
States and exceptions are dual effects

Jean-Guillaume Dumas, Dominique Duval,
Laurent Fousse, Jean-Claude Reynaud

LJK, University of Grenoble

August 29, 2010
Workshop on Categorical Logic in Brno

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Semantics of computational effects?

The categorical semantics of functional programming languages is
based on the Curry-Howard-Lambek correspondence:

logic programming categories

propositions types objects

proofs terms morphisms

intuitionistic
logic

simply typed
lambda calculus

cartesian closed
categories

What about categorical semantics of non-functional programming
languages, i.e., languages with effects?

programming categories

effect categorical structure ??

(global) states ??

exceptions ??

Semantics of computational effects?

The categorical semantics of functional programming languages is
based on the Curry-Howard-Lambek correspondence:

logic programming categories

propositions types objects

proofs terms morphisms

intuitionistic
logic

simply typed
lambda calculus

cartesian closed
categories

What about categorical semantics of non-functional programming
languages, i.e., languages with effects?

programming categories

effect categorical structure ??

(global) states ??

exceptions ??

Effects as monads

Moggi [1989], cf. Haskell:

Programs of type B with a parameter of type A
are interpreted by morphisms from A to T (B).

p : A→ B is interpreted as p : A→ T (B)

States. p : A→ B is interpreted as p : A× St → B × St,
or p : A→ (B × St)St , where St is the set of states

Exceptions. p : A→ B is interpreted as p : A→ B + Exc ,
where Exc is the set of exceptions

effect monad (T , η, µ)

states T (X) = (X × St)St

exceptions T (X) = X + Exc

Note. What about the handling (catching) of exceptions?

Effects as Lawvere theories

Plotkin & Power [2001]:

Use the connection between monads and Lawvere theories
to give operations a primitive role, with the monad as derived

States. Loc is the set of locations, Val is the set of values
(St = ValLoc is the set of states)

Exceptions. Exc is the set of exceptions

effect Lawvere theory generated by

states
lookup : Val → Loc
update : 1→ Loc × Val
with 7 equations

exceptions
raisee : 0→ 1 for e ∈ Exc
with no equation

Note. What about the handling (catching) of exceptions?

Effects as zooms (= spans of logics)

Following Moggi’s remark:

p : A→ B is interpreted as p : A→ T (B)

More generally, we claim that an effect occurs when there is

an apparent mismatch between syntax and semantics

I Without effects:
I a unique logic for syntax and semantics

I With effects:
I a logic for the (apparent) syntax,
I another logic for the semantics,
I and a span of logics (= a zoom) relating them

Notes

About the authors
Our background lies in computer algebra: abstract algebra,
algorithmic, programmation (exact, efficient, generic,...) in
languages such as Axiom, C, C++,...

About terminology SPECIFICATION vs. THEORY
In this talk, a logical theory is “saturated”: every theorem that can
be deduced from the theory belongs to the theory. We call
specification a family of axioms and theorems that may be
non-saturated. A specification presents (= generates) a theory,
and several different specifications may present the same theory.

About terminology SYNTAX vs. SEMANTICS
In this talk, the syntax may include some axioms (logical
semantics) and the semantics is denotational

Notes

About the authors
Our background lies in computer algebra: abstract algebra,
algorithmic, programmation (exact, efficient, generic,...) in
languages such as Axiom, C, C++,...

About terminology SPECIFICATION vs. THEORY
In this talk, a logical theory is “saturated”: every theorem that can
be deduced from the theory belongs to the theory. We call
specification a family of axioms and theorems that may be
non-saturated. A specification presents (= generates) a theory,
and several different specifications may present the same theory.

About terminology SYNTAX vs. SEMANTICS
In this talk, the syntax may include some axioms (logical
semantics) and the semantics is denotational

Notes

About the authors
Our background lies in computer algebra: abstract algebra,
algorithmic, programmation (exact, efficient, generic,...) in
languages such as Axiom, C, C++,...

About terminology SPECIFICATION vs. THEORY
In this talk, a logical theory is “saturated”: every theorem that can
be deduced from the theory belongs to the theory. We call
specification a family of axioms and theorems that may be
non-saturated. A specification presents (= generates) a theory,
and several different specifications may present the same theory.

About terminology SYNTAX vs. SEMANTICS
In this talk, the syntax may include some axioms (logical
semantics) and the semantics is denotational

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Imperative programming

In imperative programming the state of the memory may be
observed (lookup) and modified (update)

However, the state never appears explicitly in the syntax:
there no “type of states”

We define three specifications for dealing with states

*
F1

DECORATED: Σ0 � F2

��

APPARENT: Σ1 EXPLICIT: Σ2

The apparent specification

Notations

Loc = {X ,Y , ...} = the set of locations

1 = the unit type

From the syntax we get the apparent equational specification Σ1

For each location i ∈ Loc:

I a type Vi for the values of i

I

{
lookup li : 1→ Vi

update ui : Vi → 1

I and 2 equations

EFFECT: the intended semantics is not a model of Σ1.

