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Computational effects

In mathematics;

an operation (e.g., function) always returns the same result on the same input,

the result only depends on the input argument(s).

However, in programming;

a program might do different things than computing the result:

? fall into an exceptional case, (exceptions)
? caught by a non-terminating loop, (non-termination)
? stuck in interaction with the external world (I/O).

All such ? phenomena are known as computational effects.
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Reasoning about programs involving exceptions...

... is difficult:

exceptions are computational effects:
a program X→ Y
is interpreted as a function X→ Y + E
(where E is the set of exceptions)

the handling mechanism is encapsulated
in a single try-catch block
which propagates exceptions: X→ Y + E
it relies on the catch part
which recovers from exceptions: E→ Y + E
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Motivation

Goal: adding features to handle exceptions into a pure language without worsening its
(syntactic) completeness.

Goal (revisited): proving that theories of a decorated logic for exceptions are Hilbert-Post
complete with respect some pure sub-logic.

Outline:

(1) introduce the decorated logic for exceptions and its theories,

(2) define the relative Hilbert-Post completeness property,

(3) give (a sketch of) a relative Hilbert-Post completeness proof for these
decorated theories in a Coq implementation.
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Consequence

Thanks to DUALITY between EXCEPTIONS and STATES [Dumas&Duval&Fousse&Reynaud]

we consequently get:

the decorated logic for states,

relatively Hilbert-Post complete theories of the decorated logic for states.
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Some literature

About effects:

monads [Moggi 1991],
effect systems [Lucassen&Gifford 1988],
Lawvere theories [Plotkin&Power 2002],
algebraic handlers [Plotkin&Pretnar 2009],
comonads [Uustalu&Vene 2008] and [Petricek&Orchard&Mycroft 2014],
dynamic logic [Mossakowski&Schröder&Goncharov 2010].

Implementations:

Haskell,
Eff [Bauer&Pretnar], Idris [Brady].

About completeness properties of effects:

(global) states [Pretnar 2010]
local states [Staton 2010].
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I.
Decorated logics
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Decorated logic

(1) A decorated logic Ldec [Dominguez & Duval’08] is an extension to monadic equational
logic Lmeq with the use of decorations on terms and equations.

(2) Ldec provides equivalence proofs among programs with effects.

Syntax for the monadic equational logic (Lmeq):

Types: t ::= A | B | . . .

Terms: f g ::= idt | a | b | · · · | g ◦ f

Equations: e ::= f ∼= g
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(1) A decorated logic Ldec [Dominguez & Duval’08] is an extension to monadic equational
logic Lmeq with the use of decorations on terms and equations.

(2) Ldec provides equivalence proofs among programs with effects.

Syntax for a decorated logic

Types: t ::= A | B | . . .

Terms: f g ::= idt | a | b | · · · | g ◦ f

Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ g | f ∼ g

Decorations are used to classify “effectful” terms.
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Decorated logic for exceptions (Lexc)

The exceptions effect is handling of exceptions in an imperative programming language.

Syntax of the decorated logic for exceptions (Lexc): (e ∈ EName)

Types: ts ::= A | B | · · · | t+s | 0 | Pe

Terms: f g ::= idt | a | b | · · · | g ◦ f | [g | f] |

inl | inr | [ ]t | tage | untage | ↓f

Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ g | f ∼ g

tag
(1)
e : Pe → 0

untag
(2)
e : 0→ Pe
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Interpreting the logic Lexc

The coKleisli-on-Kleisli construction:

C

FT
,,⊥

T def
= X+E

��
CT

GT

kk
GT, D

,,
>

D def
= X+E

��
CT, D

FT, D

kk

η : Id⇒ T ε : D⇒ Id

——————————————————————————————————————————-

Theorem

1 FT is faithful.

2 the category CT, D is the full image category of T.

3 GT, D is faithful.
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Interpreting the logic Lexc

The coKleisli-on-Kleisli construction:

C

FT
++

⊥

T def
= X+E

��
CT

GT

kk
GT, D

,,
>

D def
= X+E

��
CT, D

FT, D

kk

——————————————————————————————————————————-

The types are interpreted as the objects of the category C :

0 is interpreted as the initial object,

for each e in EName, the type Pe is interpreted as an object Pare,

the sum type X + Y, for each types X and Y, are interpreted as the binary coproducts.

E def
= Σe∈ENamePare

with canonical inclusions ine : Pare → E.
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Interpreting the logic Lexc

The coKleisli-on-Kleisli construction:

C

FT
++

⊥

T def
= X+E

��
CT

GT

kk
GT, D

,,
>

D def
= X+E

��
CT, D

FT, D

kk

——————————————————————————————————————————-

The terms are interpreted as morphisms as follows:

a pure term f (0) : X→ Y in C as f : X→ Y in C ,

a propagator term f (1) : X→ Y in CT as f : X→ Y + E in C ,

tag
(1)
e : Pe → 0 as tage = ine : Pare → E

a catcher term f (2) : X→ Y in CT, D as f : X + E→ Y + E in C

untag
(2)
e : 0→ Pe as a term untage : E→ Pare + E in C characterized as follows:{

untage ◦ tage = inlPare,E : Pare → Pare + E
untage ◦ tagf = inrPare,E ◦ tagf : Parf → Pare + E if e 6= f
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= X+E
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CT

GT

kk
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D def
= X+E
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FT, D

kk
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Hierarchy (or conversion) rules among decorations:

f (0)

f (1)
and

f (1)

f (2)

f(0)

f(1) is interpreted by the functor FT ,

f(1)

f(2) is interpreted by the functor GT, D.

