Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Certifications of programs with computational effects

PhD Thesis Defense:

Burak Ekici*

Supervisors: Dr. Jean-Guillaume Dumas*, Dr. Dominique Duval* *LJK, University Joseph Fourier

> Committee: Dr. Andrej Bauer Dr. Catherine Dubois Dr. Olivier Laurent Dr. Jean-François Monin Dr. Damien Pous Dr. Alan Schmitt

December 9, 2015 - Grenoble, France.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Computational effects

In mathematics;

- an operation (e.g., function) always returns the same result on the same input,
- the result only depends on the input argument(s).

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Computational effects

In mathematics;

- an operation (e.g., function) always returns the same result on the same input,
- the result only depends on the input argument(s).

However, in programming;

- a program might do different things than computing the result:
 - ★ fall into an exceptional case, (exceptions)
 - * caught by a non-terminating loop, (non-termination)
 - $\star~$ stuck in interaction with the external world (I/O).

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Computational effects

In mathematics;

- an operation (e.g., function) always returns the same result on the same input,
- the result only depends on the input argument(s).

However, in programming;

- a program might do different things than computing the result:
 - ★ fall into an exceptional case, (exceptions)
 - * caught by a non-terminating loop, (non-termination)
 - $\star~$ stuck in interaction with the external world (I/O).

All such * phenomena are known as computational effects.

Decorated Logic 00000000000 Relative H-P Completeness

Relative H-P Completeness in Coq 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□□ ��

3/36

Conclusion 0000

Reasoning about programs involving exceptions...

... is difficult:

- exceptions are computational effects: a program $X \rightarrow Y$ is interpreted as a function $X \rightarrow Y + E$ (where *E* is the set of exceptions)
- the handling mechanism is encapsulated in a single try-catch block which propagates exceptions: X → Y + E it relies on the catch part which recovers from exceptions: E → Y + E

Motivation
00000

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000

Conclusion 0000

Motivation

Goal: adding features to handle exceptions into a pure language without worsening its (syntactic) completeness.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Motivation

Goal: adding features to handle exceptions into a pure language without worsening its (syntactic) completeness.

Goal (revisited): proving that theories of a decorated logic for exceptions are Hilbert-Post complete with respect some pure sub-logic.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Motivation

Goal: adding features to handle exceptions into a pure language without worsening its (syntactic) completeness.

Goal (revisited): proving that theories of a decorated logic for exceptions are Hilbert-Post complete with respect some pure sub-logic.

Outline:

- (1) introduce the decorated logic for exceptions and its theories,
- (2) define the relative Hilbert-Post completeness property,
- (3) give (a sketch of) a relative Hilbert-Post completeness proof for these decorated theories in a Coq implementation.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Thanks to DUALITY between EXCEPTIONS and STATES [Dumas&Duval&Fousse&Reynaud]

we consequently get:

- the decorated logic for states,
- relatively Hilbert-Post complete theories of the decorated logic for states.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Some literature

• About effects:

- monads [Moggi 1991],
- effect systems [Lucassen&Gifford 1988],
- Lawvere theories [Plotkin&Power 2002],
- algebraic handlers [Plotkin&Pretnar 2009],
- comonads [Uustalu&Vene 2008] and [Petricek&Orchard&Mycroft 2014],
- dynamic logic [Mossakowski&Schröder&Goncharov 2010].

Implementations:

- Haskell,
- Eff [Bauer&Pretnar], Idris [Brady].
- About completeness properties of effects:
 - (global) states [Pretnar 2010]
 - local states [Staton 2010].

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

I. Decorated logics

<ロト < 部 > < 目 > < 目 > のへの 7/36

Motivation	Decorated Logic	Relative H-P Completeness	Relative H-P Completeness in Coq	Conclusion
00000	0000000000	00000000	000000	0000

Decorated logic

- A decorated logic *L_{dec}* [Dominguez & Duval'08] is an extension to monadic equational logic *L_{meq}* with the use of decorations on terms and equations.
- (2) \mathcal{L}_{dec} provides equivalence proofs among programs with effects.

Syntax for the monadic equational logic (\mathcal{L}_{meq}):

Types:	t	::=	A B
Terms:	fg	::=	$id_t \mid a \mid b \mid \cdots \mid g \circ f$
Equations:	е	::=	$\texttt{f}\cong\texttt{g}$

Motivation	Decorated Logic	Relative H-P Completeness	Relative H-P Completeness in Coq	Conc
00000	00000000000	00000000	000000	000

Decorated logic

- A decorated logic *L_{dec}* [Dominguez & Duval'08] is an extension to monadic equational logic *L_{meq}* with the use of decorations on terms and equations.
- (2) \mathcal{L}_{dec} provides equivalence proofs among programs with effects.

Syntax for a decorated logic

Types:	t	::=	A B
Terms:	fg	::=	$id_t \mid a \mid b \mid \cdots \mid g \circ f$
Decoration for terms:	(d)	::=	(0) (1) (2)
Equations:	е	::=	f≡g f~g

Decorations are used to classify "effectful" terms.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Decorated logic for exceptions (\mathcal{L}_{exc})

The exceptions effect is handling of exceptions in an imperative programming language.

Syntax of the decor	ated log	ic for	exceptions (\mathcal{L}_{exc}): ($e \in EName$)
Types:	ts	::=	$A \mid B \mid \cdots \mid t + s \mid 0 \mid P_e$
Terms:	fg	::=	id _t a b · · · g o f [g f]
			inl inr [] _t tag _e untag _e \downarrow f
Decoration for terms:	(d)	::=	(0) (1) (2)
Equations:	е	::=	$\texttt{f} \equiv \texttt{g} \mid \texttt{f} \sim \texttt{g}$
	$tag_{e}^{(1)}$ untag_{e}^{(1)}	(2)	$\begin{array}{ll} & & P_e \rightarrow 0 \\ & & 0 \rightarrow P_e \end{array}$

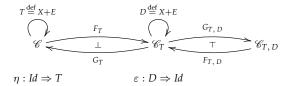
Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Interpreting the logic \mathcal{L}_{exc}

The coKleisli-on-Kleisli construction:



Theorem

- 2 the category $C_{T, D}$ is the full image category of T.
- \bigcirc $G_{T,D}$ is faithful.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

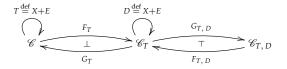
Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Interpreting the logic \mathcal{L}_{exc}

The coKleisli-on-Kleisli construction:



The types are interpreted as the objects of the category \mathscr{C} :

- 0 is interpreted as the *initial object*,
- for each e in EName, the type Pe is interpreted as an object Pare,
- the sum type X + Y, for each types X and Y, are interpreted as the binary coproducts.

$$E \stackrel{\text{def}}{=} \Sigma_{e \in EName} Par_e$$

with canonical inclusions $in_e \colon Par_e \to E$.