The explicit specification

Notation

S = the “type of states”

From the semantics we get the explicit equational specification Σ2

For each location i ∈ Loc:

I a type Vi for the values of i

I

{
lookup li : S → Vi

update ui : Vi × S → S

I and 2 equations

EFFECT: the intended semantics is a model of Σ2, but
Σ2 does not fit with the syntax, because of the “type of states” S

The decorated specification

Decorations for functions:

• (0) for pure functions

• (1) for accessors (= inspectors)

• (2) for modifiers

AND decorations for equations

With the decorations we form the decorated specification Σ0

For each location i ∈ Loc:

I a type Vi for the values of i

I

{
lookup l

(1)
i : 1→ Vi

update u
(2)
i : Vi → 1

I and 2 equations

Three specifications

*
F1

DECORATED: Σ0

l
(1)
i : 1→ Vi

u
(2)
i : Vi → 1

2 equations

� F2

��

APPARENT: Σ1

li : 1→ Vi

ui : Vi → 1
2 equations

EXPLICIT: Σ2

li : S → Vi

ui : Vi × S → S
2 equations

I F1: from decorated to apparent: wipe out all decorations

I F2: from decorated to explicit: according to the decoration
(next slide)

Expansion of decorations

The expansion F2 provides the meaning of the decorations

Σ0
� F2 // Σ2

pure X
f (0)

// Y
� F2 // X

f // Y

accessor X
f (1)

// Y
� F2 // X × S

f // Y

modifier X
f (2)

// Y
� F2 // X × S

f // Y × S

Relevance of decorations

Claim. The decorated specification Σ0 is “the most relevant”:

I both the apparent and the explicit specification may be
recovered from Σ0

I Σ0 fits with the syntax (no type S)

I the intended semantics is a “decorated model” of Σ0

I “decorated proofs” may be performed from Σ0

A zoom for states

Claim. The 3 specifications are defined in 3 “logics”
related by a “span of logics”:

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I What is a logic?

I What is a morphism of logics?

We have designed an “abstract” category of logics

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

A category of logics

A diagrammatic logic is a functor L
with a full and faithful right adjoint R [...]

S
L

⊥
// T

R

dd

I T: category of theories

I S: category of specifications

I Σ is a presentation of L(Σ) for every specification Σ

R full and faithful ⇐⇒
R(Θ) is a presentation of Θ for every theory Θ

Models and proofs

With respect to a logic:

S
L

⊥
// T

R

dd

I A model M of a specification Σ with values in a theory Θ is
a morphism LΣ→ Θ in T, i.e., a morphism Σ→ RΘ in S

[Gabriel-Zisman 1967] R is full and faithful ⇐⇒
(up to equiv.) L is a localization:
L makes some morphisms in S invertible in T

I A proof is a morphism in T [...]

Ex. Monadic equational logic

• T: categories

• S: “linear” sketches (= graphs with some composition)

Morphisms of logics

Based on arrow categories

I A morphism F : L1 → L2 is a pair of left adjoint functors
(FS ,FT) such that L2 ◦ FS

∼= FT ◦ L1 [...]

S1
L1

⊥
//

FS a

��

T1

R1

ff

FT a

��

S2
L2

⊥
//

GS

\\

T2

R2

ff

GT

\\

This provides the category of diagrammatic logics

A zoom for states

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I L1 is the monadic equational logic:
a theory of L1 is a category

I a theory of L2 is a category with a distinguished object S and
with a functor −× S

I a theory of L0 is made of three embedded categories with the
same objects C(0) ⊆ C(1) ⊆ C(2), with 1,...

I F1 omits the decorations: it maps C(0) ⊆ C(1) ⊆ C(2) to C(2)

I F2 provides the meaning of the decorations

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Exceptions as dual of states?

Monads:

states T (X) = (X × St)St

exceptions T (X) = X + Exc

Lawvere theories:

states
lookup : Val → Loc
update : 1→ Loc × Val
with 7 equations

exceptions
raisee : 0→ 1 for e ∈ Exc
with no equation

Exceptions as dual of states!

When effects are described by zooms there is a duality
which provides a new point of view on exceptions

I States involve the functor X × S
for some distinguished “type of states” S

I Exceptions involve the functor X + E
for some distinguished “type of exceptions” E

Claim. The duality between X × S and X + E
extends as a duality between states and exceptions

li lookup dual to ri “raise”
ui update dual to hi “handle”

Dual of states: three specifications

Etype = the set of exceptional types

Pi = the type of parameters of type i , for each i ∈ Etype

0 = the empty type

E = the “type of exceptions”

*
F1

DECORATED: Σ0

r
(1)
i : Pi → 0

h
(2)
i : 0→ Pi

2 equations

� F2

��

APPARENT: Σ1

ri : Pi → 0
hi : 0→ Pi

2 equations

EXPLICIT: Σ2

ri : Pi → E
hi : E → Pi + E
2 equations

Dual of states: decorations

Decorations for functions:

• (0) for pure functions

• (1) for propagators

• (2) for handlers

AND decorations for equations

The expansion functor F2 provides the meaning of the decorations

pure X
f (0)

// Y
� F2 // X

f // Y

propagator X
f (1)

// Y
� F2 // X

f // Y + E

handler X
f (2)

// Y
� F2 // X + E

f // Y + E

Dual of states: a zoom for exceptions

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I L1 is the monadic equational logic:
a theory of L1 is a category

I a theory of L2 is a category with a distinguished object E and
with a functor −+ E

I a theory of L0 is made of three embedded categories with the
same objects C(0) ⊆ C(1) ⊆ C(2), with 0,...