Consequently f(0)

f(2) is interpreted by the composition GT, D ◦ FT .
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Interpreting the logic Lexc

The coKleisli-on-Kleisli construction:

C

FT
,,⊥

T def
= X+E
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CT

GT

kk
GT, D

,,
>

D def
= X+E

��
CT, D

FT, D

kk

η : Id⇒ T ε : D⇒ Id

——————————————————————————————————————————-

A strong equation between catchers f (2) ≡ g(2) : X→ Y is interpreted as

f = g : X + E→ Y + E in C .

A weak equation between catchers f (2) ∼ g(2) : X→ Y is interpreted as

f ◦ ηX = g ◦ ηX : X→ Y + E in C .
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The fundamental weak equation

tag
(1)
e : Pe → 0

untag
(2)
e : 0→ Pe

untag
(2)
e ◦ tag(1)

e ∼ id(0)
Pe

Both members agree on non-exceptional arguments but they may differ on exceptional
arguments.

tage untage

p 7→ p
e

7→ p

p
e

7→ p
e

7→ p
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Some other rules of Lexc

Conversion rules

f (0)

f (1)

f (1)

f (2)

f (d) ≡ g(d′)

f ∼ g
f (d) ∼ g(d′)

f ≡ g
if max(d, d′) ≤ 1

The effect rule

(effect)
f (2)
1 , f (2)

2 : X→ Y f (2)
1 ∼ f (2)

2 f (2)
1 ◦ [ ]

(0)
X ≡ f (2)

2 ◦ [ ]
(0)
X

f1 ≡ f2

Decorated versions of the rules of monadic equational logic

Decorated versions of categorical coproduct rules
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Lexc in Coq

Some prerequisites:

Parameter EName: Type.
Parameter EVal: EName→ Type.

The type term is dependent:

Inductive term: Type→ Type→ Type :=
| comp : forall {X Y Z: Type}, term X Y→ term Y Z→ term X Z
| copair : forall {X Y Z}, term Z X→ term Z Y→ term Z (X+ Y)
| tpure : forall {X Y: Type}, (X→ Y)→ term Y X
| tag : e: EName→ term Empty_set (EVal e)
| untag : e: EName→ term (EVal e) Empty_set.
Infix "o" := comp (at level 60).

An example:

Definition id {X: Type} : term X X := tpure id.
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Decorations in Coq

Decorations are assigned on terms by a Coq predicate named is:

Inductive ekind := epure | ppg | ctc.

Inductive is : ekind→ forall X Y, term X Y→ Prop :=
| is_tpure : forall X Y (f: X→ Y), is (epure) (@tpure X Y f)
| is_comp : forall k X Y Z (f: term X Y) (g: term Y Z), is k f→ is k g→ is k (f o g)
| is_copair : forall k X Y Z (f: term Z X) (g: term Z Y), is ppg f→ is k f→ is k g→ is k (copair f g)
| is_tag : forall t, is ppg (tag t)
| is_untag : forall t, is ctc (untag t)
| is_epure_ppg : forall X Y k (f: term X Y), is epure f→ is ppg f
| is_ppg_ctc : forall X Y k (f: term X Y), is ppg f→ is ctc f.
Hint Constructors is.

A tactic to automatically reason about decorations:

Ltac edecorate := solve[repeat
(apply is_comp || apply is_copair)

||
(apply is_tpure || apply is_tag || apply is_untag)

||
(apply is_epure_ppg) || (apply is_ppg_ctc)].

14 / 36



Motivation Decorated Logic Relative H-P Completeness Relative H-P Completeness in Coq Conclusion

Decorations in Coq

Decorations are assigned on terms by a Coq predicate named is:

Inductive ekind := epure | ppg | ctc.

Inductive is : ekind→ forall X Y, term X Y→ Prop :=
| is_tpure : forall X Y (f: X→ Y), is (epure) (@tpure X Y f)
| is_comp : forall k X Y Z (f: term X Y) (g: term Y Z), is k f→ is k g→ is k (f o g)
| is_copair : forall k X Y Z (f: term Z X) (g: term Z Y), is ppg f→ is k f→ is k g→ is k (copair f g)
| is_tag : forall t, is ppg (tag t)
| is_untag : forall t, is ctc (untag t)
| is_epure_ppg : forall X Y k (f: term X Y), is epure f→ is ppg f
| is_ppg_ctc : forall X Y k (f: term X Y), is ppg f→ is ctc f.
Hint Constructors is.

A tactic to automatically reason about decorations:

Ltac edecorate := solve[repeat
(apply is_comp || apply is_copair)

||
(apply is_tpure || apply is_tag || apply is_untag)

||
(apply is_epure_ppg) || (apply is_ppg_ctc)].

14 / 36



Motivation Decorated Logic Relative H-P Completeness Relative H-P Completeness in Coq Conclusion

Some rules in Coq

The rules are given in a mutually inductive way:

Inductive strong: forall X Y, relation (term X Y) :=

.

.

.
| effect: forall X Y (f g: term Y X), f∼ g→ (f o (empty X) == g o (empty X))→ f== g
| tcomp: forall X Y Z (f: Z→ Y) (g: Y→ X), tpure (compose g f) == tpure g o tpure f
with weak: forall X Y, relation (term X Y) :=

.

.