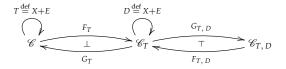
Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Interpreting the logic \mathcal{L}_{exc}

The coKleisli-on-Kleisli construction:



The terms are interpreted as morphisms as follows:

- a *pure* term $f^{(0)} : X \to Y$ in \mathscr{C} as $f : X \to Y$ in \mathscr{C} ,
- a propagator term $f^{(1)}: X \to Y$ in \mathscr{C}_T as $f: X \to Y + E$ in \mathscr{C} ,

•
$$\operatorname{tag}_{e}^{(1)}: P_{e} \to \mathbb{O}$$
 as $\operatorname{tag}_{e} = in_{e}: Par_{e} \to E$

- a *catcher* term $f^{(2)} : X \to Y$ in $\mathscr{C}_{T, D}$ as $f : X + E \to Y + E$ in \mathscr{C}
 - $\operatorname{untag}_{e}^{(2)}: 0 \to P_{e}$ as a term $\operatorname{untag}_{e}: E \to Par_{e} + E$ in \mathscr{C} characterized as follows: $\begin{cases} \operatorname{untag}_{e} \circ \operatorname{tag}_{e} = inl_{Par_{e},E} & : Par_{e} \to Par_{e} + E \\ \operatorname{untag}_{e} \circ \operatorname{tag}_{f} = inr_{Par_{e},E} \circ \operatorname{tag}_{f} & : Par_{f} \to Par_{e} + E \text{ if } e \neq f \end{cases}$

10/36

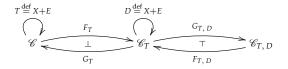
Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Interpreting the logic \mathcal{L}_{exc}

The coKleisli-on-Kleisli construction:



Hierarchy (or conversion) rules among decorations:

$$\frac{f^{(0)}}{f^{(1)}}$$
 and $\frac{f^{(1)}}{f^{(2)}}$

f⁽⁰⁾/f⁽¹⁾ is interpreted by the functor F_T,
 f⁽¹⁾/f⁽²⁾ is interpreted by the functor G_{T, D}.

• Consequently $\frac{f^{(0)}}{f^{(2)}}$ is interpreted by the composition $G_{T, D} \circ F_T$.

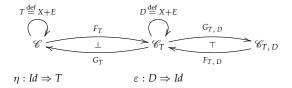
Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Interpreting the logic \mathcal{L}_{exc}

The coKleisli-on-Kleisli construction:



A strong equation between catchers $f^{(2)} \equiv g^{(2)} : X \to Y$ is interpreted as

$$f = g \colon X + E \to Y + E \text{ in } \mathscr{C}.$$

A weak equation between catchers $f^{(2)} \sim g^{(2)} : X \to Y$ is interpreted as

$$f \circ \eta_X = g \circ \eta_X \colon X \to Y + E \text{ in } \mathscr{C}$$

<□ > < 部 > < E > < E > E = のQ (?) 10/36

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

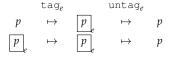
The fundamental weak equation

•
$$\operatorname{tag}_{e}^{(1)} : \mathbb{P}_{e} \to \mathbb{O}$$

• $\operatorname{untag}_{e}^{(2)} : \mathbb{O} \to \mathbb{P}_{e}$

 $\mathrm{untag}_{e}^{(2)} \circ \mathrm{tag}_{e}^{(1)} \sim \mathit{id}_{P_{e}}^{(0)}$

Both members agree on non-exceptional arguments but they may differ on exceptional arguments.



Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

12/36

Conclusion 0000

Some other rules of \mathcal{L}_{exc}

Conversion rules

$$\frac{f^{(0)}}{f^{(1)}} = \frac{f^{(1)}}{f^{(2)}} = \frac{f^{(d)} \equiv g^{(d')}}{f \sim g} = \frac{f^{(d)} \sim g^{(d')}}{f \equiv g} \text{ if } \max(d, d') \le 1$$

The effect rule

(effect)
$$\frac{f_1^{(2)}, f_2^{(2)} : X \to Y \qquad f_1^{(2)} \sim f_2^{(2)} \qquad f_1^{(2)} \circ []_X^{(0)} \equiv f_2^{(2)} \circ []_X^{(0)}}{f_1 \equiv f_2}$$

- Decorated versions of the rules of monadic equational logic
- Decorated versions of categorical coproduct rules

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

\mathcal{L}_{exc} in Coq

Some prerequisites:

```
Parameter EName: Type. Parameter EVal: EName \rightarrow Type.
```

The type term is dependent:

An example:

```
Definition id {X: Type}:term X X:=tpure id.
```

Decorated Logic

Relative H-P Completeness 00000000 Relative H-P Completeness in Coq 000000 Conclusion 0000

Decorations in Coq

Decorations are assigned on terms by a Coq predicate named is:

```
Inductive ekind := epure | ppg | ctc.
```

```
Inductive is:ekind → forall XY,term XY → Prop:=
    | is_tpure : forall XY (f:X → Y), is (epure)(@tpure XY f)
    |is_comp : forall kXY Z (f:term XY)(g:term YZ), is kf → is kg → is k(fog)
    | is_tag : forall kXY Z (f:term ZX)(g:term ZY), is ppg f → is kf → is kg → is k(copair fg)
    | is_untag : forall t, is ptg(tagt)
    | is_epure_ppg:forall XY k(f:term XY), is epure f → is ppg f
    | is_ppg_ctc : forall XY k(f:term XY), is ppg f → is ctc f.
Hint Constructors is.
```

Decorated Logic

Relative H-P Completeness 000000000 Relative H-P Completeness in Coq 000000 Conclusion 0000

Decorations in Coq

Decorations are assigned on terms by a Coq predicate named is:

```
Inductive ekind := epure | ppg | ctc.
```

```
Inductive is:ekind → forall XY,term XY → Prop:=
    | is_tpure : forall XY (f:X → Y), is (epure)(@tpure XY f)
    is_comp : forall kXY Z (f:term XY)(g:term YZ), is kf → is kg → is k(fog)
    | is_tag : forall t, is ppg(tag t)
    is_untag : forall t, is ctc (untag t)
    | is_ppg_tct : forall XY k(f:term XY), is epure f → is ppg f
    is_ppg_tct : forall XY k(f:term XY), is ppg f → is ctc f.
Hint Constructors is.
```

A tactic to automatically reason about decorations:

Decorated Logic

Relative H-P Completeness 000000000 Relative H-P Completeness in Coq 000000 Conclusion 0000

Some rules in Coq

The rules are given in a mutually inductive way:

```
Inductive strong: forall X Y, relation (term X Y) :=
```

```
 \begin{array}{l} \text{effect: forall X Y (fg: term Y X), } f \sim g \rightarrow (f \circ (empty X) == g \circ (empty X)) \rightarrow f == g \\ \text{| tcomp: forall X Y Z (f: Z \rightarrow Y) (g: Y \rightarrow X), tpure (compose g f) == tpure g \circ tpure f \\ \text{with weak: forall X Y, relation (term X Y) :=} \\ & \vdots \\ \text{| fundweg: forall e: EName, untage o tage } \sim (@id (EVal e)) \\ \text{where "x } == y" := (strong x y) \\ \text{"x } \sim v" := (weak x y). \end{array}
```

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Programmer's language for exceptions (
$$\mathcal{L}_{exc-pl}$$
)

Syntax for the programmer's language: $(e \in EName)$ Types:tTerms:f, gf, g::=idt | a | b | ··· | g o f |
throw_{t, e} | try(f) catch(e \Rightarrow g)Decoration for terms:(d)::=(0) | (1)

Equations: $e ::= f \equiv g$

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Programmer's language for exceptions (
$$\mathcal{L}_{exc-pl}$$
)

Syntax for the programmer's language:
$$(e \in EName)$$
Types:tTerms:f, gf, g::=idt | a | b | ··· | g o f |
throw_{t, e} | try(f) catch(e \Rightarrow g)Decoration for terms:(d)::=f \equiv g

$$\begin{array}{lll} \operatorname{throw}_{X,e}^{(1)} & : & P_e \to X \\ \operatorname{try}(\operatorname{a})\operatorname{catch}(\operatorname{e} \Rightarrow \operatorname{b})^{(1)} & : & X \to Y \end{array}$$

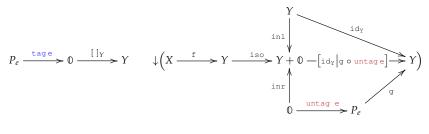
 $(\operatorname{ppt})\frac{a: X \to Y}{a \circ \operatorname{throw}_{X, e} \equiv \operatorname{throw}_{Y, e}} \qquad (\operatorname{try}_1) \ \frac{u^{(0)}: X \to P_e \ b: P_e \to Y}{\operatorname{try}(\operatorname{throw}_{Y, e} \circ u) \operatorname{catch}(e \Rightarrow b) \equiv b \circ u}$

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Translating \mathcal{L}_{exc-pl} into \mathcal{L}_{exc}



throw_{Y,e}

 $try(f) catch(e \Rightarrow g)$

<ロ > < 部 > < 目 > < 目 > 三 = の Q () 17 / 36

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

II.