I F1 omits the decorations: it maps C(0) ⊆ C(1) ⊆ C(2) to C(2)

I F2 provides the meaning of the decorations

Exceptions: interpretation of r
(1)
i and h

(2)
i

Claim.

• r
(1)
i and h

(2)
i are the core operations for raising and handling

exceptions of type i

• they are encapsulated inside operations raise
(1)
i ,X and handle

(1)
i ,f ,g

which are expanded as the usual operations raise and handle

The expansion and interpretation of r
(1)
i and h

(2)
i :

ri : Pi → E p 7→ e = ri (p)

hi : E → Pi + E

{
e = ri (p) 7→ p
e = rj(p) 7→ e (j 6= i)

Exceptions: interpretation of r
(1)
i and h

(2)
i

Claim.

• r
(1)
i and h

(2)
i are the core operations for raising and handling

exceptions of type i

• they are encapsulated inside operations raise
(1)
i ,X and handle

(1)
i ,f ,g

which are expanded as the usual operations raise and handle

The expansion and interpretation of r
(1)
i and h

(2)
i :

ri : Pi → E p 7→ e = ri (p)

hi : E → Pi + E

{
e = ri (p) 7→ p
e = rj(p) 7→ e (j 6= i)

Exceptions: encapsulation of r
(1)
i

In raising an exception, the empty type is hidden

raise
(1)
i ,X = []

(0)
X ◦ r

(1)
i

Pi
r
(1)
i

//

raise
(1)
i,X

((
0

[](0)
// X

I first r
(1)
i raises an exception of exceptional type i

I then []
(0)
X converts this exception to type X

Exceptions: encapsulation of h
(2)
i

For handling an exception of type i raised by f (1) : X → Y ,
using g (1) : Pi → Y :

I f (1)(x) is called, if it returns y ∈ Y THEN return y

I otherwise some exception e is raised, then apply h
(2)
i

to test whether e = ri (p),
if so THEN return g (1)(p), ELSE return e

Y
id(0) ��

id(0)

**
X

f (1)
// Y

[id|g◦hi]
(2)

// Y

0
[](0)

OO

h
(2)
i

// Pi g (1)

99

I finally, this handler [id|g ◦ hi]
(2) ◦ f (1) is encapsulated

in a propagator handle
(1)
i ,f ,g

X
f (1)

//

handle
(1)
i,f ,g

))
Y

[id|g◦hi]
(2)

// Y

Exceptions: encapsulation of h
(2)
i

For handling an exception of type i raised by f (1) : X → Y ,
using g (1) : Pi → Y :

I f (1)(x) is called, if it returns y ∈ Y THEN return y

I otherwise some exception e is raised, then apply h
(2)
i

to test whether e = ri (p),
if so THEN return g (1)(p), ELSE return e

Y
id(0) ��

id(0)

**
X

f (1)
// Y

[id|g◦hi]
(2)

// Y

0
[](0)

OO

h
(2)
i

// Pi g (1)

99

I finally, this handler [id|g ◦ hi]
(2) ◦ f (1) is encapsulated

in a propagator handle
(1)
i ,f ,g

X
f (1)

//

handle
(1)
i,f ,g

))
Y

[id|g◦hi]
(2)

// Y

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

This talk.

I effect as an apparent mismatch between syntax and semantics

I the category of diagrammatic logics

I zooms (= spans of logics) for effects

I a new point of view on states

I a completely new point of view on exceptions with handling

I a duality between states and exceptions

Future work.

I other effects

I combining effects

I operational semantics

This talk.

I effect as an apparent mismatch between syntax and semantics

I the category of diagrammatic logics

I zooms (= spans of logics) for effects

I a new point of view on states

I a completely new point of view on exceptions with handling

I a duality between states and exceptions

Future work.

I other effects

I combining effects

I operational semantics

Some papers

I J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud.
States and exceptions are dual effects.
arXiv:1001.1662 (2010).

I J.-G. Dumas, D. Duval, J.-C. Reynaud.
Cartesian effect categories are Freyd-categories.
JSC (2010).

I C. Dominguez, D. Duval.
Diagrammatic logic applied to a parameterization process.
MSCS 20(04) p. 639-654 (2010).

I D. Duval, J.-C. Reynaud.
Dynamic logic and exceptions: an introduction.
Mathematics, Algorithms, Proofs. Dagstuhl Seminar 05021 (2005).

I D. Duval.
Diagrammatic Specifications.
MSCS (13) 857-890 (2003).

	Introduction
	States
	Diagrammatic logics
	Exceptions
	Conclusion