.
| fundweq: forall e: EName, untag e o tag e∼ (@id (EVal e))
where "x == y" := (strong x y)

"x ∼ y" := (weak x y).
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Programmer’s language for exceptions (Lexc−pl)

Syntax for the programmer’s language: (e ∈ EName)
Types: t ::= A | B | · · · | Pe
Terms: f, g ::= idt | a | b | · · · | g ◦ f |

throwt, e | try(f)catch(e⇒ g)

Decoration for terms: (d) ::= (0) | (1)

Equations: e ::= f ≡ g

throw
(1)
X, e : Pe → X

try(a)catch(e⇒ b)(1) : X→ Y

(ppt)
a : X→ Y

a ◦ throwX, e ≡ throwY, e
(try1)

u(0) :X→ Pe b :Pe → Y
try(throwY, e◦ u)catch(e⇒ b) ≡ b ◦ u

16 / 36



Motivation Decorated Logic Relative H-P Completeness Relative H-P Completeness in Coq Conclusion

Programmer’s language for exceptions (Lexc−pl)

Syntax for the programmer’s language: (e ∈ EName)
Types: t ::= A | B | · · · | Pe
Terms: f, g ::= idt | a | b | · · · | g ◦ f |

throwt, e | try(f)catch(e⇒ g)

Decoration for terms: (d) ::= (0) | (1)

Equations: e ::= f ≡ g

throw
(1)
X, e : Pe → X

try(a)catch(e⇒ b)(1) : X→ Y

(ppt)
a : X→ Y

a ◦ throwX, e ≡ throwY, e
(try1)

u(0) :X→ Pe b :Pe → Y
try(throwY, e◦ u)catch(e⇒ b) ≡ b ◦ u

16 / 36



Motivation Decorated Logic Relative H-P Completeness Relative H-P Completeness in Coq Conclusion

Translating Lexc−pl into Lexc

Pe
tag e // 0

[ ]Y // Y

Y

inl

��

idY

))↓
(

X
f // Y iso // Y + 0

[
idY
∣∣g ◦ untag e] // Y

)

0

inr

OO

untag e // Pe

g

<<

throwY, e try(f )catch(e ⇒ g)
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II.
Relative Hilbert-Post Completeness
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Categorical view of computation

Various syntactic and semantic notions are treated uniformly

Syntax: a theory generated by some kind of
language (types, terms,...) and equations is a (...)-category

Semantics: a domain of interpretation is a (...)-category,
and a model of a theory in a domain is a (...)-functor

Some examples:
(...)-category = cartesian closed category
for simply typed lambda-calculus

(...)-category = category
for monadic equational logic

(...)-category = decorated category
for the decorated logic for exceptions
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An example: monadic equational logic

(...)-category = category
for the logic Lmeq,nat:

Syntax: the language Langmeq,nat generated by:

Types: t ::= U | N
Terms: f g ::= idt | g ◦ f | z | s

several theories Tmeq in Langmeq,nat can be generated by:

Equations: e ::= { . . . }

Semantics: a model of the theory with “no equations” of naturals in S et:

Theory → Domain
U {∗}
N N
idt x 7→ x
z 0
s x 7→ x + 1

20 / 36
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Decorated logic
(...)-category = decorated category
for the logic Lexc−⊕ (Lexc with no “case distinction” and a single exception name):

Syntax: several languages Langexc−⊕ can be generated by:

Types: t ::= A | B | · · · | 0 | P
Terms: f g ::= id

(0)
t | [ ]

(0)
t | a(0) | b(0) | . . . | g(0) ◦ f(0) |

tag(1) | untag(2) | g(1) ◦ f(1) | g(2) ◦ f(2)

several theories Texc in a fixed language Langexc−⊕ can be generated by:

Equations: e ::= {. . .(0) ≡ . . .(0), untag(2) ◦ tag(1) ∼ id
(0)
P }

Semantics: a model of the theory with “no pure equations” in S et:
Theory → Domain
0 { }
P Par
[ ]

(0)
t empty function

tag(1) : P→ 0 tag : Par→ E p 7→ p

untag(2) : 0→ P untag : E→ Par + E p 7→ p

Any theory Texc will be shown as Hilbert-Post complete w.r.t. the logic Lmeq!
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Another example: decorated logic
(...)-category = decorated category for the logic Lexc−⊕,nat

Syntax: the language Langexc−⊕,nat is generated by:

Types: t ::= 0 | U | N
Terms: f g ::= id

(0)
t | [ ]

(0)
t | z(0) | s(0) | g(0) ◦ f(0) |

tag(1) | untag(2) | g(1) ◦ f(1) | g(2) ◦ f(2)

several theories Texc,nat in Langexc−⊕,nat is generated by:

Equations: e ::= {. . .(0) ≡ . . .(0), untag(2) ◦ tag(1) ∼ id
(0)
N }

Semantics: a model of the theory with “no pure equations” of naturals in S et:
Theory → Domain
0 { }
U {∗}
N N

[ ]
(0)
t empty function

tag(1) : N → 0 tag : N→ E 3 7→ 3

untag(2) : 0→ N untag : N→ N + E 3 7→ 3

Any theory Texc,nat will be shown as Hilbert-Post complete w.r.t. the logic Lmeq,nat!
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Soundness and completeness of theories Texc

In this framework, soundness of the theories Texc of the logic Lexc−⊕ with respect to
denotational semantics is granted:

Provable =⇒ Valid

But completeness is not immediate:

* Semantic completeness:
Valid =⇒ Provable

* Syntactic completeness:
Every added unprovable sentence introduces an inconsistency, where inconsistency
means:

either negation inconsistency:
there is a sentence ϕ such that ϕ and ¬ϕ are provable
or Hilbert-Post inconsistency:
every sentence is provable
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(Absolute) Hilbert-Post completeness

Definition

Given a logic L and its maximal theory Tmax, a theory T is,

? consistent if T 6= Tmax,

? (absolute) Hilbert-Post complete, if:

?? it is consistent
?? any theory which contains T coincides with Tmax or with T .
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Example: Lmeq,nat

——————————————————————————————————————————-
Types: t ::= U | N
Terms: f g ::= idt | g ◦ f | z | s

——————————————————————————————————————————-

Tmax {s ≡ idN}
⊂

T ′ {s ◦ 0 ≡ 0, s ◦ s ≡ s}

⊂

...
...