Relative Hilbert-Post Completeness

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Categorical view of computation

Various syntactic and semantic notions are treated uniformly

- Syntax: a theory generated by some kind of language (types, terms,...) and equations is a (...)-category
- Semantics: a domain of interpretation is a (...)-category, and a model of a theory in a domain is a (...)-functor

Some examples:

```
(...)-category = cartesian closed category
for simply typed lambda-calculus
```

```
(...)-category = category
for monadic equational logic
```

```
(...)-category = decorated category
for the decorated logic for exceptions
```

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

An example: monadic equational logic

(...)-category = category for the logic $\mathcal{L}_{meq,nat}$:

• Syntax: the language Lang_{meq,nat} generated by:

several theories \mathcal{T}_{meq} in Lang_{meq,nat} can be generated by:

Equations: $e ::= \{\dots\}$

• Semantics: a model of the theory with "no equations" of naturals in *Set*:

Theory	\rightarrow	Domain
U		{*}
N		\mathbb{N}
id _t		$x \mapsto x$
z		0
s		$x \mapsto x + 1$

Motivation	
00000	

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Decorated logic

(...)-category = decorated category

for the logic $\mathcal{L}_{exc-\oplus}$ (\mathcal{L}_{exc} with no "case distinction" and a single exception name):

● Syntax: several languages Lang_{exc}→ can be generated by:

several theories \mathcal{T}_{exc} in a fixed language $Lang_{exc-\oplus}$ can be generated by:

Equations: e ::= {...⁽⁰⁾ \equiv ...⁽⁰⁾, untag⁽²⁾ \circ tag⁽¹⁾ \sim id⁽⁰⁾_P}

Theory	\rightarrow	Domain	
O		{}	
P		Par	
$[]_t^{(0)}$		empty function	
$tag^{(1)}: P \rightarrow$	O	tag: $\operatorname{Par} \to E$	$p \mapsto p$
$\begin{bmatrix} \int_{t}^{(1)} \\ tag^{(1)} : P \rightarrow \\ untag^{(2)} : 0 \end{bmatrix}$	$\rightarrow P$	$untag: E \rightarrow Par + E$	$p \mapsto p$

• Semantics: a model of the theory with "no pure equations" in *Set*:

Any theory T_{exc} will be shown as Hilbert-Post complete w.r.t. the logic \mathcal{L}_{meq} !

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Another example: decorated logic

(...)-category = decorated category for the logic $\mathcal{L}_{exc-\oplus,nat}$

● Syntax: the language Lang_{exc-⊕,nat} is generated by:

$$\begin{array}{rcl} \text{Fypes:} & t & ::= & 0 \mid U \mid \mathbb{N} \\ \text{Ferms:} & \text{fg} & ::= & \text{id}_{t}^{(0)} \mid []_{t}^{(0)} \mid z^{(0)} \mid s^{(0)} \mid g^{(0)} \circ f^{(0)} \mid \\ & & \text{tag}^{(1)} \mid \text{untag}^{(2)} \mid g^{(1)} \circ f^{(1)} \mid g^{(2)} \circ f^{(2)} \end{array}$$

several theories $T_{exc,nat}$ in $Lang_{exc-\bigoplus,nat}$ is generated by:

Equations: e ::= {...⁽⁰⁾ \equiv ...⁽⁰⁾, untag⁽²⁾ \circ tag⁽¹⁾ \sim id⁽⁰⁾_N}

• Semantics: a model of the theory with "no pure equations" of naturals in *Set*:

Theory	\rightarrow	Domain	
0		{ }	
U		{*}	
N		N	
$[]_{t}^{(0)}$		empty function	
$\operatorname{tag}^{(1)}:N\to \mathbb{O}$		$\operatorname{tag}:\mathbb{N}\to E$	$3 \mapsto 3$
$untag^{(2)}: \mathbb{O} \to N$		$untag:\mathbb{N}\to\mathbb{N}+E$	$3 \mapsto 3$

Any theory $T_{exc,nat}$ will be shown as Hilbert-Post complete w.r.t. the logic $\mathcal{L}_{meq,nat}$!

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Soundness and completeness of theories T_{exc}

- In this framework, soundness of the theories *T_{exc}* of the logic *L_{exc-⊕}* with respect to denotational semantics is granted:
 Provable ⇒ Valid
- But completeness is not immediate:
- * Semantic completeness: Valid \implies Provable
- * Syntactic completeness:

Every added unprovable sentence introduces an inconsistency, where inconsistency means:

- either negation inconsistency: there is a sentence φ such that φ and ¬φ are provable
- or Hilbert-Post inconsistency: every sentence is provable

Decorated Logic 00000000000 Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

(Absolute) Hilbert-Post completeness

Definition

Given a logic \mathcal{L} and its maximal theory \mathcal{T}_{max} , a theory \mathcal{T} is,

- * consistent if $\mathcal{T} \neq \mathcal{T}_{max}$,
- ★ (absolute) Hilbert-Post complete, if:
 - $\star\star$ it is consistent
 - ****** any theory which contains \mathcal{T} coincides with \mathcal{T}_{max} or with \mathcal{T} .

Motivation	Decorated Logic	Relative H-P Completeness	Relative H-P Completeness in Coq	Conclusion
00000	00000000000	00000000	000000	0000

Example: $\mathcal{L}_{meq,nat}$

Types:	t	::=	U N
Terms:	fg	::=	id _t gof z s

\mathcal{T}_{max}	$\{s \equiv id_N\}$
U	
\mathcal{T}'	$\{s\circ 0\equiv 0,s\circ s\equiv s\}$
U	
	÷
U	
\mathcal{T}_{mod6}	$\{s^6 \equiv id_N\}$
U	
\mathcal{T}_{min}	{}

<ロ > < 部 > < 書 > < 書 > 三 = うへで 24/36

Motivation 00000	Decorated L		Relative H-P Completeness in Coq 000000	Conclusion 0000
Exam	ple: \mathcal{L}_m	eq,nat		
_				
Types: Terms:	t ::= fg ::=	U N id _t gof z s		
			HPC in $\mathcal{L}_{meq,nat}$	
	\mathcal{T}_{max}	$\{s \equiv id_N\}$		
	U			
	\mathcal{T}'	$\{s \circ 0 \equiv 0, s \circ s \equiv s\}$		
	U			
	÷	÷		
	\cup			
	\mathcal{T}_{mod6}	$\{s^6 \equiv id_N\}$		
	U			

