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Semantics of computational effects?

The categorical semantics of functional programming languages is
based on the Curry-Howard-Lambek correspondence:

logic programming categories

propositions types objects

proofs terms morphisms

intuitionistic
logic

simply typed
lambda calculus

cartesian closed
categories

What about categorical semantics of non-functional programming
languages, i.e., languages with effects?

programming categories

effect categorical structure ??

(global) states ??

exceptions ??



Effects as monads

Moggi [1989], cf. Haskell:

Programs of type B with a parameter of type A
are interpreted by morphisms from A to T (B).

p : A→ B is interpreted as p : A→ T (B)

States. p : A→ B is interpreted as p : A× St → B × St,
or p : A→ (B × St)St , where St is the set of states

Exceptions. p : A→ B is interpreted as p : A→ Exc ,
where Exc is the set of exceptions

effect monad (T , η, µ)

states T (X ) = (X × St)St

exceptions T (X ) = X + Exc

Note. What about the handling (catching) of exceptions?



Effects as Lawvere theories

Plotkin & Power [2001]:

Use the connection between monads and Lawvere theories
to give operations a primitive role, with the monad as derived

States. Loc is the set of locations, Val is the set of values
(St = ValLoc is the set of states)

Exceptions. Exc is the set of exceptions

effect Lawvere theory generated by

states
lookup : Val → Loc
update : 1→ Loc × Val
with 7 equations

exceptions
raisee : 0→ 1 for e ∈ Exc
with no equation

Note. What about the handling (catching) of exceptions?



Effects as zooms (= spans of logics)

Following Moggi’s remark:

p : A→ B is interpreted as p : A→ T (B)

More generally, we claim that an effect occurs when there is
an apparent mismatch between syntax and semantics

I Without effects: a unique logic for syntax and semantics

I With effects: a logic for the (apparent) syntax,
another logic for the semantics,
and a span of logics (= a zoom) relating them



Notes

About the authors

Our background lies in computer algebra: abstract algebra,
algorithmic, programmation (exact, efficient, generic,...) in
languages such as Axiom, C, C++,...
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In this talk, a logical theory is “saturated”: every theorem that can
be deduced from the theory belongs to the theory. We call
specification a family of axioms and theorems that may be
non-saturated. A specification presents (= generates) a theory,
and several different specifications may present the same theory.

About terminology SYNTAX vs. SEMANTICS
In this talk, the syntax may include some axioms (logical
semantics) and the semantics is denotational
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Imperative programming

In imperative programming the state of the memory may be
observed (lookup) and modified (update)
However, the state never appears explicitly in the syntax:
there no “type of states”

After updating a location X to a value n:

I a lookup to X returns n

I while a lookup to Y (6= X ) returns the same value as the
lookup to Y before updating X .

This can be written in a loose functorial style:{
lookupX (updateX (n)) = n
lookupY (updateX (n)) = lookupY ( )

This is now formalized, by defining three specifications



The apparent specification

Notations: Loc = {X ,Y , ...} = the set of locations
1 for “Unit”, with ( )A : A→ 1 for all A

From the syntax we get the apparent equational specification Σ1:
for each location i ∈ Loc:

I a type Vi for the values of i

I two functions:{
lookup li : 1→ Vi

update ui : Vi → 1

I equations:{
li ◦ ui = idVi

lj ◦ ui = lj ◦ ( )Vi
for all j 6= i

EFFECT: the intended semantics is not a model of Σ1.



The explicit specification

Let S be the “type of states”.

From the semantics we get the explicit equational specification Σ2:
For each location i ∈ Loc:

I Vi

I

{
li : S → Vi

ui : Vi × S → S

I

{
li ◦ ui = prVi

lj ◦ ui = lj ◦ prS for all j 6= i

EFFECT: the intended semantics is a model of Σ2, but
Σ2 does not fit with the syntax, because of the “type of states” S



Decorations

Let us introduce decorations for functions:

I (0) for pure functions

I (1) for accessors (= inspectors)

I (2) for modifiers

AND for equations:

I ∼ for weak equations (equality on values only)

I = for strong equations (equality on values and state)



The decorated specification

With the decorations we form the decorated specification Σ0:
for each location i ∈ Loc:

I Vi

I

{
l
(1)
i : 1→ Vi

u
(2)
i : Vi → 1

I

{
l
(1)
i ◦ u

(2)
i ∼ id

(0)
Vi

l
(1)
j ◦ u

(2)
i ∼ l

(1)
j ◦ ( )