⊂

Tmod6 {s6 ≡ idN}

⊂

Tmin { }
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Relative Hilbert-Post completeness

Definition

Theory(L0)

F --
⊥ Theory(L)

G
mm

A theory T of L is Hilbert-Post complete with respect to L0 if

?? it is consistent and

?? each formula e of L is T -equivalent to some set E0 of formulae of the logic L0:

T + Th(e) = T + Th(E0)

The relative Hilbert-Post completeness lifts the absolute one from the logic L0 to the logic L.
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Example: Lmeq,nat and Lexc−⊕,nat

Theory(Lmeq,nat)

F ..
⊥ Theory(Lexc−⊕,nat)

G
nn

——————————————————————————————————————————-
Types: t ::= 0 | U | N
Terms: f g ::= id

(0)
t | [ ]

(0)
t | z(0) | s(0) | g(0) ◦ f(0) |

tag(1) | untag(2) | g(1) ◦ f(1) | g(2) ◦ f(2)
——————————————————————————————————————————-

HPC in Lexc−⊕,nat

F(Tmax) {s(0) ≡ id(0)
N , untag(2) ◦ tag(1) ∼ id(0)

N }

⊂

F(T ′) {s(0) ◦ 0(0) ≡ 0(0), s(0) ◦ s(0) ≡ s(0), untag(2) ◦ tag(1) ∼ id(0)
N } ?

⊂

...
...

⊂

F(Tmod6) {s6(0) ≡ id(0)
N ,untag(2) ◦ tag(1) ∼ id(0)

N }

⊂

F(Tmin) {untag(2) ◦ tag(1) ∼ id(0)
N }

26 / 36



Motivation Decorated Logic Relative H-P Completeness Relative H-P Completeness in Coq Conclusion

Example: Lmeq,nat and Lexc−⊕,nat

Theory(Lmeq,nat)

F ..
⊥ Theory(Lexc−⊕,nat)

G
nn

——————————————————————————————————————————-
Types: t ::= 0 | U | N
Terms: f g ::= id

(0)
t | [ ]

(0)
t | z(0) | s(0) | g(0) ◦ f(0) |

tag(1) | untag(2) | g(1) ◦ f(1) | g(2) ◦ f(2)
——————————————————————————————————————————-

HPC in Lexc−⊕,nat

F(Tmax) {s(0) ≡ id(0)
N , untag(2) ◦ tag(1) ∼ id(0)

N }

⊂

F(T ′) {s(0) ◦ 0(0) ≡ 0(0), s(0) ◦ s(0) ≡ s(0), untag(2) ◦ tag(1) ∼ id(0)
N }

√

⊂

...
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III.
Relative Hilbert-Post Completeness

in Coq
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The proof sketch

Thanks to the relative Hilbert-Post completeness definition, we get:

Goal: proving that for each equation e in Lexc−⊕ is Texc-equivalent to a finite set E0 of equations
in the pure logic Lmeq.

The proof sketch:

(1) decide the canonical forms for propagators and catchers,

(2) show that any equation e (made of canonical forms) in Lexc−⊕ is Texc-equivalent to a finite
set of equations in the pure sub-logic Lmeq.

Restriction on the use of copairs/coproducts:
it is easier to determine the canonical forms of propagator and catchers in the absence of
categorical copairs/coproducts.

⇒To be considered...

28 / 36



Motivation Decorated Logic Relative H-P Completeness Relative H-P Completeness in Coq Conclusion

Canonical forms

Proposition

For each propagator a(1) : X→ Y, either a is pure or there is a pure term v(0) : X→ P such that

a(1) ≡ [ ]
(0)
Y ◦ tag(1) ◦ v(0).

For each catcher f (2) : X→ Y, either f is a propagator or there is a propagator a(1) : P→ Y and a
pure term u(0) : X→ P such that

f (2) ≡ a(1) ◦ untag(2) ◦ tag(1) ◦ v(0).
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Canonical forms in Coq

(** Canonical form for propagators **)
Lemma can_propagators: forall {X Y} (a: term Y X), has_no_catcher a→

(has_only_pure a
∨

(exists v :(term (Val e) X),
(has_only_pure v) ∧ (a== ((@empty Y) o tag e o v)))).

(** Canonical form for catchers **)
Lemma can_catchers: forall {X Y} (f: term Y X),

(has_no_catcher f
∨

(exists a: (term Y (Val e)), exists u: (term (Val e) X),
(has_no_catcher a) ∧ (has_only_pure u) ∧ (f== (a o untag e o tag e o u)))).

Key point: benefiting the structural induction!
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Equivalences between terms

Lemmaa

An equation between propagators is Texc-equivalent to a set of equations between pure terms.

Lemma

An equation between catchers is Texc-equivalent to a set of equations between propagators.

