States and exceptions are dual effects

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud

LJK, University of Grenoble

August 29, 2010 Workshop on Categorical Logic in Brno

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Semantics of computational effects?

The categorical semantics of functional programming languages is based on the Curry-Howard-Lambek correspondence:

logic	programming	categories
propositions	types	objects
proofs	terms	morphisms
intuitionistic	simply typed	cartesian closed
logic	lambda calculus	categories

Semantics of computational effects?

The categorical semantics of functional programming languages is based on the Curry-Howard-Lambek correspondence:

logic	programming	categories
propositions	types	objects
proofs	terms	morphisms
intuitionistic	simply typed	cartesian closed
logic	lambda calculus	categories

What about categorical semantics of non-functional programming languages, i.e., languages with effects?

programming	categories
effect	categorical structure ??
(global) states	??
exceptions	??

Effects as monads

Moggi [1989], cf. Haskell:

Programs of type B with a parameter of type A are interpreted by morphisms from A to T(B).

$$p:A o B$$
 is interpreted as $p:A o T(B)$

States. $p:A\to B$ is interpreted as $p:A\times St\to B\times St$, or $p:A\to (B\times St)^{St}$, where St is the set of states Exceptions. $p:A\to B$ is interpreted as $p:A\to B+Exc$, where Exc is the set of exceptions

effect	monad (\mathcal{T},η,μ)
states	$T(X) = (X \times St)^{St}$
exceptions	T(X) = X + Exc

Note. What about the handling (catching) of exceptions?

Effects as Lawvere theories

Plotkin & Power [2001]:

Use the connection between monads and Lawvere theories to give operations a primitive role, with the monad as derived

States. Loc is the set of locations, Val is the set of values $(St = Val^{Loc})$ is the set of states

Exceptions. *Exc* is the set of exceptions

effect	Lawvere theory generated by
	lookup : Val → Loc
states	update : $1 ightarrow extit{Loc} imes extit{Val}$
	with 7 equations
exceptions	$\textit{raise}_e: 0 \rightarrow 1 \; for \; e \in \textit{Exc}$
	with no equation

Note. What about the handling (catching) of exceptions?

Effects as zooms (= spans of logics)

Following Moggi's remark:

$$p:A o B$$
 is interpreted as $p:A o \mathcal{T}(B)$

More generally, we claim that an effect occurs when there is an apparent mismatch between syntax and semantics

- Without effects:
 - a unique logic for syntax and semantics
- With effects:
 - a logic for the (apparent) syntax,
 - another logic for the semantics,
 - ▶ and a span of logics (= a zoom) relating them

Notes

About the authors

Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, C, C++,...

Notes

About the authors

Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, C, C++,...

About terminology SPECIFICATION vs. THEORY

In this talk, a logical theory is "saturated": every theorem that can be deduced from the theory belongs to the theory. We call specification a family of axioms and theorems that may be non-saturated. A specification presents (= generates) a theory, and several different specifications may present the same theory.

Notes

About the authors

Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, C, C++,...

About terminology SPECIFICATION vs. THEORY

In this talk, a logical theory is "saturated": every theorem that can be deduced from the theory belongs to the theory. We call specification a family of axioms and theorems that may be non-saturated. A specification presents (= generates) a theory, and several different specifications may present the same theory.

About terminology SYNTAX vs. SEMANTICS

In this talk, the syntax may include some axioms (logical semantics) and the semantics is denotational

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Imperative programming

In imperative programming the state of the memory may be observed (lookup) and modified (update)

However, the state never appears explicitly in the syntax: there no "type of states"

We define three specifications for dealing with states

F₁

DECORATED: Σ_0

APPARENT: Σ_1

EXPLICIT: Σ_2

The apparent specification

Notations

$$Loc = \{X, Y, ...\}$$
 = the set of locations 1 = the unit type

From the syntax we get the apparent equational specification Σ_1 For each location $i \in Loc$:

- ightharpoonup a type V_i for the values of i
- $\begin{cases} \mathsf{lookup} & \mathit{I}_i : 1 \to \mathit{V}_i \\ \mathsf{update} & \mathit{u}_i : \mathit{V}_i \to 1 \end{cases}$
- and 2 equations

EFFECT: the intended semantics is not a model of Σ_1 .