(0)
Vi

for all j 6= i



Claim. The decorated specification Σ0 is “the most relevant”:

I both the apparent and the explicit specification may be
recovered from Σ0

I Σ0 fits with the syntax (no type S)

I the intended semantics is a “decorated model” of Σ0

I “decorated proofs” may be performed from Σ0



Three specifications

*
F1





l
(1)
i : 1→ Vi

u
(2)
i : Vi → 1

l
(1)
i ◦ u

(2)
i ∼ id

(0)
Vi

l
(1)
j ◦ u

(2)
i ∼ l

(1)
j ◦ ( )

(0)
Vi

DECORATED: Σ0

� F2

��

li : 1→ Vi

ui : Vi → 1
li ◦ ui = idVi

lj ◦ ui = lj ◦ ( )Vi

APPARENT: Σ1

li : S → Vi

ui : Vi × S → S
li ◦ ui = prVi

lj ◦ ui = lj ◦ prS

EXPLICIT: Σ2

I F1: from decorated to apparent: wipe out all decorations

I F2: from decorated to explicit: according to the decoration



Three logics

Claim: the 3 specifications are defined in 3 “logics” related by a
“span of logics”:

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I What is a logic?

I What is a morphism of logics?
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Diagrammatic logic

A diagrammatic logic is a functor L
with a full and faithful right adjoint R

S
L

⊥
// T

R

dd

induced by a morphism of limit sketches
(S and T are locally presentable categories)

(Y = the contravariant Yoneda functor)

ES
e //

YS||
��

ET

YT||
��

S
L

⊥
// T

R

ee

Ex. Monadic equational logic

I S: “linear” sketches (= graphs with some composition)

I T: categories

Ex. Equational logic

I S: finite product sketches

I T: categories with finite products
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Models

I T: category of theories

I S: category of specifications

I Σ is a presentation of L(Σ) for every specification Σ

R full and faithful ⇐⇒
R(Θ) is a presentation of Θ for every theory Θ

I a model M of a specification Σ with values in a theory Θ is
a morphism LΣ→ Θ in T, i.e., a morphism Σ→ RΘ in S

S
L

⊥
// T

R

ee

Σ

∈

M
// Θ

∈
Ex. Monadic equational logic with Θset the category of sets

I Σnat : N, z : 1→ N, s : N → N

I Mnat : Σnat → Θset : M(N) = N, M(z) = 0, M(s)(x) = x + 1



Inference rules

[Gabriel-Zisman 1967] R is full and faithful ⇐⇒ (up to equiv.)
L is a localization: L makes some morphisms in S invertible in T

I an entailment is a morphism τ in S with Lτ invertible in T:

Σ
τ //

oo ___ Σ′

I an instance of Σ0 in Σ is a cospan in S with τ an entailment:

Σ0
σ // Σ′ Σ

τoo
//_ _ _

I an inference rule with hypothesis H and conclusion C
is an instance of C in H:

H //
oo ___ H ′ Coo

Ex. Substitution rule
f = g

f ◦ h = g ◦ h
I H: f , g , h, f = g

I H ′: f , g , h, f = g , f ◦ h = g ◦ h with H //
oo __ H ′ the inclusion

I C : a, b, a = b with C // H ′ such that a 7→ f ◦ h, b 7→ g ◦h



Proofs

I the inference step with respect to an inference rule ρ : C → H
maps every instance ι : H → Σ to the instance ι ◦ ρ : C → Σ

Composition holds in the bicategory of spans over S,
which involves a pushout in S:

H //
oo ___

��

PO

H ′

��

=
Coo

~~}}}}}}}}

Σ //
oo ___ Σ′ //

oo ___ Σ′′

I an inference system is a morphism of limit sketches e such
that L is induced by e

I a proof is a morphism in T,
described in terms of a given inference system



Languages

Given a logic and a theory:

S
L

⊥
// T

R

ee

Θ

∈

denoted L

Θ

∈

in this talk, a language is:

I a syntax Σ: a specification Σ in S

I a semantics M : Σ→ Θ: a model M of Σ with values in Θ

S
L

⊥
// T

R

ee

Σ

∈

M
// Θ

∈
denoted L

Σ
M→ Θ

∈

Note.