Theorema

Any theory Texc of the logic Lexc−⊕ is relatively Hilbert-Post complete with respect to the pure
logic Lmeq.

aUnder some technical assumption.
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Main theorem in Coq

(** An equation between any two terms is either absurd or
T_exc-equivalent to two equations between pure terms. **)
Theorem Theorem_6_10_9: forall {X Y} (f1 f2: term Y X), (Val e<> empty_set)→

((( f1== f2)↔ (forall {X Y} (f g: term Y X), f== g))
∨
(exists a1: (term Y X), exists a2: (term Y X),
exists b1: (term (Val e) (Val e)), exists b2: (term (Val e) (Val e)),
(has_only_pure a1 ∧ has_only_pure a2 ∧
has_only_pure b1 ∧ has_only_pure b2 ∧
(f1== f2↔ (a1== a2 ∧ b1== b2))))
∨
(exists a1: (term (Val e) X), exists a2: (term (Val e) X),
exists b1: (term (Val e) (Val e)), exists b2: (term (Val e) (Val e)),
(has_only_pure a1 ∧ has_only_pure a2 ∧
has_only_pure b1 ∧ has_only_pure b2 ∧
(f1== f2↔ (a1== a2 ∧ b1== b2))))
∨
(exists a1: (term (Val e) X), exists a2: (term (Val e) X),
exists b1: (term Y (Val e)), exists b2: (term Y (Val e)),
(has_only_pure a1 ∧ has_only_pure a2 ∧
has_only_pure b1 ∧ has_only_pure b2 ∧
(f1== f2↔ (a1== a2 ∧ b1== b2))))
∨
(exists a1: (term Y X), exists a2: (term Y X),
exists b1: (term Y (Val e)), exists b2: (term Y (Val e)),
(has_only_pure a1 ∧ has_only_pure a2 ∧
has_only_pure b1 ∧ has_only_pure b2 ∧
(f1== f2↔ (a1== a2 ∧ b1== b2))))

).
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Summary

We have introduced;

the logics Lmeq, Lexc and Lexc−⊕,

theories Texc of the logic Lexc−⊕.

We have defined the relative Hilbert-Post completeness property.

We have proven that theories Texc of Lexc−⊕ is relatively Hilbert-Post complete.
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Perspectives

(1) checking whether the theory Texc of the logic Lexc is relatively Hilbert-Post complete:

several exception names
case distinction

(2) an application of “decorated equational reasoning” to an imperative language:

first attempt: equivalence proofs between programs (mixing states and exceptions)
written in IMPEX

? Coq library: https://forge.imag.fr/frs/download.php/697/
IMPEX-STATES-EXCEPTIONS-THESIS.tar.gz

(3) combining effects?
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An example: IMPEX

E.g.,

prog_1 = (
var x, y ;
x := 1 ; y := 20 ;
try(

while(tt) do (
if(x <= 0)
then(throw e)
else(x := x - 1)

)
)
catch e => (y := 7) ;

) .

===

prog_2 = (
var x, y ;
x := 0 ; y := 7 ;

) .
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The end!

Many thanks for your kind attention!

Questions?
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Decorated logic for the global state (Lst)

The global state effect is handling memory locations in an imperative programming language.

Syntax of the decorated logic for states (Lst): (i ∈ Loc)

Types: ts ::= A | B | · · · | t×s | 1 | Vi

Terms: f g ::= idt | a | b | · · · | g ◦ f | 〈g,f〉 |

π1 | π2 | 〈 〉t | lookupi | updatei

Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ g | f ∼ g

lookup
(1)
i : 1→ Vi

update
(2)
i : Vi → 1
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The decorated logic: the states & the exceptions

The combined decorated logic for the state and the exception: Lst+exc.

Grammar of the decorated logic for the state + the exception:

Types: t ::= merged

Terms: f g ::= merged

Decoration for terms: (ds,de) ::= (0s, 0e) | (0s, 1e) | (0s, 2e) | (1s, 0e) | (1s, 1e) |

(1s, 2e) | (2s, 0e) | (2s, 1e) | (2s, 2e)

Equations: e ::= f ≡≡ g | f ≡∼ g | f ∼≡ g | f ∼∼ g

Rules are combined.
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The state + the exception: terms in Coq

Some prerequisites:

Parameter Loc: Type.
Parameter Val: Loc→ Type.
Parameter EName: Type.
Parameter EVal: EName→ Type.

The type term is dependent:

Inductive term: Type→ Type→ Type :=
| comp : forall {X Y Z: Type}, term X Y→ term Y Z→ term X Z
| pair : forall {X Y Z: Type}, term X Z→ term Y Z→ term (X*Y) Z
| copair : forall {X Y Z: Type}, term Z X→ term Z Y→ term Z (X+ Y)
| tpure : forall {X Y: Type}, (X→ Y)→ term Y X
| lookup : forall i:Loc, term (Val i) unit
| update : forall i:Loc, term unit (Val i)
| tag : forall e:EName, term Empty_set (EVal e)
| untag : forall e:EName, term (EVal e) Empty_set.
Infix "o" := comp (at level 60).

An example:

Definition id {X: Type} : term X X := tpure id.

40 / 36



Decorated Logic: states Combined logic: states + exceptions Logic rHPC proof in text Properties of rHPC

The state + the exception: terms in Coq

Some prerequisites:

Parameter Loc: Type.
Parameter Val: Loc→ Type.
Parameter EName: Type.
Parameter EVal: EName→ Type.

