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Reasoning about programs involving exceptions...

... is difficult:

I exceptions are computational effects:
a program X → Y
is interpreted as a function X → Y + E
(where E is the set of exceptions)

I the handling mechanism is encapsulated
in a single try-catch block
which propagates exceptions: X → Y + E
BUT it relies on the catch part
which recovers from exceptions: X + E → Y + E



Logics for programs involving exceptions

I effects: no type of exceptions E
but decorations:

term decoration interpretation

pure term f (0) : X → Y f : X → Y

thrower/propagator f (1) : X → Y f : X → Y + E

catcher f (2) : X → Y f : X + E → Y + E

I encapsulation: 2 related languages:
I programmers’ language: with throw(1) and try-catch(1)

and rather sophisticated equations
I core language: with tag(1) and untag(2)

and a single weak equation: untag ◦ tag ∼ id



Weak equations

untag ◦ tag ∼ id

Both members coincide on non-exceptional arguments
but they may differ on exceptional arguments.

tag (propagation) untag

p 7→ p 7→ . . . 7→ p 7→ p

p 7→ p 7→ . . . 7→ p 7→ p

Thus, equations are decorated, as well:

equation decoration interpretation

strong equation f ≡ g ∀x f (x) = g(x)
weak equation f ∼ g ∀x 6∈ E f (x) = g(x)

“Strong” and “Weak” differ only for catchers:
f (2) ≡ g (2) =⇒ f (2) ∼ g (2)

f (1) ≡ g (1) ⇐⇒ f (1) ∼ g (1)



Two languages for exceptions
The core language (0 is the empty type):

I tag(1) : P→0

I untag(2) : 0→P

I untag ◦ tag ∼ idP

is extended with:

I (CATCH(b(1)))(2) : Y→Y such that
CATCH(b) ◦ [ ]Y ≡ b ◦ untag and CATCH(b) ∼ idY

I (TRY(a(1), k(2)))(1) : X→Y such that
TRY(a, k) ∼ k ◦ a

The translation is defined as:

I throw
(1)
Y 7→ [ ]Y ◦ tag : P→Y

I (try(a)catch(b))(1) 7→ TRY(a, CATCH(b)) :X→Y

Proposition. The translation from the programmers’ language to
the core language for exceptions is correct.



Some related work

I About effects: monads [Moggi 1991], effect systems
[Lucassen&Gifford 1988], Lawvere theories [Plotkin&Power
2002], algebraic handlers [Plotkin&Pretnar 2009], comonads
[Uustalu&Vene 2008] [Petricek&Orchard&Mycroft 2014],
dynamic logic [Mossakowski&Schröder&Goncharov 2010],...

I Implementations: Haskell, Idris, Eff, Ynot,...

I About completeness properties of effects: (global) states
[Pretnar 2010], local states [Staton 2010],...

Our specificity lies in:

I the use of decorated logic for keeping close to the syntax:
decorations often correspond to keywords of the languages

I the use of relative completeness: useful for combining effects
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Categorical view of computation

Various syntactic and semantic notions are treated uniformly

I Syntax: a theory is a (...)-category,
generated by some kind of presentation (signature, axioms,...)

I Semantics: a domain of interpretation is a (...)-category,
and a model of a theory in a domain is a (...)-functor

Most famous example:
(...)-category = cartesian closed category
for simply typed lambda-calculus



Most simple example

(...)-category = category
for monadic equational logic

Example:

I Syntax: theory generated by:
sorts U, Z
operations z : U → Z , s, p : Z → Z
equations p ◦ s = idZ , s ◦ p = idZ

I Semantics: model “of integers” in Set:

Theory → Domain

U {∗}
Z Z
z 0
s x 7→ x + 1
p x 7→ x − 1



Decorations

(...)-category = decorated category
here for the core language for exceptions:
Example:

I Syntax: the theory generated by a pure part
sorts U,Z , operations z(0), s(0), p(0), equations..., and:
propagator: tag(1) : Z → 0
catcher: untag(2) : 0→ Z
weak equation: untag ◦ tag ∼ id

I Semantics:
the model “of integers” in Set and:

Theory → Domain

tag(1) : Z → 0 tag : Z→ E p 7→ p

untag(2) : 0→ Z untag : E → Z + E p 7→ p



Soundness and completeness

I In this framework, soundness of equational semantics
with respect to denotational semantics is granted:

Provable =⇒ Valid

I But completeness is not satisfied, in general,
whatever the notion of completeness:

* Semantic completeness:
Valid =⇒ Provable

* Syntactic completeness:
Every added unprovable sentence introduces an inconsistency,
where inconsistency means:

I either negation inconsistency:
there is a sentence ϕ such that ϕ and ¬ϕ are provable

I or Hilbert-Post inconsistency:
every sentence is provable



Hilbert-Post completeness

I (Absolute) H-P completeness (wrt to a logic L)
A theory T is H-P complete if:

I at least one sentence is unprovable from T
I and every theory containing T

either is T or is made of all sentences

i.e., T is maximally consistent

I Relative H-P completeness (wrt to two logics L0 ⊆ L)
A theory T is relatively H-P complete wrt L0 if:

I at least one sentence is unprovable from T
I and every theory containing T

can be generated from T and some sentences in L0

i.e., T is maximally consistent “up to L0”



Main results

Theorems (Completeness)
Both languages for exceptions are relatively Hilbert-Post complete
with respect to their pure part

Proofs (Burak Ekici’s thesis)
Done with the decorated logic, and checked in Coq

Outline

1. For each (non-pure) decoration,
find canonical forms for terms

2. For each combination of decorations,
prove that each equation between terms in canonical form
is equivalent to a set of equations between pure terms



Canonical forms for terms

I Programmer’s language, propagator a(1):

a(1) ≡ throw
(1)
Y ◦ u

(0)

I Core language, propagator a(1):

a(1) ≡ [ ]
(0)
Y ◦ tag

(1) ◦ u(0)

I Core language, catcher f (2):
f (2) ≡ a(1) ◦ untag(2) ◦ tag(1) ◦ u(0)
(“keep the first untag only”)
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I We have introduced the notion of relative Hilbert-Post
completeness.

I This notion looks well-suited to effects: they are built on top
of some “arbitrary” pure part, which is often incomplete.

I We have proved, and checked in Coq, that both decorated
languages for exceptions are relatively H-P complete.

I We have proved, and checked in Coq, that a decorated
language for states is relatively H-P complete.



Towards “structured” decorated categories

categories //

��

(...)-categories

��

decorated categories // decorated (...)-categories



THANKS FOR YOUR ATTENTION!


	Reasoning with exceptions
	Relative Hilbert-Post completeness
	Conclusion