The explicit specification

Notation

S =the "type of states"

From the semantics we get the explicit equational specification Σ_2 For each location $i \in Loc$:

- ightharpoonup a type V_i for the values of i
- $\begin{cases} \text{lookup} & I_i : S \to V_i \\ \text{update} & u_i : V_i \times S \to S \end{cases}$
- ▶ and 2 equations

EFFECT: the intended semantics is a model of Σ_2 , but Σ_2 does not fit with the syntax, because of the "type of states" S

The decorated specification

Decorations for functions:

- (0) for pure functions
- (1) for accessors (= inspectors)
- (2) for modifiers

AND decorations for equations

With the decorations we form the decorated specification Σ_0 For each location $i \in Loc$:

- ightharpoonup a type V_i for the values of i
- $\begin{cases} \mathsf{lookup} & \mathit{I}_{i}^{(1)}: 1 \to \mathit{V}_{i} \\ \mathsf{update} & \mathit{u}_{i}^{(2)}: \mathit{V}_{i} \to 1 \end{cases}$
- and 2 equations

Three specifications

APPARENT: $\overline{\Sigma}_1$ $I_i: 1 \to V_i$ $u_i: V_i \to 1$ 2 equations

- \triangleright F_1 : from decorated to apparent: wipe out all decorations
- ▶ F_2 : from decorated to explicit: according to the decoration (next slide)

Expansion of decorations

The expansion F_2 provides the meaning of the decorations

Relevance of decorations

Claim. The decorated specification Σ_0 is "the most relevant":

- \blacktriangleright both the apparent and the explicit specification may be recovered from Σ_0
- \triangleright Σ_0 fits with the syntax (no type S)
- ▶ the intended semantics is a "decorated model" of Σ_0
- "decorated proofs" may be performed from Σ_0

A zoom for states

Claim. The 3 specifications are defined in 3 "logics" related by a "span of logics":

- ► What is a logic?
- ► What is a morphism of logics?

We have designed an "abstract" category of logics

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

A category of logics

A diagrammatic logic is a functor L with a full and faithful right adjoint R [...]

$$S \xrightarrow{L} T$$

- ► **T**: category of theories
- ▶ **S**: category of specifications
- $ightharpoonup \Sigma$ is a presentation of $L(\Sigma)$ for every specification Σ

R full and faithful \iff

 $R(\Theta)$ is a presentation of Θ for every theory Θ

Models and proofs

With respect to a logic:

$$S \xrightarrow{L} T$$

- ▶ A model M of a specification Σ with values in a theory Θ is a morphism $L\Sigma \to \Theta$ in \mathbf{T} , i.e., a morphism $\Sigma \to R\Theta$ in \mathbf{S} [Gabriel-Zisman 1967] R is full and faithful \iff (up to equiv.) L is a localization: L makes some morphisms in \mathbf{S} invertible in \mathbf{T}
- ► A proof is a morphism in **T** [...]

Ex. Monadic equational logic

- T: categories
- **S**: "linear" sketches (= graphs with some composition)

Morphisms of logics

Based on arrow categories

▶ A morphism $F: L_1 \to L_2$ is a pair of left adjoint functors (F_S, F_T) such that $L_2 \circ F_S \cong F_T \circ L_1$ [...]

This provides the category of diagrammatic logics

A zoom for states

- ▶ L₁ is the monadic equational logic: a theory of L₁ is a category
- ▶ a theory of L_2 is a category with a distinguished object S and with a functor $\times S$
- ▶ a theory of L_0 is made of three embedded categories with the same objects $\mathbf{C}^{(0)} \subseteq \mathbf{C}^{(1)} \subseteq \mathbf{C}^{(2)}$, with 1,...
- $ightharpoonup F_1$ omits the decorations: it maps $\mathbf{C}^{(0)} \subseteq \mathbf{C}^{(1)} \subseteq \mathbf{C}^{(2)}$ to $\mathbf{C}^{(2)}$
- \triangleright F_2 provides the meaning of the decorations

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Exceptions as dual of states?

Monads:

states	$T(X) = (X \times St)^{St}$
exceptions	T(X) = X + Exc

Lawvere theories:

states	lookup : Val $ ightarrow$ Loc
	update : $1 o Loc imes V$ al
	with 7 equations
exceptions	$\textit{raise}_e: 0 \rightarrow 1 \; for \; e \in \textit{Exc}$
	with no equation

Exceptions as dual of states!

When effects are described by zooms there is a duality which provides a new point of view on exceptions

- ► States involve the functor X × S for some distinguished "type of states" S
- Exceptions involve the functor X + E for some distinguished "type of exceptions" E

Claim. The duality between $X \times S$ and X + E extends as a duality between states and exceptions

```
l_i lookup dual to r_i "raise" u_i update dual to h_i "handle"
```

Dual of states: three specifications

Etype = the set of exceptional types

 P_i = the type of parameters of type i, for each $i \in Etype$

0 =the empty type

E =the "type of exceptions"

DECORATED: Σ_0
$r_i^{(1)}: P_i \to 0$
$h_i^{(2)}:0\to P_i$
2 equations

APPARENT: Σ_1	
$r_i: P_i \rightarrow 0$	
$h_i: 0 \rightarrow P_i$	
0	

EXPLICIT: Σ_2	
$r_i: P_i \to E$	
$h_i: E \rightarrow P_i + E$	
2 equations	

Dual of states: decorations

Decorations for functions:

- (0) for pure functions
- (1) for propagators
- (2) for handlers

AND decorations for equations

The expansion functor F_2 provides the meaning of the decorations

Dual of states: a zoom for exceptions

- ▶ L₁ is the monadic equational logic: a theory of L₁ is a category
- ▶ a theory of L_2 is a category with a distinguished object E and with a functor -+E
- ▶ a theory of L_0 is made of three embedded categories with the same objects $\mathbf{C}^{(0)} \subseteq \mathbf{C}^{(1)} \subseteq \mathbf{C}^{(2)}$, with 0,...
- ▶ F_1 omits the decorations: it maps $\mathbf{C}^{(0)} \subseteq \mathbf{C}^{(1)} \subseteq \mathbf{C}^{(2)}$ to $\mathbf{C}^{(2)}$
- \triangleright F_2 provides the meaning of the decorations

Exceptions: interpretation of $r_i^{(1)}$ and $h_i^{(2)}$

Claim.

- $r_i^{(1)}$ and $h_i^{(2)}$ are the core operations for raising and handling exceptions of type i
- they are encapsulated inside operations $raise_{i,X}^{(1)}$ and $handle_{i,f,g}^{(1)}$ which are expanded as the usual operations raise and handle

Exceptions: interpretation of $r_i^{(1)}$ and $h_i^{(2)}$

Claim.

- $r_i^{(1)}$ and $h_i^{(2)}$ are the core operations for raising and handling exceptions of type i
- they are encapsulated inside operations $raise_{i,X}^{(1)}$ and $handle_{i,f,g}^{(1)}$ which are expanded as the usual operations raise and handle

The expansion and interpretation of $r_i^{(1)}$ and $h_i^{(2)}$:

$r_i: P_i \to E$	$p\mapsto e=r_i(p)$
$h_i: E \to P_i + E$	$\int e = r_i(p) \mapsto p$
$n_i \cdot L \rightarrow r_i + L$	$\begin{cases} e = r_j(p) \mapsto e (j \neq i) \end{cases}$

Exceptions: encapsulation of $r_i^{(1)}$

In raising an exception, the empty type is hidden

$$raise_{i,X}^{(1)} = []_X^{(0)} \circ r_i^{(1)}$$

- ▶ first $r_i^{(1)}$ raises an exception of exceptional type i
- ▶ then $[]_X^{(0)}$ converts this exception to type X

Exceptions: encapsulation of $h_i^{(2)}$

For handling an exception of type i raised by $f^{(1)}: X \to Y$, using $g^{(1)}: P_i \to Y$:

- ▶ $f^{(1)}(x)$ is called, if it returns $y \in Y$ THEN return y
- otherwise some exception e is raised, then apply $h_i^{(2)}$ to test whether $e = r_i(p)$, if so THEN return $g^{(1)}(p)$, ELSE return e

Exceptions: encapsulation of $h_i^{(2)}$

For handling an exception of type i raised by $f^{(1)}: X \to Y$, using $g^{(1)}: P_i \to Y$:

- ▶ $f^{(1)}(x)$ is called, if it returns $y \in Y$ THEN return y
- ▶ otherwise some exception e is raised, then apply $h_i^{(2)}$ to test whether $e = r_i(p)$, if so THEN return $g^{(1)}(p)$, ELSE return e

▶ finally, this handler $[id|g \circ \overset{\sim}{h_i}]^{(2)} \circ f^{(1)}$ is encapsulated in a propagator $handle_{i,f,g}^{(1)}$

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

This talk.

- effect as an apparent mismatch between syntax and semantics
- the category of diagrammatic logics
- zooms (= spans of logics) for effects
- a new point of view on states
- a completely new point of view on exceptions with handling
- a duality between states and exceptions

This talk.

- effect as an apparent mismatch between syntax and semantics
- the category of diagrammatic logics
- zooms (= spans of logics) for effects
- a new point of view on states
- a completely new point of view on exceptions with handling
- a duality between states and exceptions

Future work.

- other effects
- combining effects
- operational semantics

Some papers

- J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud. States and exceptions are dual effects. arXiv:1001.1662 (2010).
- ▶ J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. JSC (2010).
- C. Dominguez, D. Duval.
 Diagrammatic logic applied to a parameterization process.
 MSCS 20(04) p. 639-654 (2010).
- D. Duval, J.-C. Reynaud.
 Dynamic logic and exceptions: an introduction.
 Mathematics, Algorithms, Proofs. Dagstuhl Seminar 05021 (2005).
- D. Duval.
 Diagrammatic Specifications.
 MSCS (13) 857-890 (2003).