_]ZX

comp

]]

with

sce.selId = idPt

tgt.selId = idPt

sce.2nd = tgt.1st

sce.comp = sce.1st

tgt.comp = tgt.2nd

and Cons
1st

}}z
z

z 2nd

!!D
D

D

Ar

tgt !!DD
DD

D Ar

sce}}zz
zz

z

Pt

and axioms. . .

Real(Scat) ' Cat
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Propagators

A propagator is a morphism of limit sketches

S
P // S

such that the underlying functor UP is full and faithful

Real(S) Real(S)
UPoo

A morphism of propagators is a pair of morphisms of limit sketches

such that

S1
P1 //

α
��

S1

α
��

S2
P2 // S2

=

Propag = the category of propagators
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Ehresmann’s theorem

Theorem. For every morphism of limit sketches

S
P // S

the underlying functor UP has a left adjoint,

the freely generating functor FP

Real(S)
FP --

Real(S)
UP

mm

Corollary. P is a propagator if and only if the counit

εP : FP .UP ⇒ Id

is a natural isomorphism
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A propagator for graphs

This inclusion is not a propagator:

Sgr
⊆ // Scat

A limit sketch for “graphs with partial identities and composition”

SgrComp : Pt Ar

sce
ss

tgt

kk Cons

1st
ss Z]_adf

2nd

kk da_]ZX

Pt′
selId

;;

OO

OO

Cons′
comp

dd

OO

OO with. . .

The second inclusion is a propagator:

Sgr
⊆ // SgrComp

⊆

P
// Scat
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“Typical” propagators

“Typically”, a propagator P : S→ S may be such that:

• S is a sketch of categories with some properties

• S is a sketch of graphs with some “potential” properties

• P is the inclusion

For instance :

cartesian categories (and “product” sketches)

complete categories (and limit sketches)

cartesian categories (and limit sketches with “exponentials”)

also: categories of domains, etc. . .

“Non-typical” propagators are fairly interesting:

e.g., for “decorated” features.
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A propagator is fixed:

S
P // S

P -specifications = realizations of S

P -theories = realizations of S

Spec(P )
F --

Theory(P )
U

mm

HomSpec(P )(Σ, U(Θ)) ∼= HomTheory(P )(F (Σ), Θ) = ModP (Σ, Θ)

= the set of models of Σ with values in Θ.
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Models and morphisms of propagators

Given: a morphism of propagators

S1
P1 //

α
��

S1

α
��

S2
P2 // S2

=

a P1-specification Σ1 and a P2-theory Θ2.

Proposition.

ModP1
(Σ1, Uα(Θ2)) ∼= ModP2

(Fα(Σ1), Θ2)

Proof. By adjunction.
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An example

P1 is the decorated logic for exceptions

P2 is the explicit logic for exceptions

Θ2 = Set

Σ1 = Σnat.deco : U
0v

//

ec ))TTTTTTTTT N sv

gg

0

Fα(Σ1) = Σnat.expl : U
0 //

e ))TTTTTTTT N sgg

E

Moddeco(Σnat.deco, Uα(Set)) ∼= Modexpl(Σnat.expl,Set)
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Soundness

A morphism of P -specifications σ : Σ→ Σ′

is an entailment σ : Σ −→p Σ′ if

F (σ) : F (Σ)
∼=
→ F (Σ′)

is a consequence σ : Σ −→pp Θ Σ′ (with respect to Θ) if

Mod(σ, Θ) : Mod(Σ)
∼=
← Mod(Σ′)

Theorem. Every diagrammatic logic is sound:

if σ : Σ −→p Σ′ then σ : Σ −→pp Θ Σ′ for each Θ

Proof. ModP (Σ, Θ) = HomTheory(P )(F (Σ), Θ).
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Propagators are fractional

Theorem. Let P be a morphism of limit sketches. Then P is a

propagator if and only if, up to equivalence, P is a fractional

morphism, i.e., P consists in adding inverses to arrows.

[Hebert, Adamek, Rosický 2001], [Gabriel, Zisman 1967]

Remark. A propagator describes a logic.

A fractional morphism describes a deduction system.

“Up to equivalence”: for a given logic, there may be several

deduction systems.
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Patterns and pattern matchings

A pattern is a point in S.

A matching m/τ of a pattern S in a specification Σ is made of a

morphism of specifications m : Y (S)→ ΣS and an entailment

τ : Σ→p ΣS

Y (S)

m

��
Σ

τ
| // ΣS
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Elementary inference rules and inference steps

An elementary inference rule is an arrow r = t ◦ s−1 in S, with s and

t in S:

H B
s
|oo t // C

An elementary inference step consists in applying rule r to a

matching of H in Σ, it builds a matching of C in Σ:

Y (H)
Y (s)
| //

mH

��

Y (B)

mB

��

=

Y (C)

mC

wwoooooooooooo

Y (t)oo

Σ
τH

| //

τC

|
=

55ΣH
τ

| //

= (PO)

ΣC
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Inference rules and derivations

An inference rule is an arrow in S.

The derivation with respect to an inference rule is generated from the

inference steps.

The inference functor is the functor I : S→ Cat:

IΣ(S) = the category of matchings of S

IΣ(r)(mH/τH) = mC/τC
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An example

The rule for substitution in equational logic:

(R)
f(x) ≡ g(x) a

f(a) ≡ g(a)

or r = t ◦ s−1:

in Seq: H C

B

s /AA

``AAA
t

>>~~~~~~

in Spec(Peq): Y (H)

Y (s)

/
II

$$IIII

Y (C)

Y (t)zzvvv
vv

vv

Y (B)

where:

Y (H) = {f(x) ≡ g(x), a} (the hypothesis of R)

Y (B) = {f(x) ≡ g(x), a, f(a) ≡ g(a)}

Y (C) = {f(a) ≡ g(a)} (the conclusion of R)
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Conclusion

We have got a

category of logics. . .
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