I this syntax may include some axioms (logical semantics)

I this semantics is denotational
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Morphisms of logics

(Based on arrow categories.) A morphism F : L1 → L2 is a pair of
left adjoint functors (FS ,FT ) such that L2 ◦ FS

∼= FT ◦ L1

S1
L1

⊥
//

FS a

��

T1

R1

ff

FT a

��

S2
L2

⊥
//

GS

\\

T2

R2

ff

GT

\\

induced by a commutative square of limit sketches.

This provides the category of diagrammatic logics



Languages with effects

Given a span of logics (a zoom) and a theory Θ2 in L2

DECORATED
L0F1

tthhhhhhhh F2

**UUUUUUUU

APPARENT
L1

EXPLICIT
L2

Θ2

∈

a language with effects is a language (without effects!)
with respect to the decorated logic L0 and the theory Θ0 = G2Θ2

L0
F1

vvmmmmmmmmmmmm
F2

((QQQQQQQQQQQQ

L1 Σ0
M→ Θ0

∈

L2



Effect as mismatch between apparent syntax and semantics
From the decorated syntax Σ0 we get
an explicit syntax Σ2 in L2

and an apparent syntax Σ1 in L1

L0F1

tthhhhhhhhhhhh F2

**VVVVVVVVVVVV

L1 Σ0

∈

L2

Σ1 = F1Σ0

∈

Σ2 = F2Σ0

∈

The decorated semantics M : Σ0 → Θ0 is “equivalent” to
the explicit semantics M : Σ2 → Θ2 provided by the adjunction
but there is NO “equivalent” apparent semantics

L0F1

tthhhhhhhhhhhhhh F2

++VVVVVVVVVVVVVVV

L1 Σ0
M→ Θ0

∈

L2

Σ1 6
M→??

∈

Σ2
M→ Θ2

∈



A zoom for states

F1

��

DECORATED: L0
F2

��

APPARENT: L1 EXPLICIT: L2

I L1 is the monadic equational logic:
a theory of L1 is a category

I a theory of L2 is a category with a distinguished object S and
with a functor −× S

I a theory of L0 is made of three embedded categories with the
same objects C(0) ⊆ C(1) ⊆ C(2), with 1,...

I F1 omits the decorations: it maps C(0) ⊆ C(1) ⊆ C(2) to C(2)

I F2 provides the meaning of the decorations, it can be
described “pointwise” since it preserves colimits (next slide)



Expansion of decoration, for states

the expansion functor F2 provides the meaning of the decorations

L0
F2 // L2

X
f (0)

// Y
� F2 // X

f // Y

X
g (1)

// Y
� F2 // X × S

g
// Y

X
h(2)

// Y
� F2 // X × S

h // Y × S

X
h(2)

))
k(2)

55 Y

h(2)∼k(2)

� F2 // X × S
h

,,
k 22 Y × S

prY ◦h=prY ◦k
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Exceptions as dual of states?

Monads:

states T (X ) = (X × St)St

exceptions T (X ) = X + Exc

Lawvere theories:

states
lookup : Val → Loc
update : 1→ Loc × Val
with 7 equations

exceptions
raisee : 0→ 1 for e ∈ Exc
with no equation
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Exceptions as dual of states!

When effects are described by zooms there is a duality
which provides a new point of view on exceptions

I States involve the functor X × S
for some distinguished “type of states” S

I Exceptions involve the functor X + E
for some distinguished “type of exceptions” E

The well-known duality between X × S and X + E
extends as a duality between states and exceptions

states
l
(1)
i : 1→ Vi

u
(2)
i : Vi → 1

with 2 equations

exceptions
r
(1)
i : Pi → 0

h
(2)
i : 0→ Pi

with 2 equations



Decorations for exceptions

The same decorations for exceptions as for states,
with different meaning

The meaning of decorations for functions:

I (0) for pure functions

I (1) for propagators

I (2) for handlers

and for equations:

I ∼ for weak equations (equality on non-exceptional arguments)

I = for strong equations (equality on all arguments)



Expansion of decoration, for exceptions

The expansion functor F2 provides the meaning of the decorations
it is dual to the expansion functor F2 for states

L0
F2 // L2

X
f (0)

// Y
� F2 // X

f // Y

X
g (1)

// Y
� F2 // X

g
// Y + E

X
h(2)

// Y
� F2 // X + E

h // Y + E

X
h(2)

))
k(2)

55 Y

h(2)∼k(2)

