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Semantics of computational effects?

The categorical semantics of functional programming languages is
based on the Curry-Howard-Lambek correspondence:

logic programming categories

propositions types objects

proofs terms morphisms

intuitionistic
logic

simply typed
lambda calculus

cartesian closed
categories

What about categorical semantics of non-functional programming
languages, i.e., languages with effects?

programming categories

effect categorical structure ??

(global) states ??

exceptions ??
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Effects as monads

Moggi [1989], cf. Haskell:

Programs of type B with a parameter of type A
are interpreted by morphisms from A to T (B).

p : A→ B is interpreted as p : A→ T (B)

States. p : A→ B is interpreted as p : A× St → B × St,
or p : A→ (B × St)St , where St is the set of states

Exceptions. p : A→ B is interpreted as p : A→ B + Exc ,
where Exc is the set of exceptions

effect monad (T , η, µ)

states T (X ) = (X × St)St

exceptions T (X ) = X + Exc

Note. What about the handling (catching) of exceptions?



Effects as Lawvere theories

Plotkin & Power [2001]:

Use the connection between monads and Lawvere theories
to give operations a primitive role, with the monad as derived

States. Loc is the set of locations, Val is the set of values
(St = ValLoc is the set of states)

Exceptions. Exc is the set of exceptions

effect Lawvere theory generated by

states
lookup : Val → Loc
update : 1→ Loc × Val
with 7 equations

exceptions
raisee : 0→ 1 for e ∈ Exc
with no equation

Note. What about the handling (catching) of exceptions?



Effects as zooms (= spans of logics)

Following Moggi’s remark:

p : A→ B is interpreted as p : A→ T (B)

More generally, we claim that an effect occurs when there is

an apparent mismatch between syntax and semantics

I Without effects:
I a unique logic for syntax and semantics

I With effects:
I a logic for the (apparent) syntax,
I another logic for the semantics,
I and a span of logics (= a zoom) relating them
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Imperative programming

In imperative programming the state of the memory may be
observed (lookup) and modified (update)

However, the state never appears explicitly in the syntax:
there no “type of states”

We define three specifications for dealing with states

*
F1





DECORATED: Σ0 � F2

��

APPARENT: Σ1 EXPLICIT: Σ2



The apparent specification

Notations

Loc = {X ,Y , ...} = the set of locations

1 = the unit type

From the syntax we get the apparent equational specification Σ1

For each location i ∈ Loc:

I a type Vi for the values of i

I

{
lookup li : 1→ Vi

update ui : Vi → 1

I and 2 equations

EFFECT: the intended semantics is not a model of Σ1.



The explicit specification

Notation

S = the “type of states”

From the semantics we get the explicit equational specification Σ2

For each location i ∈ Loc:

I a type Vi for the values of i

I

{
lookup li : S → Vi

update ui : Vi × S → S

I and 2 equations

EFFECT: the intended semantics is a model of Σ2, but
Σ2 does not fit with the syntax, because of the “type of states” S



The decorated specification

Decorations for functions:

• (0) for pure functions

• (1) for accessors (= inspectors)

• (2) for modifiers

AND decorations for equations

With the decorations we form the decorated specification Σ0

For each location i ∈ Loc:

I a type Vi for the values of i

I

{
lookup l

(1)
i : 1→ Vi

update u
(2)
i : Vi → 1

I and 2 equations



Three specifications

*
F1





DECORATED: Σ0

l
(1)
i : 1→ Vi

u
(2)
i : Vi → 1

2 equations

� F2

��

APPARENT: Σ1

li : 1→ Vi

ui : Vi → 1
2 equations

EXPLICIT: Σ2

li : S → Vi

ui : Vi × S → S
2 equations

I F1: from decorated to apparent: wipe out all decorations

I F2: from decorated to explicit: according to the decoration
(next slide)



Expansion of decorations

The expansion F2 provides the meaning of the decorations

Σ0
� F2 // Σ2

pure X
f (0)

// Y
� F2 // X

f // Y

accessor X
f (1)

// Y
� F2 // X × S

f // Y

modifier X
f (2)

// Y
� F2 // X × S

f // Y × S



Relevance of decorations

Claim. The decorated specification Σ0 is “the most relevant”:

I both the apparent and the explicit specification may be
recovered from Σ0

I Σ0 fits with the syntax (no type S)

I the intended semantics is a “decorated model” of Σ0

I “decorated proofs” may be performed from Σ0



A zoom for states

Claim. The 3 specifications are defined in 3 “logics”
related by a “span of logics”:

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I What is a logic?

I What is a morphism of logics?

We have designed an “abstract” category of logics
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A category of logics

A diagrammatic logic is a functor L
with a full and faithful right adjoint R [...]

S
L

⊥
// T

R

dd

I T: category of theories

I S: category of specifications

I Σ is a presentation of L(Σ) for every specification Σ

R full and faithful ⇐⇒
R(Θ) is a presentation of Θ for every theory Θ



Models and proofs

With respect to a logic:

S
L

⊥
// T

R

dd

I A model M of a specification Σ with values in a theory Θ is
a morphism LΣ→ Θ in T, i.e., a morphism Σ→ RΘ in S

[Gabriel-Zisman 1967] R is full and faithful ⇐⇒
(up to equiv.) L is a localization:
L makes some morphisms in S invertible in T

I A proof is a morphism in T [...]