The type term is dependent:

Inductive term: Type→ Type→ Type :=
| comp : forall {X Y Z: Type}, term X Y→ term Y Z→ term X Z
| pair : forall {X Y Z: Type}, term X Z→ term Y Z→ term (X*Y) Z
| copair : forall {X Y Z: Type}, term Z X→ term Z Y→ term Z (X+ Y)
| tpure : forall {X Y: Type}, (X→ Y)→ term Y X
| lookup : forall i:Loc, term (Val i) unit
| update : forall i:Loc, term unit (Val i)
| tag : forall e:EName, term Empty_set (EVal e)
| untag : forall e:EName, term (EVal e) Empty_set.
Infix "o" := comp (at level 60).

An example:

Definition id {X: Type} : term X X := tpure id.

40 / 36



Decorated Logic: states Combined logic: states + exceptions Logic rHPC proof in text Properties of rHPC

The state + the exception: decorations in Coq

Thereby, the decorations’ implementation follows:

Inductive kind := pure | ro | rw.
Inductive ekind := epure | ppg | ctc.

Inductive is : (( kind * ekind)%type)→ forall X Y, term X Y→ Prop :=
| is_tpure : forall X Y (f: X→ Y), is (pure, epure) (@tpure X Y f)
| is_comp : forall k X Y Z (f: term X Y) (g: term Y Z), is k f→ is k g→ is k (f o g)
| is_pair : forall k k1 X Y Z (f: term X Z) (g: term Y Z), is (ro, k1) f→ is k f→ is k g→ is k (pair f g)
| is_copair : forall k k1 X Y Z (f: term Z X) (g: term Z Y), is (k1, ppg) f→ is k f→ is k g→ is k (copair f g)
| is_lookup : forall i, is (ro, epure) (lookup i)
| is_update : forall i, is (rw, epure) (update i)
| is_tag : forall t, is (pure, ppg) (tag t)
| is_untag : forall t, is (pure, ctc) (untag t)
| is_pure_ro : forall X Y k (f: term X Y), is (pure, k) f→ is (ro, k) f
| is_ro_rw : forall X Y k (f: term X Y), is (ro, k) f→ is (rw, k) f
| is_pure_ppg : forall X Y k (f: term X Y), is (k, epure) f→ is (k, ppg) f
| is_ppg_ctc : forall X Y k (f: term X Y), is (k, ppg) f→ is (k, ctc) f.

Hint Constructors is.

A tactic to automatically reason about decorations:

Ltac decorate := solve[repeat
(apply is_comp || apply is_pair || apply is_copair)

||
(apply is_tpure || apply is_lookup || apply is_update || apply is_tag || apply is_untag)

||
(apply is_pure_ro) || (apply is_ro_rw) || (apply is_pure_ppg) || (apply is_pure_ctc)].
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The state + the exception: some rules in Coq

⇒ The rules are given in a mutually inductive way:

Inductive ss: forall X Y, relation (term X Y) :=
| eq1: forall X Y k (f g: term X Y), RO k f→ RO k g→ f∼== g→ f=== g
| effect: forall X Y (f g: term Y X), forget o f=== forget o g→ f∼== g→ f=== g
| eeffect: forall X Y (f g: term Y X), f==∼ g→ (f o (empty X) === g o (empty X))→ f=== g
with ws: forall X Y, relation (term X Y) :=
| eeq1: forall X Y k (f g: term X Y), PPG k f→ PPG k g→ f==∼ g→ f=== g
| ax1: forall i, lookup i o update i∼== (@id (Val i))
with sw: forall X Y, relation (term X Y) :=
| eax1: forall t: EName, untag t o tag t==∼ (@id unit)
with ww: forall X Y, relation (term X Y) :=

...
where "x === y" := (ss x y) and "x ∼== y" := (ws x y) and

"x ==∼ y" := (sw x y) and "x ∼∼ y" := (ww x y).
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IMPEX

IMPEX is an imperative language with abilities to handle exceptional cases:

Syntax:

aexp: a1 a2 ::= . . .

bexp: b1 b2 ::= . . .

cmd : c1 c2 ::= skip | x := a | c1;c2 | if b then c1 else c2 |

while b do c1 | throw e | try c1 catch e⇒ c2

We design equational semantics of IMPEX over combined decorated logic.
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IMPEX over decorated logic: Coq implementation

Commands:

Inductive Cmd : Type :=
| skip : Cmd
| sequence : Cmd → Cmd→ Cmd
| assign : Loc → Exp Z→ Cmd
| cond : Exp bool→ Cmd→ Cmd→ Cmd
| while : Exp bool→ Cmd→ Cmd
| THROW : EName → Cmd
| TRY_CATCH : EName→ Cmd→ Cmd→ Cmd.

Translating commands into decorated settings:

Fixpoint dCmd (c: Cmd): (term unit unit) :=
match c with
| skip ⇒ (@id unit)
| sequence c0 c1 ⇒ (dCmd c1) o (dCmd c0)
| assign j e0 ⇒ (update j) o (dExp e0)
| cond b c2 c3 ⇒ copair (dCmd c2) (dCmd c3) o (prop2bool o (dExp b))
| while b c4 ⇒ (copair (loopiter (prop2bool o (dExp b)) (dCmd c4) o

(dCmd c4)) (@id unit)) o (prop2bool o (dExp b))
| THROW e ⇒ (throw unit e)
| TRY_CATCH e c1 c2⇒ (@try_catch _ _ e (dCmd c1) (dCmd c2))

end.
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1

ttrue

��

c1

!!
1

dExp b // B
prop2bool b// 1 + 1

[
c1
∣∣c2] // 1

1

ffalse

OO

c2

==

1

ttrue

��

c // 1

loopiter b c

��
1

dExp b // B
prop2bool b// 1 + 1

[
(loopiter b c)◦c

∣∣id1] // 1
1

ffalse

OO

id1

55

Figure: (ifbthenc1 elsec2) and (whilebdoc) in decorated settings
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1
tag e // 0