 \mathcal{T}_{min} {}

<ロ > < 部 > < き > < き > 毛 = のへで 24/36

Х

Motivation 00000	Decorated Lo		Relative H-P Completeness in Coq 000000	Conclusion 0000
Exam	ple: \mathcal{L}_{me}	rq,nat		
				_
Types: Terms:		U N id _t gof z s		
			HPC in $\mathcal{L}_{meq,nat}$	
	\mathcal{T}_{max}	$\{s \equiv id_N\}$		
	U			
	\mathcal{T}'	$\{s\circ 0\equiv 0,s\circ s\equiv s\}$		
	U			
	÷	÷		
	U			
	\mathcal{T}_{mod6}	$\{s^6 \equiv id_N\}$	Х	
	U			

 \mathcal{T}_{min} {} X

<ロ > < 部 > < き > < き > 毛 = うへへ 24/36

Motivation 00000	Decorated Logic	Relative H-P Completeness	Relative H-P Completeness in Coq 000000	Conclusion 0000
Exam	ple: $\mathcal{L}_{meq,na}$	t		
Types: Terms:	t ::= U N fg ::= idt			
			HPC in $\mathcal{L}_{meq,nat}$	
	\mathcal{T}_{max}	$\{s \equiv id_N\}$		
	U			
	\mathcal{T}'	$\{s\circ 0\equiv 0,s\circ s\equiv s\}$	\checkmark	
	\cup			
	:	÷		
	U			
	\mathcal{T}_{mod6}	$\{s^6 \equiv id_N\}$	Х	

U

 \mathcal{T}_{min} { }

<ロ > < 部 > < き > < き > 毛 = うへへ 24/36

Х

Motivation 00000	Decorated Logic	Relative H-P Completeness	Relative H-P Completeness in Coq 000000	Conclusion 0000
Exam	ple: $\mathcal{L}_{meq,nd}$	at		
Types: Terms:	t ::= U 1 fg ::= idt			
			HPC in $\mathcal{L}_{meq,nat}$	
	\mathcal{T}_{max}	$\{s \equiv id_N\}$	Х	
	U			
	\mathcal{T}'	$\{s \circ 0 \equiv 0, s \circ s \equiv s\}$	\checkmark	
	U			
	÷	÷		
	U			
	\mathcal{T}_{mod6}	$\{s^6 \equiv id_N\}$	Х	

U

 \mathcal{T}_{min} { }

<ロ > < 部 > < き > < き > 毛 = うへへ 24/36

Х

Decorated Logic

Relative H-P Completeness

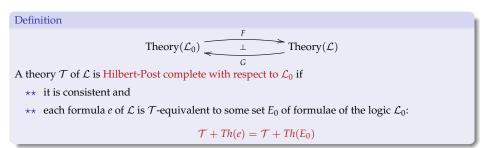
Relative H-P Completeness in Coq 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

25/36

Conclusion 0000

Relative Hilbert-Post completeness



The *relative Hilbert-Post completeness* lifts the *absolute* one from the logic \mathcal{L}_0 to the logic \mathcal{L} .

Motivation 00000	Decorated Logic	Relative H-P Completer	ness Relat	ive H-P Completeness in Co ၁୦୦	q Conclusion 0000
Examp	ple: $\mathcal{L}_{meq,nat}$	and $\mathcal{L}_{exc-\oplus}$),nat		
	Theory($\mathcal{L}_{meq,nat}) \xrightarrow{F}_{G}$	Theo	$\operatorname{bry}(\mathcal{L}_{exc-\oplus,nat})$	
J 1		$ N []_{t}^{(0)} z^{(0)} s^{(0)} $ $ untag^{(2)} g^{(1)} $			
				HPC	\mathcal{L} in $\mathcal{L}_{exc-\oplus,nat}$
$F(\mathcal{T}_{max})$ \cup	$\{s^{(0)} =$	$\equiv \mathit{id}_N^{(0)}, untag^{(2)} o$	$ ag^{(1)} \sim id_N^{(1)}$	$^{(0)}_{I}$	
$F(\mathcal{T}')$	$\{s^{(0)} \circ 0^{(0)} \equiv 0^{(0)}\}$	$s^{(0)} \circ s^{(0)} \equiv s^{(0)}, $	untag ⁽²⁾ ot	$\mathrm{ag}^{(1)} \sim \mathit{id}_N^{(0)} \}$?
÷		÷			
U					
$F(\mathcal{T}_{mod6})$ \cup	${s^{6(0)}}$	$\equiv \mathit{id}_N^{(0)},$ untag $^{(2)}$ o	$tag^{(1)} \sim id_l^{(1)}$	$_{V}^{00}$	
$F(\mathcal{T}_{min})$		$\{untag^{(2)} \circ tag^{(1)}$	$\sim id_N^{(0)}\}$		• ≣ ► ≣।≅ ৩৭.ে

26 / 36

Motivation 00000	Decorated Logic	Relative H-P Completen ○○○○○○○●	ess Relative H-P Completener	ss in Coq Conclusion 0000
Examp	ple: $\mathcal{L}_{meq,nat}$	and $\mathcal{L}_{exc-\oplus}$,nat	
	Theory($\mathcal{L}_{meq,nat}$) $\overbrace{-}^{F}$	$\longrightarrow \text{Theory}(\mathcal{L}_{exc-\oplus,nat})$	
		$ N = []_{t}^{(0)} z^{(0)} s^{(0)} $) untag ⁽²⁾ g ⁽¹⁾ o		
				HPC in $\mathcal{L}_{exc-\oplus,nat}$
$F(\mathcal{T}_{max})$ \cup	$\{s^{(0)} \equiv$	$\equiv i d_N^{(0)},$ untag $^{(2)}$ ot	$\texttt{ag}^{(1)} \sim \textit{id}_N^{(0)} \}$	
$F(\mathcal{T}')$ \cup	$\{s^{(0)} \circ 0^{(0)} \equiv 0^{(0)}$, $s^{(0)} \circ s^{(0)} \equiv s^{(0)}$, u	ntag $^{(2)}$ otag $^{(1)} \sim i d_N^{(0)} \}$	\checkmark
:		÷		
U	c 6(0)	(0) (2)	(1) $(0)_{2}$	
$F(\mathcal{T}_{mod6})$ \cup	{ <i>s</i> ⁶⁽⁰⁾	$\equiv \mathit{id}_N^{(0)},$ untag $^{(2)}$ ot	$ag^{(1)} \sim u_N^{(2)}$	
$F(\mathcal{T}_{min})$		$\{untag^{(2)} \circ tag^{(1)}$	$\sim id_N^{(0)}\}$	· [문 ·] 문 · (문 · (문 ·)

26 / 36

Decorated Logic

Relative H-P Completeness 000000000 Relative H-P Completeness in Coq

Conclusion 0000

III. Relative Hilbert-Post Completeness in Coq

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ >
 27 / 36

Decorated Logic

Relative H-P Completeness 00000000 Relative H-P Completeness in Coq 00000 Conclusion 0000

The proof sketch

Thanks to the relative Hilbert-Post completeness definition, we get:

Goal: proving that for each equation e in $\mathcal{L}_{exc-\oplus}$ is \mathcal{T}_{exc} -equivalent to a finite set E_0 of equations in the pure logic \mathcal{L}_{meq} .

The proof sketch:

- (1) decide the canonical forms for propagators and catchers,
- (2) show that any equation *e* (made of canonical forms) in $\mathcal{L}_{exc-\oplus}$ is T_{exc} -equivalent to a finite set of equations in the pure sub-logic \mathcal{L}_{meq} .

Restriction on the use of copairs/coproducts:

it is easier to determine the canonical forms of propagator and catchers in the absence of categorical copairs/coproducts.

