Graph rewriting with cloning

Dominique Duval based on work with Rachid Echahed and Frédéric Prost

LJK-LIG, University of Grenoble

February 28., 2012 – Grenoble – ANR CLIMT

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Graph rewriting

L, R, G, H are graphs.

For each rewrite rule:

a rewrite step builds *H* by replacing the occurrence of *L* in *G* by some occurrence of *R* in *H*:

Example: term rewriting

Some questions:

- 1. What is a graph?
- 2. What is a rule?
- 3. What does replacing mean?
- 4. Is there a rule $G \rightsquigarrow H$?

In this talk:

- 1. A graph is a directed multigraph.
- 2. A rule is a span $L \leftarrow K \rightarrow R$.
- 3. Several answers for replacing: DPO, SqPO, PSqPO.
- 4. $G \rightsquigarrow H$ is a rule $G \leftarrow D \rightarrow H$.

Subgraph classifier: What does replacing mean?

L, R are graphs.

$$L = \stackrel{e_L}{\smile} n_L \qquad \qquad R = \stackrel{e_R}{\smile} n_R$$

 $L \subseteq G$.

$$G = \stackrel{e_L}{ } \underset{n'}{ } \stackrel{e'}{ }$$

 $R \subseteq H$, after rewriting.

$$H = \frac{\stackrel{e_R}{\stackrel{??}{\longrightarrow}} \stackrel{e'}{n_R}}{\stackrel{??}{\stackrel{??}{\longrightarrow}} n'} \stackrel{e'}{\stackrel{e'}{\longrightarrow}}$$

Example: What does replacing mean?

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Algebraic graph transformation

Algebraic graph rewriting is based on category theory especially on pushouts:

► Single-pushout: SPO

Double-pushout: DPO

Sesqui-pushout: SqPO

By: H. Ehrig, U. Montanari, M. Löwe, A. Corradini, B. König, L. Ribeiro, S. Lack, T. Heindel, P. Sobocinski, . . .

Pushouts

Union

$$\begin{array}{cccc}
X \cap Y & & \subseteq & & Y \\
\subseteq \downarrow & & & \downarrow \\
X - - - - - = & - - \rightarrow X \cup Y
\end{array}$$

Pushout: a kind of generalized union ("amalgamated sum")

- ▶ When a pushout exists, it is unique (up to iso).
- Categories Set and Graph have pushouts.

PO of graphs

There is a GRAPH OF GRAPHS:

Pushouts of graphs exist and they can be computed pointwise.

Example: a PO of graphs

DPO, SqPO, PSqPO

In this talk, every ??PO of graphs looks like:

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Double-pushout (DPO)

The LHS square is a pushout complement (POC)

- + Easy to understand: symmetric
- + Easy to define
- + Sound categorical base: adhesive categories

Example: DPO

Adhesive categories

- Definition of adhesive categories involves Van Kampen squares...
- Categories Set and Graph are adhesive.

In an adhesive category:

- pushouts of monos are monos
- pushouts along monos are pullbacks
- pushout complements of monos are unique (if they exist)

Example: no POC

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Sesqui-pushout (SqPO)

The LHS square is a final pullback complement (FPBC)

- + FPBC of graphs exist and are unique (up to iso)
- + PBCs are more general than POCs

Pullbacks

Intersection

Pullback: a kind of generalized intersection ("fibered product")

$$\begin{array}{cccc}
W & - & - & - & - & - & \rightarrow Y \\
\downarrow & & & \downarrow & & \downarrow \\
X & & & & \rightarrow Z
\end{array}$$

- ▶ When a pullback exists, it is unique (up to iso).
- Categories Set and Graph have pullbacks.

Example: a FPBC

Example: a SqPO

Example: cloning and deleting nodes with a SqPO

Goal: cloning and deleting some nodes and their incident edges. Node f is clone twice. Node a is deleted.

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Polarized graphs

There is a "GRAPH" OF POLARIZED GRAPHS:

Pushouts of polarized graphs exist.

Graph is a reflective subcategory of **PolGraph**.

L, K are polarized graphs.

$$L = \bigcap_{n_L^{\pm}}^{e_L} \qquad K = n_{K,1}^{+}$$

$$= \bigcap_{\kappa \downarrow}^{e_{\kappa}} n_{K,2}^{-}$$

 $L \subseteq G$.

$$G = \bigcap_{n_L^{\pm}}^{e_L} \bigcap_{n'^{\pm}}^{e'} n'^{\pm}$$

 $K \subseteq D$.

$$D = n_{K,1}^{+} \qquad e'$$

$$e_{K} \downarrow \downarrow \qquad n'^{\pm}$$

Polarized sesqui-pushout (PSqPO)

The LHS square is a final pullback complement of polarized graphs

- + FPBC of polarized graphs exist and are unique (up to iso)
- + polarization allows more flexible cloning
- !!! In fact, only the interface is polarized!

Example: PSqPO

"if ...then...else..."

"Destructive" rules:

"Non-destructive" rules:

Conclusion

- + SqPO and PSqPO exist and are unique (up to iso)
- + SqPO and PSqPO are more general than DPO
 - SqPO is not easy to define
 - PSqPO is still less easy to define

CLIMT:

- A better understanding of PSqPO
- ...via a better understanding of SqPO?
- for various applications of "polarized" cloning
- ... involving some "complexified" graphs in the interface?