Graph rewriting with cloning

Dominique Duval
based on work with Rachid Echahed and Frédéric Prost

LJK-LIG, University of Grenoble

February 28., 2012 - Grenoble - ANR CLIMT

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Graph rewriting

L, R, G, H are graphs.
For each rewrite rule:
$L \sim \sim \sim \sim \sim \sim$ and each matching: L
$\downarrow \subseteq$
G
a rewrite step builds H by replacing the occurrence of L in G by some occurrence of R in H :

Example: term rewriting

Some questions:

1. What is a graph?
2. What is a rule?
3. What does replacing mean?
4. Is there a rule $G \rightsquigarrow H$?

In this talk:

1. A graph is a directed multigraph.
2. A rule is a span $L \leftarrow K \rightarrow R$.
3. Several answers for replacing: DPO, SqPO, PSqPO.
4. $G \rightsquigarrow H$ is a rule $G \leftarrow D \rightarrow H$.

Subgraph classifier: What does replacing mean?

L, R are graphs.

$L \subseteq G$.

$R \subseteq H$, after rewriting.

Example: What does replacing mean?

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Algebraic graph transformation

Algebraic graph rewriting is based on category theory especially on pushouts:

- Single-pushout: SPO
- Double-pushout: DPO
- Sesqui-pushout: SqPO

By: H. Ehrig, U. Montanari, M. Löwe,
A. Corradini, B. König, L. Ribeiro,
S. Lack, T. Heindel, P. Sobocinski, ...

Pushouts

Union

Pushout: a kind of generalized union ("amalgamated sum")

- When a pushout exists, it is unique (up to iso).
- Categories Set and Graph have pushouts.

PO of graphs

There is a GRAPH OF GRAPHS:

- Pushouts of graphs exist and they can be computed pointwise.

Example: a PO of graphs

DPO, SqPO, PSqPO

In this talk, every ??PO of graphs looks like:

Outline

Graph transformation

Algebraic graph transformation

Double-pushout (DPO)

Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Double-pushout (DPO)

The LHS square is a pushout complement (POC)

+ Easy to understand: symmetric
+ Easy to define
+ Sound categorical base: adhesive categories

Example: DPO

Adhesive categories

- Definition of adhesive categories involves Van Kampen squares. . .
- Categories Set and Graph are adhesive.

In an adhesive category:

- pushouts of monos are monos
- pushouts along monos are pullbacks
- pushout complements of monos are unique (if they exist)

Example: no POC

Outline

Graph transformation
 Algebraic graph transformation
 Double-pushout (DPO)
 Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Sesqui-pushout (SqPO)

The LHS square is a final pullback complement (FPBC)

+ FPBC of graphs exist and are unique (up to iso)
+ PBCs are more general than POCs

Pullbacks

Intersection

Pullback: a kind of generalized intersection ("fibered product")

- When a pullback exists, it is unique (up to iso).
- Categories Set and Graph have pullbacks.

Example: a FPBC

Example: a SqPO

Example: cloning and deleting nodes with a SqPO

Goal: cloning and deleting some nodes and their incident edges.
Node f is clone twice. Node a is deleted.

Outline

Graph transformation
 Algebraic graph transformation
 Double-pushout (DPO)
 Sesqui-pushout (SqPO)

Polarized sesqui-pushout (PSqPO)

Polarized graphs

There is a "GRAPH" OF POLARIZED GRAPHS:

- Pushouts of polarized graphs exist.

Graph \rightarrow PolGraph $\quad n \mapsto n^{ \pm}$

$$
\text { PolGraph } \rightarrow \text { Graph } \quad n^{ \pm}, n^{+}, n^{-}, n \mapsto n
$$

Graph is a reflective subcategory of PolGraph.
L, K are polarized graphs.

$$
L=\underbrace{e_{L}}_{n_{L} \pm} \quad K=n_{K, 1}^{+}
$$

$L \subseteq G$.

$K \subseteq D$.

$$
D=\frac{n_{K, 1}+}{e_{K} \downarrow^{2}}
$$

Polarized sesqui-pushout (PSqPO)

The LHS square is a final pullback complement of polarized graphs

+ FPBC of polarized graphs exist and are unique (up to iso)
+ polarization allows more flexible cloning
!!! In fact, only the interface is polarized!

Example: PSqPO

"if ...then...else..."
"Destructive" rules:

"Non-destructive" rules:

Conclusion

+SqPO and PSqPO exist and are unique (up to iso)
+SqPO and PSqPO are more general than DPO

- SqPO is not easy to define
- PSqPO is still less easy to define

CLIMT:

- A better understanding of PSqPO
- ...via a better understanding of SqPO?
- for various applications of "polarized" cloning
- ... involving some "complexified" graphs in the interface?