 \Rightarrow To be considered...

Decorated Logic

Relative H-P Completeness 00000000 Relative H-P Completeness in Coq 000000 Conclusion 0000

Canonical forms

Proposition

• For each propagator $a^{(1)}: X \to Y$, either a is pure or there is a pure term $v^{(0)}: X \to P$ such that

$$a^{(1)} \equiv []_{Y}^{(0)} \circ tag^{(1)} \circ v^{(0)}.$$

• For each catcher $f^{(2)} : X \to Y$, either f is a propagator or there is a propagator $a^{(1)} : P \to Y$ and a pure term $u^{(0)} : X \to P$ such that

$$f^{(2)} \equiv a^{(1)} \circ \text{untag}^{(2)} \circ \text{tag}^{(1)} \circ v^{(0)}.$$

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq

Conclusion 0000

Canonical forms in Coq

4 ロ ト 4 昂 ト 4 臣 ト 4 臣 ト 三 日 の Q (C) 30 / 36

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq

Conclusion 0000

Canonical forms in Coq

Key point: benefiting the structural induction!

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq

Conclusion 0000

Equivalences between terms

Lemma^a

An equation between propagators is T_{exc} -equivalent to a set of equations between pure terms.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq

Conclusion 0000

Equivalences between terms

Lemma^a

An equation between propagators is T_{exc} -equivalent to a set of equations between pure terms.

Lemma

An equation between catchers is \mathcal{T}_{exc} -equivalent to a set of equations between propagators.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq

Conclusion 0000

Equivalences between terms

Lemma^a

An equation between propagators is T_{exc} -equivalent to a set of equations between pure terms.

Lemma

An equation between catchers is \mathcal{T}_{exc} -equivalent to a set of equations between propagators.

Theorem^a

Any theory \mathcal{T}_{exc} of the logic $\mathcal{L}_{exc-\oplus}$ is relatively Hilbert-Post complete with respect to the pure logic \mathcal{L}_{meq} .

^aUnder some technical assumption.

Decorated Logic

Relative H-P Completeness 000000000 Relative H-P Completeness in Coq

Conclusion 0000

Main theorem in Coq

```
(** An equation between any two terms is either absurd or
T exc-equivalent to two equations between pure terms. **)
Theorem Theorem 6 10 9: forall {XY} (f1 f2: term YX), (Vale <> empty set) \rightarrow
        ((( f1 == f2) \leftrightarrow (forall {X Y} (fg: term Y X), f == g))
         \mathbf{V}
        (exists a1: (term Y X), exists a2: (term Y X),
         exists b1: (term (Val e) (Val e)), exists b2: (term (Val e) (Val e)),
         (has_only_pure a1 ∧ has_only_pure a2 ∧
         has only pure b1 \wedge has only pure b2 \wedge
         (f1 == f2 \leftrightarrow (a1 == a2 \wedge b1 == b2))))
         \vee
        (exists a1: (term (Val e) X), exists a2: (term (Val e) X),
         exists b1: (term (Val e) (Val e)), exists b2: (term (Val e) (Val e)),
         (has_only_pure a1 ∧ has_only_pure a2 ∧
         has only pure b1 \wedge has only pure b2 \wedge
         (f1 == f2 \leftrightarrow (a1 == a2 \wedge b1 == b2))))
         \vee
        (exists a1: (term (Val e) X), exists a2: (term (Val e) X),
         exists b1: (term Y (Val e)), exists b2: (term Y (Val e)),
         (has only pure al \wedge has only pure a2 \wedge
         has only pure b1 \wedge has only pure b2 \wedge
         (f1 == f2 \leftrightarrow (a1 == a2 \wedge b1 == b2))))
         \mathbf{V}
        (exists a1: (term Y X), exists a2: (term Y X),
         exists b1: (term Y (Val e)), exists b2: (term Y (Val e)),
         (has only pure al \wedge has only pure a2 \wedge
         has_only_pure b1 \Lambda has_only_pure b2 
         (f1 == f2 \leftrightarrow (a1 == a2 \wedge b1 == b2))))
).
```

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000

Summary

We have introduced;

- the logics \mathcal{L}_{meq} , \mathcal{L}_{exc} and $\mathcal{L}_{exc-\oplus}$,
- theories \mathcal{T}_{exc} of the logic $\mathcal{L}_{exc-\oplus}$.

We have defined the relative Hilbert-Post completeness property.

We have proven that theories \mathcal{T}_{exc} of $\mathcal{L}_{exc-\oplus}$ is relatively Hilbert-Post complete.

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000 Conclusion 0000

Perspectives

- (1) checking whether the theory T_{exc} of the logic \mathcal{L}_{exc} is relatively Hilbert-Post complete:
 - several exception names
 - case distinction
- (2) an application of "decorated equational reasoning" to an imperative language:
 - first attempt: equivalence proofs between programs (mixing states and exceptions) written in IMPEX
 - * Coqlibrary: https://forge.imag.fr/frs/download.php/697/ IMPEX-STATES-EXCEPTIONS-THESIS.tar.gz
- (3) combining effects?

Decorated Logic

Relative H-P Completeness

===

Relative H-P Completeness in Coq 000000

An example: IMPEX

E.g.,

```
prog_l = (
    var x, y;
    x := 1; y := 20;
    try(
        while(tt) do (
            if(x <= 0)
            then(throw e)
            else(x := x - 1)
        )
        catch e => (y := 7);
).
```

prog_2 = (
 var x, y ;
 x := 0 ; y := 7 ;
) .

Lenma lenma3: forall (x y: Loc), forall (e: EName), x <> y ->
{{x ::= (const 1) ;;
(y ::= (const 20)) ;;
TRY(WHILE (const true)
D0(IFB ((loc x) <<= (const 0))
THEN (THROW e)
ELSE(x ::= ((loc x) +++ (const (-1))))
END IF)
ENDWHILE)
CATCH e => (y ::= (const 7))}}
{(x ::= (const 0) ;;
(y ::= (const 7))}).
Proof.
intros. simpl. unfold try_catch.
apply (@swtossrw). apply is comp. apply is ro rw, is pure ro, is downcast.
edecorate. edecorate.
(*tackling downcast*)
transitivity(((copair id ((update y o constant 7) o untag e) o coproj1)

Decorated Logic

Relative H-P Completeness

Relative H-P Completeness in Coq 000000

The end!

Many thanks for your kind attention!

Questions?

<ロ ▶ < @ ▶ < E ▶ < E ▶ 된 = の Q () 36 / 36

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

IV. Appendices

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 3 日 9 9 0 0 37 / 36 Decorated Logic: states $\circ \bullet$

Combined logic: states + exception

Logic : 0000

rHPC proof in text

Decorated logic for the global state (\mathcal{L}_{st})

The global state effect is handling memory locations in an imperative programming language.

Syntax of the dec	corated	d logic	for states (\mathcal{L}_{st}): $(i \in Loc)$
Types:	ts	::=	$A \mid B \mid \cdots \mid t \times s \mid \mathbb{1} \mid V_i$
Terms:	fg	::=	$\texttt{id}_t \mid \texttt{a} \mid \texttt{b} \mid \cdots \mid \texttt{gof} \mid \langle \texttt{g}, \texttt{f} \rangle \mid$
			$\pi_1 \mid \pi_2 \mid \langle \ \rangle_{t} \mid \texttt{lookup}_i \mid \texttt{update}_i$
Decoration for terms:	(d)	::=	(0) (1) (2)
Equations:	е	::=	$f \equiv g \mid f \sim g$

$$lookup_i^{(1)} : \mathbb{1} \to V_i$$

 $update_i^{(2)} : V_i \to \mathbb{1}$

<ロト < 部ト < 目ト < 目ト のへの 38 / 36

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

The decorated logic: the states & the exceptions

The combined decorated logic for the state and the exception: \mathcal{L}_{st+exc} .