Ex. Monadic equational logic

• T: categories

• S: “linear” sketches (= graphs with some composition)



Morphisms of logics

Based on arrow categories

I A morphism F : L1 → L2 is a pair of left adjoint functors
(FS ,FT ) such that L2 ◦ FS

∼= FT ◦ L1 [...]

S1
L1

⊥
//

FS a

��

T1

R1

ff

FT a

��

S2
L2

⊥
//

GS

\\

T2

R2

ff

GT

\\

This provides the category of diagrammatic logics



A zoom for states

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I L1 is the monadic equational logic:
a theory of L1 is a category

I a theory of L2 is a category with a distinguished object S and
with a functor −× S

I a theory of L0 is made of three embedded categories with the
same objects C(0) ⊆ C(1) ⊆ C(2), with 1,...

I F1 omits the decorations: it maps C(0) ⊆ C(1) ⊆ C(2) to C(2)

I F2 provides the meaning of the decorations
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Exceptions as dual of states?

Monads:

states T (X ) = (X × St)St

exceptions T (X ) = X + Exc

Lawvere theories:

states
lookup : Val → Loc
update : 1→ Loc × Val
with 7 equations

exceptions
raisee : 0→ 1 for e ∈ Exc
with no equation



Exceptions as dual of states!

When effects are described by zooms there is a duality
which provides a new point of view on exceptions

I States involve the functor X × S
for some distinguished “type of states” S

I Exceptions involve the functor X + E
for some distinguished “type of exceptions” E

Claim. The duality between X × S and X + E
extends as a duality between states and exceptions

li lookup dual to ri “raise”
ui update dual to hi “handle”



Dual of states: three specifications

Etype = the set of exceptional types

Pi = the type of parameters of type i , for each i ∈ Etype

0 = the empty type

E = the “type of exceptions”

*
F1





DECORATED: Σ0

r
(1)
i : Pi → 0

h
(2)
i : 0→ Pi

2 equations

� F2

��

APPARENT: Σ1

ri : Pi → 0
hi : 0→ Pi

2 equations

EXPLICIT: Σ2

ri : Pi → E
hi : E → Pi + E
2 equations



Dual of states: decorations

Decorations for functions:

• (0) for pure functions

• (1) for propagators

• (2) for handlers

AND decorations for equations

The expansion functor F2 provides the meaning of the decorations

pure X
f (0)

// Y
� F2 // X

f // Y

propagator X
f (1)

// Y
� F2 // X

f // Y + E

handler X
f (2)

// Y
� F2 // X + E

f // Y + E



Dual of states: a zoom for exceptions

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I L1 is the monadic equational logic:
a theory of L1 is a category

I a theory of L2 is a category with a distinguished object E and
with a functor −+ E

I a theory of L0 is made of three embedded categories with the
same objects C(0) ⊆ C(1) ⊆ C(2), with 0,...

I F1 omits the decorations: it maps C(0) ⊆ C(1) ⊆ C(2) to C(2)

I F2 provides the meaning of the decorations



Exceptions: interpretation of r
(1)
i and h

(2)
i

Claim.

• r
(1)
i and h

(2)
i are the core operations for raising and handling

exceptions of type i

• they are encapsulated inside operations raise
(1)
i ,X and handle

(1)
i ,f ,g

which are expanded as the usual operations raise and handle

The expansion and interpretation of r
(1)
i and h

(2)
i :

ri : Pi → E p 7→ e = ri (p)

hi : E → Pi + E

{
e = ri (p) 7→ p
e = rj(p) 7→ e (j 6= i)
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Exceptions: encapsulation of r
(1)
i

In raising an exception, the empty type is hidden

raise
(1)
i ,X = [ ]

(0)
X ◦ r

(1)
i

Pi
r
(1)
i

//

raise
(1)
i,X

((
0

[ ](0)
// X

I first r
(1)
i raises an exception of exceptional type i

I then [ ]
(0)
X converts this exception to type X



Exceptions: encapsulation of h
(2)
i

For handling an exception of type i raised by f (1) : X → Y ,
using g (1) : Pi → Y :

I f (1)(x) is called, if it returns y ∈ Y THEN return y

I otherwise some exception e is raised, then apply h
(2)
i

to test whether e = ri (p),
if so THEN return g (1)(p), ELSE return e

Y
id(0) ��

id(0)

**
X

f (1)
// Y

[id|g◦hi ]
(2)

// Y

0
[ ](0)

OO

h
(2)
i

// Pi g (1)

99

I finally, this handler [id|g ◦ hi ]
(2) ◦ f (1) is encapsulated

in a propagator handle
(1)
i ,f ,g

X
f (1)

//

handle
(1)
i,f ,g

))
Y

[id|g◦hi ]
(2)

// Y
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This talk.

I effect as an apparent mismatch between syntax and semantics

I the category of diagrammatic logics

I zooms (= spans of logics) for effects

I a new point of view on states

I a completely new point of view on exceptions with handling

I a duality between states and exceptions

Future work.

I other effects

I combining effects

I operational semantics
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