AGREE – Algebraic Graph REwriting with Controlled Embedding

A. Corradini¹ and D. Duval² and R. Echahed³ and F. $\ensuremath{\mathsf{Prost}}^3$ and L. Ribeiro⁴

Dipartimento di Informatica, Università di Pisa,

LJK - Université de Grenoble

LIG - Université de Grenoble

INF - Universidade Federal do Rio Grande do Sul

27th of November 2014

- Cloning is a basic operation of programming.
 - $\implies \mbox{Typically to produce a web site one starts to copy an existing one, then one modifies it accordingly to its will.}$
- Several approaches for Graph Transformations show limitations: there are no easy ways to handle connecting edges.
- Typically rule:

 $\bullet \Longrightarrow \bullet \bullet$

- Cloning is a basic operation of programming.
 - $\implies \mbox{Typically to produce a web site one starts to copy an existing one, then one modifies it accordingly to its will.}$
- Several approaches for Graph Transformations show limitations: there are no easy ways to handle connecting edges.
- ► Typically rule:

matched to

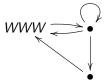
- Cloning is a basic operation of programming.
 - \implies Typically to produce a web site one starts to copy an existing one, then one modifies it accordingly to its will.
- Several approaches for Graph Transformations show limitations: there are no easy ways to handle connecting edges.
- Typically rule:

produces

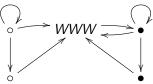
Λ

Motivating example : copy of web pages

- The structure of a web site typically as two kind of links :
 - Internal links: file hierarchy (indirect link)
 - External links: references pointing outside of the site.
- The cloning of a web site consists in duplicating all local files and keeping external links shared between the two copies.



should be cloned as follows



In order to have a flexible to cloning:

- 1. One has to be able to make the distinction between matched edges and non matched edges incident to the copied pattern.
- 2. One has to be able to express what to do with incident edges not matched.
- AGREE solves these issues by :
 - Using the partial map classifier of the left-hand side.
 - Building a PB using a graph controling the embeding.

Partial map classifier

AGREE rewriting

Related works

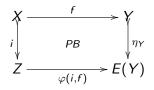
Partial map classifier

AGREE rewriting

Related works

Partial maps

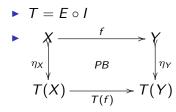
- A partial map over C, denoted (i, f): Z → Y, is a span made of a mono i : X → Z and a map f : X → Y.
- Composition of partial maps is defined using pullbacks in C.
- ► The category of *partial maps over* **C** denoted **P**.
- Let I : C → P be the inclusion functor wich maps f : X → Y to (id_X, f) : X → Y
- ► $E : \mathbf{P} \to \mathbf{C}$ is right adjoint to $I : \mathbf{C} \to \mathbf{P}$ if there is $\eta : Id_{\mathbf{C}} \to E \circ I$ such that:



Partial map classifier

Definition

If *I* has a right adjoint *E*, we write (T, η, μ) the monad associated with the adjunction $I \dashv E$. It is called *the partial map classifier* of **C**.



Intuitively : T(X) is the object allowing you to make total any partial function (i.e. you have all you need to complete any partial function).

Partial map classifier for graphs

- G is defined by E, N and $s, t : E \to N$.
- ▶ T(G) is defined by $E_{T(G)}$, $N \uplus \{\star\}$ such that $\star_{n,p} : n \to p$ is in $E_{T(G)}$ for each pair of vertices (n, p) in $G + \{\star\}$.

Partial map classifier

AGREE rewriting

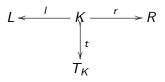
Related works

AGREE rule

Definition (AGREE rules and matches)

Let **C** with a partial map classifier (T, η, μ) .

A rule is

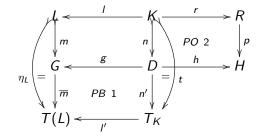


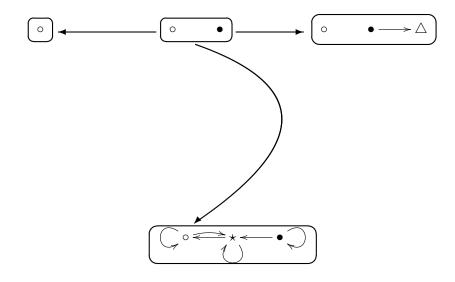
• A match of a rule ρ with left-hand-side $K \xrightarrow{l} L$ is a mono $L \xrightarrow{m} G$.

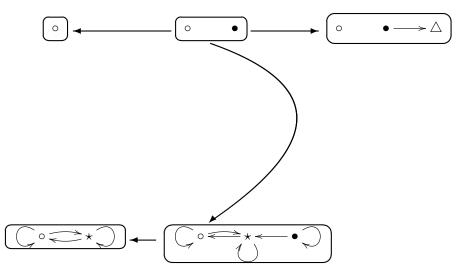
AGREE rewrite step

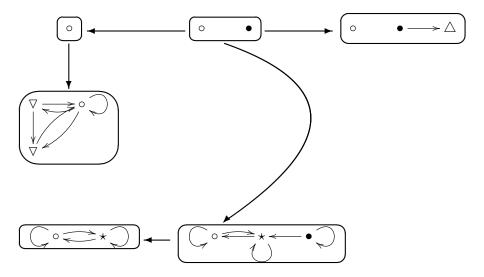
Definition (AGREE rewriting) Given $\rho = (K \xrightarrow{l} L, K \xrightarrow{r} R, K \xrightarrow{t} T_K)$ and $L \xrightarrow{m} G : G \Rightarrow_{\rho,m} H$ is computed as follows:

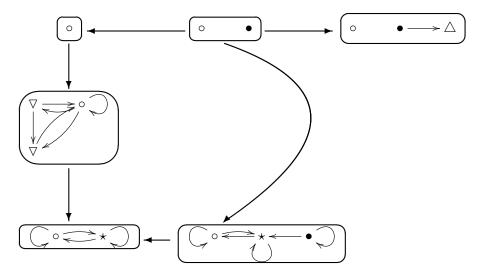
 Span G ← D → T_K is the pullback of G → T(L) ← T_K. Since l' ∘ t = η_L ∘ l there is a unique K → D.
 R → H ← D is the pushout of D ← K → R.

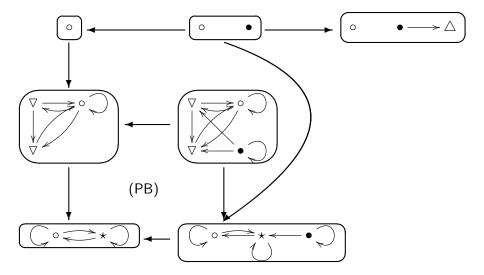


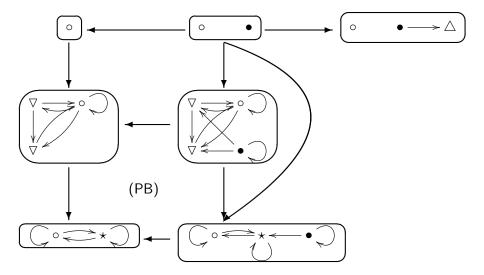


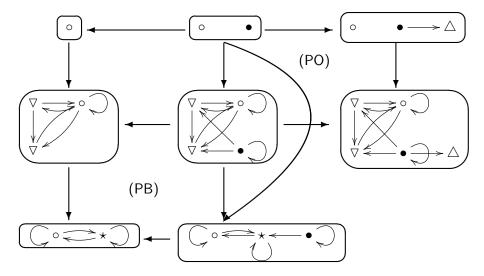












Locality issues

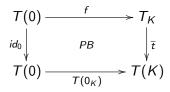
• T_K controls the way the embedding is cloned.

Locality issues

- T_K controls the way the embedding is cloned.
- If * is not in T_K everything disapears...
 two * copy the whole www...

Locality issues

- ► *T_K* controls the way the embedding is cloned.
- ► If * is not in T_K everything disapears... two * copy the whole www...
- ▶ The rule is no longer local. (curse or blessing ?).
- One solution: if there is a strict initial object 0 and requirement for T_K:



Partial map classifier

AGREE rewriting

Related works

AGREE vs SqPO

AGREE subsumes SqPO with injective matches.

Theorem

Let **C** be a category with pullbacks and pushouts and with a partial map classifier (T, η, μ) . Let $\rho = L \xleftarrow{l} K \xrightarrow{r} R$ be a rule and $m : L \rightarrow G$ be a monic match. Then

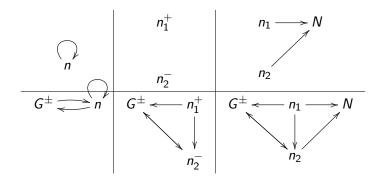
$$G \Rightarrow_{\rho,m}^{SqPO} H$$
 if and only if $G \Rightarrow_{(I,k,\eta_K),m}^{AGREE} H$

In words, the application of rule ρ to match m using the SqPO approach has exactly the same effect of applying to m the same rule enriched with the embedding $K \xrightarrow{\eta_{K}} T(K)$ using the AGREE approach.

AGREE vs PSqPO

Polarized sesqui-pushout adds a limited control to cloning :

- ▶ Nodes are decorated with any combination of "+" and "-".
- Edges are only allowed from "+" to "-".
- SQPO in a polarized graph is controled by annotations in K



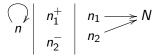
AGREE vs PSqPO

Theorem

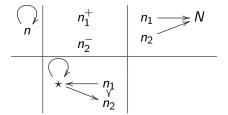
For each PSqPOrule ρ made of $L \stackrel{l}{\leftarrow} K \stackrel{r}{\rightarrow} R$ and $\mathbb{K} = (K, N_K^+, N_K^-)$, let $T_K = \text{Depol}(\mathbb{T}(\mathbb{K}))$ and $t = \text{Depol}(\eta_{\mathbb{K}})$. Then we get an AGREE rule ρ^{\pm} in **Gr** by adding to the span $L \stackrel{l}{\leftarrow} K \stackrel{r}{\rightarrow} R$ the embedding $t : K \rightarrow T_K$. For each mono $m : L \rightarrow G$ in **Gr**, applying the PSqPOrule ρ to m provides the same graph H as applying the AGREE rule ρ^{\pm} to m in **Gr**.

AGREE vs PSqPO

The PSqPO rule:



is implemented by the AGREE following rule:



Conclusion

- AGREE-rewriting is very flexible and subsumes many proposals.
- In some sense it is more moral (to me at least) than previous proposals since it is the combination of dual aspects :

PB	PO
clone	merge
delete	add
comatch	match
global	local

- Many formalization possible for a rule and a step (to study).
- Non-local applications usefull ?