Grammar of the decorated logic for the state + the exception:

Types:	t	::=	merged
Terms:	fg	::=	merged
Decoration for terms:	$\left(d^{s},d^{e}\right)$::=	$(0^s,0^e)\mid (0^s,1^e)\mid (0^s,2^e)\mid (1^s,0^e)\mid (1^s,1^e)\mid$
			$(1^s, 2^e) \mid (2^s, 0^e) \mid (2^s, 1^e) \mid (2^s, 2^e)$
Equations:	е	::=	$\mathbf{f} \equiv \equiv \mathbf{g} \mid \mathbf{f} \equiv \sim \mathbf{g} \mid \mathbf{f} \sim \equiv \mathbf{g} \mid \mathbf{f} \sim \sim \mathbf{g}$

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

The decorated logic: the states & the exceptions

The combined decorated logic for the state and the exception: \mathcal{L}_{st+exc} .

Grammar of the decorated logic for the state + the exception:

Types:	t	::=	merged
Terms:	fg	::=	merged
Decoration for terms:	$({\rm d}^{\rm s},{\rm d}^{\rm e})$::=	$(0^s,0^e)\mid (0^s,1^e)\mid (0^s,2^e)\mid (1^s,0^e)\mid (1^s,1^e)\mid$
			$(1^s, 2^e) \mid (2^s, 0^e) \mid (2^s, 1^e) \mid (2^s, 2^e)$
Equations:	е	::=	$\texttt{f} \equiv \equiv \texttt{g} \mid \texttt{f} \equiv \sim \texttt{g} \mid \texttt{f} \sim \equiv \texttt{g} \mid \texttt{f} \sim \sim \texttt{g}$

Rules are combined.

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 声 の Q (や 39 / 36

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

The state + the exception: terms in Coq

Some prerequisites:

```
Parameter Loc: Type.
Parameter Val: Loc \rightarrow Type.
Parameter EName: Type.
Parameter EVal: EName \rightarrow Type.
```

The type term is dependent:

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC

The state + the exception: terms in Coq

Some prerequisites:

```
Parameter Loc: Type.
Parameter Val: Loc \rightarrow Type.
Parameter EName: Type.
Parameter EVal: EName \rightarrow Type.
```

The type term is dependent:

An example:

```
Definition id {X: Type}:term X X := tpure id.
```

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

The state + the exception: decorations in Coq

Thereby, the decorations' implementation follows:

Inductive kind := pure | ro | rw. Inductive ekind := epure | ppg | ctc.

```
Inductive is: ((kind * ekind)%type) → forall XY, term XY → Prop:=
    is_tpure : forall XY (f: X → Y), is (pure, epure) (@tpure XY f)
    is_comp : forall kXY Z (f: term XY) (g: term YZ), is kf → is kg → is k (f o g)
    is_copair : forall kKI XY Z (f: term XZ) (g: term ZY), is (ro, kl) f → is kf → is kg → is k (pair f g)
    is_lookup : forall i, is (ro, epure) (lookup i)
    is_update : forall i, is (rw, epure) (lookup i)
    is_tag : forall t, is (pure, ppg) (tag t)
    is_pure_ro : forall t, is (pure, ctc) (untag t)
    is_pure_ro : forall XY k (f: term XY), is (pure, k) f → is (ro, k) f
    is_pure_pg: forall XY k (f: term XY), is (k, epure) f → is (k, ppg) f
    is_pog_ct c : forall XY k (f: term XY), is (k, epure) f → is (k, ctc) f.
    Hint Constructors is.
```

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

The state + the exception: decorations in Coq

Thereby, the decorations' implementation follows:

```
Inductive kind:=pure | ro | rw.
Inductive ekind:=epure | ppg | ctc.
```

A tactic to automatically reason about decorations:

```
Ltac decorate := solve[repeat
(apply is_comp || apply is_pair || apply is_copair)
||
(apply is_tpure || apply is_lookup || apply is_update || apply is_tag || apply is_untag)
||
(apply is_pure_ro) || (apply is_ro_rw) || (apply is_pure_ppg) || (apply is_pure_ctc)].
```

Combined logic: states + exceptions

Logic

rHPC proof in text

Properties of rHPC 00

The state + the exception: some rules in Coq

\Rightarrow The rules are given in a mutually inductive way:

```
Inductive ss: forall X Y, relation (term X Y):=

 \begin{vmatrix} eql: forall X Y k (f g: term X Y), RO k f \rightarrow RO k g \rightarrow f \sim == g \rightarrow f === g \\ effect: forall X Y (f g: term Y X), forget o f === forget o g \rightarrow f \sim == g \rightarrow f === g \\ eeffect: forall X Y, f g: term Y X), f == \sim g \rightarrow (f o (empty X) === g o (empty X)) \rightarrow f === g \\ eeffect: forall X Y, relation (term X Y):=

<math display="block"> | eeql: forall X Y, k (f g: term Y X), F f \in Y PG k g \rightarrow f === g \\ effect = (f orall X, f (g: term Y), F f e k f \rightarrow PFG k g \rightarrow f === g \\ effect = (f orall X, relation (term X Y):= effect = (f or e
```

Decorated Logic: states	Combined logic: states + exceptions	Logic	rHPC proof in text	Properties of rHPC
00		0000	00000	00
IMPEX				

 ${\tt IMPEX}$ is an imperative language with abilities to handle exceptional cases:

Decorated Logic: states	Combined logic: states + exceptions	Logic	rHPC proof in text	Properties of rHPC
00		0000	00000	00
IMPEX				

 ${\tt IMPEX}$ is an imperative language with abilities to handle exceptional cases:

Syntax:

aexp:	a1 a2	::=	
bexp:	$b_1 \ b_2$::=	
cmd :	C1 C2	::=	skip $ x := a c_1; c_2 $ if b then c_1 else $c_2 $
			while b do $c_1 \mid \text{throw e} \mid \text{try} c_1 \text{ catch e} \Rightarrow c_2$

Decorated Logic: states 00	Combined logic: states + exceptions	Logic 0000	rHPC proof in text 00000	Properties of rHPC 00
IMPEX				

IMPEX is an imperative language with abilities to handle exceptional cases:

Syntax:

aexp: $a_1 a_2 ::= ...$ bexp: $b_1 b_2 ::= ...$ cmd : $c_1 c_2 ::= skip | x := a | c_1; c_2 | if b then c_1 else c_2 |$ while b do $c_1 | throw e | try c_1 catch e \Rightarrow c_2$

We design equational semantics of IMPEX over combined decorated logic.