[]1 // 1

1

inl

��

id1

))
1

c1 // 1 iso // 1 + 0
[
id1

∣∣c2 ◦ untag e] // 1
0

inr

OO

untag e // 1
c2

<<

Figure: (throw e) and (tryc1 catche ⇒ c2) in decorated settings
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Soundness of the implementation
E.g.,

prog_1 = (
var x, y ;
x := 1 ; y := 20 ; //c_0
try(

while(tt) do (
if(x <= 0) // c_1
then(throw e)
else(x := x - 1) //c_2

)
)
catch e => (y := 7) //c_3 ;

) .

===

prog_2 = (
var x, y ;
x := 0 ; y := 7 ;

) .

1

ttrue
��

tag e // 0
[ ]1

##
1

ttrue

��

b // B prop2bool// 1 + 1

[
[ ]1◦tag e

∣∣c2] // 1

loopiter ffalse c1
jj

loopiter ttrue c1

��

1

ffalse

OO
c2

44

1

inl
��

id1

**
1

c0 // 1 + 1

[
(loopiter tt c1)◦

[
[ ]1◦tag e

∣∣c2]◦prop2bool◦b∣∣∣id1]// 1 iso // 1 + 0
[
id1

∣∣c3 ◦ untag exp] // 1
1

ffalse

OO

id1

22

0

inr

OO

untag exp // 1
c3

;;
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Soundness of the implementation
E.g.,

prog_1 = (
var x, y ;
x := 1 ; y := 20 ; //c_0
try(

while(tt) do (
if(x <= 0) // c_1
then(throw e)
else(x := x - 1) //c_2

)
)
catch e => (y := 7) //c_3 ;

) .

===

prog_2 = (
var x, y ;
x := 0 ; y := 7 ;

) .

1
const 0// Zupdate x// 1 const 7// Zupdate y// 1
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Proof verification
E.g.,

prog_1 = (
var x, y ;
x := 1 ; y := 20 ; //c_0
try(

while(tt) do (
if(x <= 0) // c_1
then(throw e)
else(x := x - 1) //c_2

)
)
catch e => (y := 7) //c_3 ;

) .

===

prog_2 = (
var x, y ;
x := 0 ; y := 7 ;

) .
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A sketch of the proof
E.g.,

prog_1 = (
var x, y ;
x := 1 ; y := 20 ; //c_0
try(

while(tt) do (
if(x <= 0) // c_1
then(throw e)
else(x := x - 1) //c_2

)
)
catch e => (y := 7) //c_3 ;

) .

===

prog_2 = (
var x, y ;
x := 0 ; y := 7 ;

) .

Some bench info:

(1) proof text size is 7.2K

(2) proof verification takes 5.974s with

(2.1) The Coq Proof Assistant, version 8.4pl3 (January 2014)
(2.2) Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz

A sketch of the proof:

(1) deal with the first loop iteration which has the state but no exception effect.

(2) study the second iteration of the loop where an exception is thrown.

(3) explain the loop termination followed by the exception recovery and the program termination.
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Minimal/maximal theories of a logic

Given a logic L:

the theories T of L are partially ordered by inclusion (⊆),

there is a maximal theory Tmax of Lwhere all formulae are theorems,

there is a minimal theory Tmin of Lwhich is generated by the empty set of equations.

Notation: T + T ′ denotes the theory generated by T and T ′.
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Minimal/maximal theories of a logic (cont’d)

In an equational logic;

formulae are pairs of parallel terms (f , g) : X→ Y,

theorems are equations f ≡ g : X→ Y.

The language of any equational logic may be defined from a signature made of sorts and
operations.

The deduction rules are such that equations form a congruence.
I.e., an equivalence relation compatible with the term structure.

Example

Consider the logic of naturals Lnat with a language made of
sorts (t) := {∗},N and
operations := idt : t→ t, 0 : {∗} → N and s : N→ N.
Then;

the minimal theory Tmin is generated by empty set of equations,

the maximal theory Tmax is generated by {s ≡ idN}.
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Minimal/maximal theories of a logic (cont’d)
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Extensions of a logic

If a logic L is an extension of a sublogic L0, then:

(1) each theory T0 of L0 generates a theory F(T0) of L,

(2) each theory T of L determines a theory G(T ) of L0 made of theorems of T which are
formulae of L0.

The functions F and G are monotone and they form a Galois connection, denoted F a G:

Theory(L0)

F --
⊥ Theory(L)

G
mm

for each theory T of L and each theory T0 of L0, we have:

T0 ⊆ G(T ) ⇐⇒ F(T0) ⊆ T.

? It follows that
T0 ⊆ G(F(T0)) and F(G(T )) ⊆ T .

50 / 36



Decorated Logic: states Combined logic: states + exceptions Logic rHPC proof in text Properties of rHPC

Extensions of a logic

If a logic L is an extension of a sublogic L0, then:

(1) each theory T0 of L0 generates a theory F(T0) of L,

(2) each theory T of L determines a theory G(T ) of L0 made of theorems of T which are
formulae of L0.

The functions F and G are monotone and they form a Galois connection, denoted F a G:

Theory(L0)

F --
⊥ Theory(L)

G
mm

for each theory T of L and each theory T0 of L0, we have:

T0 ⊆ G(T ) ⇐⇒ F(T0) ⊆ T.