� F2 // X + E
h

,,
k 22 Y + E

h◦injX =k◦injX



Exceptions as dual of states (informally)

I States (in a pointer-free language){
li ◦ ui = idVi

lj ◦ ui = lj ◦ ( )Vi

In order to lookup the value of a location, only the previous
updating of this location is required, everything that has been
executed since this previous updating is irrelevant

I Exceptions {
hi ◦ ri = idPi

hi ◦ rj = [ ]Pi
◦ rj

When some exception is raised, the following handler for this
type of exceptions is immediately executed, everything that is
written until this following handler is irrelevant



Exceptions as dual of states (formally)
Notations: Etype is the set of exceptional types

for each i ∈ Etype a type Pi for the parameters of type i
0 for “Empty”, with [ ]A : 0→ A for all A
E is the “type of exceptions”

Three specifications

*
F1





r
(1)
i : Pi → 0

h
(2)
i : 0→ Pi

h
(2)
i ◦ r

(1)
i = id

(0)
Pi

h
(2)
i ◦ r

(1)
j = [ ]

(0)
Pi
◦ r

(1)
j

DECORATED: Σ0

� F2

��

ri : Pi → 0
hi : 0→ Pi

hi ◦ ri = idPi

hi ◦ rj = [ ]Pi
◦ rj

APPARENT: Σ1

ri : Pi → E
hi : E → Pi + E
hi ◦ ri = injPi

hi ◦ rj = injE ◦ rj
EXPLICIT: Σ2



Exceptions: encapsulation of ri

Claim.

• r
(1)
i and h

(2)
i are the core operations for raising and handling

exceptions of type i

• they are encapsulated inside operations raise
(1)
i ,X and handle

(1)
i ,f ,g

which are expanded as the usual operations raise and handle

In raising an exception, the empty type is hidden

raise
(1)
i ,X = [ ]

(0)
X ◦ r

(1)
i : Pi → X

Pi
r
(1)
i

//

raise
(1)
i,X

((
0

[ ](0)
// X

first ri raises an exception of exceptional type i
then [ ]X converts this exception to type X



Exceptions: encapsulation of hi

The handling of exceptions is a powerful programming technique,
carefully encapsulated thanks to the property:
∀ f (2) : X → Y ∃! bf c(1) : X → Y f (2) ∼ bf c(1)

explicitly:
∀ f : X + E → Y + E ∃! bf c : X + E → Y + E
such that bf c = f on X and bf c propagates exceptions.

For all f (1) : X → Y and g (1) : Pi → Y
the handling by g (1) of an exception of type i raised in f (1) is

handle
(1)
i ,f ,g = b[idY |g ◦ hi ]

(2)
Y ◦ f (1)c(1) : X → Y

X
f (1)

//

handle
(1)
i,f ,g

))
Y

id(0)
// Y

0

[ ](0)

OO

h
(2)
i // Pi

g (1)

__



Some details
The handling by g (1) of an exception of type i raised in f (1) is

handle
(1)
i ,f ,g = b[idY |g ◦ hi ]

(2)
Y ◦ f (1)c(1) : X → Y

which means: first build [idY |g ◦ hi ]
(2) ◦ f (1)

Y
id(0)

��

id(0)

∼
((

X
f (1)

// Y
[id|g◦hi ]

(2)

// Y

0

[ ](0)
OO

h
(2)
i // Pi

g (1)
>>

=

then encapsulate [idY |g ◦ hi ]
(2)
Y ◦ f (1)

X
f (1)

//

handle
(1)
i,f ,g

∼
''

Y
[id|g◦hi ]

(2)

// Y



Duality, backwards

The rule for decorated sums builds [f
(0)
1 |f

(2)
2 ](2)

X1
��

f
(0)
1

%%
X1 + X2 Y

X2

OO

f
(2)
2

99

//
oo_ _ _

X1
��

f
(0)
1

∼
%%

X1 + X2
// Y

X2

OO

f
(2)
2

=
99

Dually, the rule for decorated products builds (f
(0)
1 , f

(2)
2 )(2)

Y1

X

f
(0)
1 00

f
(2)
2

..

Y1 × Y2

OO

��

Y2

//
oo_ _ _

Y1

X

f
(0)
1

∼
00

f
(2)
2

=
..

// Y1 × Y2

OO

��

Y2

This rule is the key for dealing with multivariate functions when
there are effects (an alternative to the strength of the monad)
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I operational semantics
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