Logic 0000 rHPC proof in text 00000 Properties of rHPC 00

IMPEX over decorated logic: Coq implementation

Commands:

Translating commands into decorated settings:

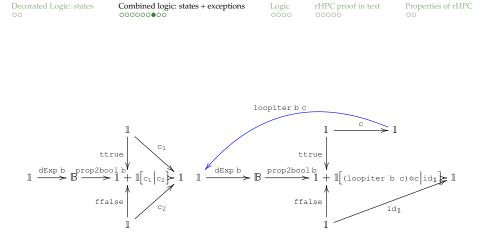
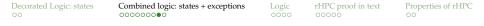


Figure: (if b then c_1 else c_2) and (while b do c) in decorated settings

4日 > 4日 > 4日 > 4日 > 4日 > 日 > 900 45/36



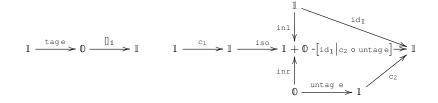


Figure: (throw e) and (try c_1 catch $e \Rightarrow c_2$) in decorated settings

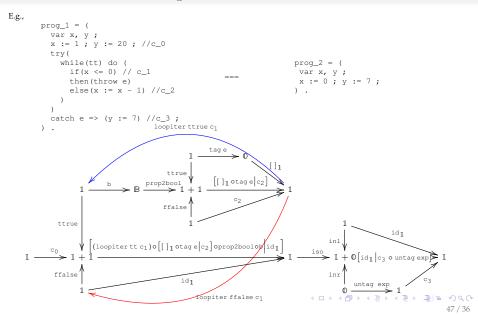
<ロト < 部 > < 言 > < 言 > 是 = の Q (~ 46 / 36

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

Soundness of the implementation



Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

Soundness of the implementation

```
E.g.,
    prog_1 = (
        var x, y;
        x := 1; y := 20; //c_0
        try(
        while(tt) do (
            if(x <= 0) // c_1 ====
            else(x := x - 1) //c_2
        )
        catch e => (y := 7) //c_3;
    ).
```

```
prog_2 = (
    var x, y;
    x := 0 ; y := 7;
) .
```

 $1 \xrightarrow{\text{const 0}} \mathbb{Z} \xrightarrow{\text{update x}} 1 \xrightarrow{\text{const 7}} \mathbb{Z} \xrightarrow{\text{update y}} 1$

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

Proof verification

E.g.	, ,		
0	$prog_1 = ($		
	var x, y ;		
	x := 1 ; y := 20 ; //c_0		
	try(
	while(tt) do (prog_2
	if(x <= 0) // c 1		var x,
	then (throw e)	===	x := 0
	else(x := x - 1) //c 2).
)		, -
)		
	/ catch e => (y := 7) //c_3 ;		
) .		
) .		
Lenn	ma lemma3: forall (x y: Loc), forall (e: EName), x <> y ->		subgoals
	{{x ::= (const 1) ;; (y ::= (const 20)) ;;		: Loc : Loc
	TRY(WHILE (const true)		: EName : x <> v
	DO(IFB ((loc x) <<= (const 0)) THEN (THROW e)		,
	ELSE(x ::= ((loc x) +++ (const (-1)))) ENDIF)	P	owncast ((copair id ((update
	END/WHILE)		o (copair (lpi (pbl o con
	CATCH e => (y ::= (const 7))}}		(copair (thr (update x
	{{x ::= (const 0) ;; (y ::= (const 7))}}.		o (pblo (t
Proc			o (copair (thr (update x

apply (@swtoss _ _ rw). apply is_comp. apply is_ro_rw, is_pure_ro, is_downcast.

edecorate. edecorate.

(*tackling downcast*)

transitivity(((copair id ((update y o constant 7) o untag e) o coproj1)

prog_2 = (
 var x, y;
 x := 0; y := 7;
).

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

A sketch of the proof

E.g.,

```
prog_1 = (
    var x, y;
    x := 1; y := 20; //c_0
    try(
    while(tt) do (
        if(x <= 0) // c_1
        then(throw e)
        else(x := x - 1) //c_2
    )
    catch e => (y := 7) //c_3;
```

```
prog_2 = (
  var x, y;
  x := 0 ; y := 7;
).
```

Some bench info:

(1) proof text size is 7.2K

(2) proof verification takes 5.974s with

(2.1) The Coq Proof Assistant, version 8.4pl3 (January 2014)

(2.2) Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz

A sketch of the proof:

- (1) deal with the first loop iteration which has the state but no exception effect.
- (2) study the second iteration of the loop where an exception is thrown.
- (3) explain the loop termination followed by the exception recovery and the program termination.

Combined logic: states + exceptions

Logic •000 rHPC proof in text

Properties of rHPC 00

Minimal/maximal theories of a logic

Given a logic \mathcal{L} :

- the theories \mathcal{T} of \mathcal{L} are partially ordered by inclusion (\subseteq),
- there is a maximal theory \mathcal{T}_{max} of \mathcal{L} where all formulae are theorems,
- there is a minimal theory T_{min} of \mathcal{L} which is generated by the *empty set* of equations.

Notation: T + T' denotes the theory generated by T and T'.

Combined logic: states + exception: 00000000 Logic 0000 rHPC proof in text

Properties of rHPC 00

Minimal/maximal theories of a logic (cont'd)

In an equational logic;

- formulae are pairs of parallel terms $(f, g): X \to Y$,
- theorems are equations $f \equiv g \colon X \to Y$.

The *language* of any equational logic may be defined from a *signature* made of sorts and operations.

The *deduction rules* are such that equations form a *congruence*. I.e., an *equivalence relation* compatible with the term structure.

Decorated	Logic:	states	
00			

Combined logic: states + exceptions

Logic 0000 rHPC proof in text

Properties of rHPC 00

Minimal/maximal theories of a logic (cont'd)

In an equational logic;

- formulae are pairs of parallel terms $(f, g): X \to Y$,
- theorems are equations $f \equiv g \colon X \to Y$.

The *language* of any equational logic may be defined from a *signature* made of sorts and operations.

The *deduction rules* are such that equations form a *congruence*. I.e., an *equivalence relation* compatible with the term structure.

Example

```
Consider the logic of naturals \mathcal{L}_{nat} with a language made of sorts (t) := {*}, \mathbb{N} and operations := id_t : t \to t, 0: {*} \to \mathbb{N} and s : \mathbb{N} \to \mathbb{N}. Then;
```

- the minimal theory T_{min} is generated by *empty set* of equations,
- the maximal theory \mathcal{T}_{max} is generated by $\{s \equiv id_N\}$.

If a logic \mathcal{L} is an extension of a sublogic \mathcal{L}_0 , then:

- (1) each theory \mathcal{T}_0 of \mathcal{L}_0 generates a theory $F(\mathcal{T}_0)$ of \mathcal{L} ,
- (2) each theory \mathcal{T} of \mathcal{L} determines a theory $G(\mathcal{T})$ of \mathcal{L}_0 made of theorems of \mathcal{T} which are formulae of \mathcal{L}_0 .

If a logic \mathcal{L} is an extension of a sublogic \mathcal{L}_0 , then:

- (1) each theory \mathcal{T}_0 of \mathcal{L}_0 generates a theory $F(\mathcal{T}_0)$ of \mathcal{L} ,
- each theory *T* of *L* determines a theory *G*(*T*) of *L*₀ made of theorems of *T* which are formulae of *L*₀.

The functions *F* and *G* are monotone and they form a Galois connection, denoted $F \dashv G$:

Theory(
$$\mathcal{L}_0$$
) \xrightarrow{F} Theory(\mathcal{L})

• for each theory \mathcal{T} of \mathcal{L} and each theory \mathcal{T}_0 of \mathcal{L}_0 , we have:

$$\mathcal{T}_0 \subseteq G(\mathcal{T}) \iff F(\mathcal{T}_0) \subseteq T.$$

⋆ It follows that

 $\mathcal{T}_0 \subseteq G(F(\mathcal{T}_0))$ and $F(G(\mathcal{T})) \subseteq \mathcal{T}$.