? It follows that
T0 ⊆ G(F(T0)) and F(G(T )) ⊆ T .

50 / 36



Decorated Logic: states Combined logic: states + exceptions Logic rHPC proof in text Properties of rHPC

Absolute vs Relative Hilbert-Post completeness

(Absolute) H-P completeness (wrt to a logic L) A theory T is H-P complete if:

at least one sentence is unprovable from T
and every theory containing T
either is T or is made of all sentences

i.e., T is maximally consistent

Relative H-P completeness (wrt to two logics L0 ⊆ L) A theory T is relatively
H-P complete wrt L0 if:

at least one sentence is unprovable from T
and every theory containing T
can be generated from T and some sentences in L0

i.e., T is maximally consistent “up to L0”
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Canonical forms

Proposition

For each propagator a(1) : X→ Y, either a is pure or there is a pure term v(0) : X→ P such that

a(1) ≡ [ ]
(0)
Y ◦ tag(1) ◦ v(0).

For each catcher f (2) : X→ Y, either f is a propagator or there is a propagator a(1) : P→ Y and a
pure term u(0) : X→ P such that

f (2) ≡ a(1) ◦ untag(2) ◦ tag(1) ◦ v(0).
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Equivalences between propagators

Proposition

Let us assume that [ ]
(0)
Y is a monomorphism with respect to propagators. A strong equation between two

accessor terms is (T-)equivalent to an equation between pure terms:

[ ]
(0)
Y ◦ tag(1) ◦ v(0)

1 ≡ [ ]
(0)
Y ◦ tag(1) ◦ v(0)

2 ⇐⇒ v(0)
1 ≡ v(0)

2 .

Assumption

A strong equation between an accesor and a pure term is “absurd”.

[ ]
(0)
Y ◦ tag(1) ◦ v(0) ≡ v(0)

2 ⇐⇒ (for all f (0), g(0) : X→ Y, f (0) ≡ g(0)).
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More on absurdity assumption

C

FT
++⊥

T def
= −+E

��
CT

GT

kk
GT, D

,,
>

D def
= −+E

��
CT, D

FT, D

kk

η : Id⇒ T FTaGT ε : T ⇒ Id
———————————————————————————————————–

[ ]
(0)
Y ◦ tag(1) ◦ v(0)

1 ≡ v(0)
2 : X→ Y

would be interpreted as

T([ ]Y) ◦ µ0 ◦ T(tag) ◦ T(v1)︸ ︷︷ ︸
f

= T(v2)︸ ︷︷ ︸
g

: X + E→ Y + E.

⇒ ∀e ∈ E, f (e) = e = g(e),

⇒ ∀x ∈ X, f (x) = e for some e ∈ E but g(x) = y for some y ∈ Y.

Since “+” is the disjoint union, “=” cannot hold!

absurdity assumption (left-to-right): if f = g holds, then all pure terms collapse!!!
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Equivalences between catchers

Proposition

A strong equation between catchers is (T-)equivalent to two equations between propagators:

a(1)
1 ◦ untag(2) ◦ tag(1) ◦ u(0)

1 ≡ a(1)
2 ◦ untag(2) ◦ tag(1) ◦ u(0)

2

⇐⇒

a(1)
1 ≡ a(1)

2 and a(1)
1 ◦ u(0)

1 ≡ a(1)
2 ◦ u(0)

2 .

a strong equation between a catcher and an accessor is (T-)equivalent to equations between
propagators:

a(1)
1 ◦ untag(2) ◦ tag(1) ◦ u(0)

1 ≡ a(1)
2

⇐⇒

a(1)
1 ◦ u(0)

1 ≡ a(1)
2 and a(1)

1 ≡ [ ]
(0)
Y ◦ tag(1).
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Equivalences between catchers

Theorem

The base theory of exceptions Texc of the logic Lexc−⊕ is relatively Hilbert-Post complete with respect to
the pure logic Lmeq+0.
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The relative Hilbert-Post completeness lifts the absolute Hilbert-Post completeness from the logic L0 to
the logic L:

Theorem

Theory(L0)

F --
⊥ Theory(L)

G
mm

Let T0 be a theory of L0 and T = F(T0).
If

T0 is Hilbert-Post complete (in L0) and

T is relatively Hilbert-Post complete with respect to L0,

then, T is Hilbert-Post complete (in L).
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The relative Hilbert-Post completeness is well suited to the combination of logics:

Lemma

Theory(L0)

F1 --
⊥ Theory(L1)

G1

mm

F2 --
⊥ Theory(L2)

G2

mm

Let T1 = F1(T0) and let T2 = F2(T1).
If

T1 is relatively Hilbert-Post complete with respect to L0 and

T2 is relatively Hilbert-Post complete with respect to L1,

then, T2 is relatively Hilbert-Post complete with respect to L0.

58 / 36


	Motivation
	Computational effects
	Main research topic

	Decorated Logic
	outline1
	The decorated logic
	Decorated Logic: exceptions
	Coq in use

	Relative H-P Completeness
	outline2
	Categorical view of computation

	Relative H-P Completeness in Coq
	outline3
	relative H-P C in Coq

	Conclusion
	perspectives

	Appendix
	Decorated Logic: states
	outline3
	Decorated Logic: states

	Combined logic: states + exceptions
	the state + the exception

	Logic
	theories of a logic
	extensions of a logic
	absolute vs relative HPC

	rHPC proof in text
	rHPC proof in text

	Properties of rHPC
	Properties of rHPC