<□ > < 部 > < き > < き > き = 少へで 50 / 36 Combined logic: states + exceptions 00000000 Logic 0000 rHPC proof in text 00000

Absolute vs Relative Hilbert-Post completeness

• (Absolute) H-P completeness (wrt to a logic *L*) A theory *T* is H-P complete if:

- at least one sentence is unprovable from *T*
- and every theory containing *T* either is *T* or is made of all sentences
- i.e., T is maximally consistent
- Relative H-P completeness (wrt to two logics $L_0 \subseteq L$) A theory *T* is relatively H-P complete wrt L_0 if:
 - at least one sentence is unprovable from *T*
 - and every theory containing *T* can be generated from *T* and some sentences in *L*₀
 - i.e., *T* is maximally consistent "up to L_0 "

Combined logic: states + exception

Logic 0000 rHPC proof in text

Properties of rHPC 00

Canonical forms

Proposition

• For each propagator $a^{(1)}: X \to Y$, either a is pure or there is a pure term $v^{(0)}: X \to P$ such that

$$a^{(1)} \equiv []_{Y}^{(0)} \circ tag^{(1)} \circ v^{(0)}.$$

• For each catcher $f^{(2)} : X \to Y$, either f is a propagator or there is a propagator $a^{(1)} : P \to Y$ and a pure term $u^{(0)} : X \to P$ such that

$$f^{(2)} \equiv a^{(1)} \circ \text{untag}^{(2)} \circ \text{tag}^{(1)} \circ v^{(0)}.$$

4 ロ ト 4 日 ト 4 日 ト 4 日 ト 三 日 9 9 9 9
52 / 36

Combined logic: states + exception: 00000000 .ogic 0000 rHPC proof in text

Properties of rHPC 00

Equivalences between propagators

Proposition

Let us assume that $[]_{Y}^{(0)}$ *is a monomorphism with respect to propagators. A strong equation between two accessor terms is* (T-lequivalent to an equation between pure terms:

$$[\,]^{(0)}_{Y} \circ \mathrm{tag}^{(1)} \circ v^{(0)}_{1} \equiv [\,]^{(0)}_{Y} \circ \mathrm{tag}^{(1)} \circ v^{(0)}_{2} \iff v^{(0)}_{1} \equiv v^{(0)}_{2}.$$

Combined logic: states + exceptions

ogic 0000 rHPC proof in text

Properties of rHPC 00

Equivalences between propagators

Proposition

Let us assume that $[]_{\gamma}^{(0)}$ *is a monomorphism with respect to propagators. A strong equation between two accessor terms is (T-lequivalent to an equation between pure terms:*

$$[]_{Y}^{(0)} \circ tag^{(1)} \circ v_{1}^{(0)} \equiv []_{Y}^{(0)} \circ tag^{(1)} \circ v_{2}^{(0)} \iff v_{1}^{(0)} \equiv v_{2}^{(0)}.$$

Assumption

A strong equation between an accesor and a pure term is "absurd".

$$[\,]^{(0)}_Y \circ {\rm tag}^{(1)} \circ v^{(0)} \equiv v^{(0)}_2 \iff (\textit{for all } f^{(0)}, \, g^{(0)} \colon X \to Y, \, f^{(0)} \equiv g^{(0)}).$$

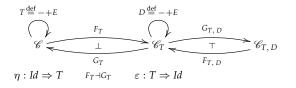
<□ ▶ < @ ▶ < E ▶ < E ▶ E = のへで 53 / 36

Combined logic: states + exception: 00000000 Logic

rHPC proof in text

Properties of rHPC 00

More on absurdity assumption



$$[\;]_Y^{(0)} \circ {\rm tag}^{(1)} \circ v_1^{(0)} \equiv v_2^{(0)} \colon X \to Y$$

would be interpreted as

$$\underbrace{T([]_Y) \circ \mu_0 \circ T(\operatorname{tag}) \circ T(v_1)}_{f} = \underbrace{T(v_2)}_{g} \colon X + E \to Y + E.$$

$$\Rightarrow \forall e \in E, \ f(e) = e = g(e),$$

$$\Rightarrow \forall x \in X, f(x) = e \text{ for some } e \in E \text{ but } g(x) = y \text{ for some } y \in Y.$$

Since "+" is the disjoint union, "=" cannot hold!

absurdity assumption (left-to-right): if f = g holds, then all pure terms collapse!!!

Combined logic: states + exception: 00000000 Logic

rHPC proof in text

Properties of rHPC 00

Equivalences between catchers

Proposition

• A strong equation between catchers is (T-)equivalent to two equations between propagators:

$$\begin{split} u_1^{(1)} \circ \text{untag}^{(2)} \circ \text{tag}^{(1)} \circ u_1^{(0)} &\equiv a_2^{(1)} \circ \text{untag}^{(2)} \circ \text{tag}^{(1)} \circ u_2^{(0)} \\ & \longleftrightarrow \\ a_1^{(1)} &\equiv a_2^{(1)} \text{ and } a_1^{(1)} \circ u_1^{(0)} &\equiv a_2^{(1)} \circ u_2^{(0)}. \end{split}$$

 a strong equation between a catcher and an accessor is (T-)equivalent to equations between propagators:

$$\begin{array}{c} a_1^{(1)} \circ \text{untag}^{(2)} \circ \text{tag}^{(1)} \circ u_1^{(0)} \equiv a_2^{(1)} \\ & \Longleftrightarrow \\ a_1^{(1)} \circ u_1^{(0)} \equiv a_2^{(1)} \ \text{and} \ a_1^{(1)} \equiv [\]_Y^{(0)} \circ \text{tag}^{(1)} \end{array}$$

< □ > < @ > < ≧ > < ≧ > ≧ ≥ シへで 55 / 36

Combined logic: states + exceptions

Logic

rHPC proof in text

Properties of rHPC 00

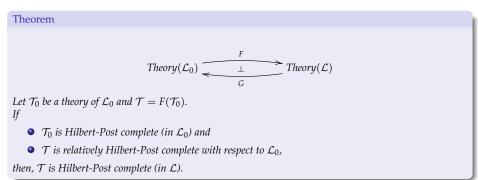
Equivalences between catchers

Theorem

The base theory of exceptions \mathcal{T}_{exc} of the logic $\mathcal{L}_{exc-\oplus}$ is relatively Hilbert-Post complete with respect to the pure logic $\mathcal{L}_{meq+\oplus}$.

Decorated Logic: states	Combined logic: states + exceptions	Logic	rHPC proof in text	Properties of rHPC
00	00000000	0000	00000	•0

The *relative Hilbert-Post completeness* lifts the *absolute Hilbert-Post completeness* from the logic \mathcal{L}_0 to the logic \mathcal{L} :



Decorated Logic: states	Combined logic: states + exceptions	Logic	rHPC proof in text	Properties of rHPC
00	00000000	0000	00000	

The *relative Hilbert-Post completeness* is well suited to the combination of logics:

Lemma

$$Theory(\mathcal{L}_0) \underbrace{\xrightarrow{F_1}}_{G_1} Theory(\mathcal{L}_1) \underbrace{\xrightarrow{F_2}}_{G_2} Theory(\mathcal{L}_2)$$

Let
$$\mathcal{T}_1 = F_1(\mathcal{T}_0)$$
 and let $\mathcal{T}_2 = F_2(\mathcal{T}_1)$. If

- \mathcal{T}_1 is relatively Hilbert-Post complete with respect to \mathcal{L}_0 and
- T_2 is relatively Hilbert-Post complete with respect to \mathcal{L}_1 ,

then, T_2 is relatively Hilbert-Post complete with respect to \mathcal{L}_0 .