States and exceptions are dual effects

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud

LJK, University of Grenoble

August 29, 2010 Workshop on Categorical Logic in Brno (this is a long version of the talk presented at the workshop)

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Semantics of computational effects?

The categorical semantics of functional programming languages is based on the Curry-Howard-Lambek correspondence:

logic	logic programming catego	
propositions	types	objects
proofs	terms	morphisms
intuitionistic	simply typed	cartesian closed
logic	lambda calculus	categories

What about categorical semantics of non-functional programming languages, i.e., languages with effects?

programming	categories
effect	categorical structure ??
(global) states	??
exceptions	??

Effects as monads

Moggi [1989], cf. Haskell:

Programs of type B with a parameter of type A are interpreted by morphisms from A to T(B).

$$p: A \rightarrow B$$
 is interpreted as $p: A \rightarrow T(B)$

States. $p: A \rightarrow B$ is interpreted as $p: A \times St \rightarrow B \times St$, or $p: A \rightarrow (B \times St)^{St}$, where St is the set of states Exceptions. $p: A \rightarrow B$ is interpreted as $p: A \rightarrow Exc$, where Exc is the set of exceptions

effect	monad (T, η, μ)
states	$T(X) = (X \times St)^{St}$
exceptions	T(X) = X + Exc

Note. What about the handling (catching) of exceptions?

Effects as Lawvere theories

Plotkin & Power [2001]:

Use the connection between monads and Lawvere theories to give operations a primitive role, with the monad as derived

States. Loc is the set of locations, Val is the set of values $(St = Val^{Loc}$ is the set of states)

Exceptions. Exc is the set of exceptions

effect	Lawvere theory generated by	
	lookup : Val \rightarrow Loc	
states	update : $1 ightarrow extsf{Loc} imes extsf{Val}$	
	with 7 equations	
exceptions	$\mathit{raise}_e: 0 ightarrow 1$ for $e \in \mathit{Exc}$	
	with no equation	

Note. What about the handling (catching) of exceptions?

Effects as zooms (= spans of logics)

Following Moggi's remark:

$$p: A \to B$$
 is interpreted as $p: A \to T(B)$

More generally, we claim that an effect occurs when there is an apparent mismatch between syntax and semantics

Without effects: a unique logic for syntax and semantics

With effects: a logic for the (apparent) syntax, another logic for the semantics, and a span of logics (= a zoom) relating them

Notes

About the authors

Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, C, C++,...

(ロ)、(型)、(E)、(E)、 E) の(の)

Notes

About the authors

Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, C, C++,...

About terminology SPECIFICATION vs. THEORY In this talk, a logical theory is "saturated": every theorem that can be deduced from the theory belongs to the theory. We call specification a family of axioms and theorems that may be non-saturated. A specification presents (= generates) a theory, and several different specifications may present the same theory.

Notes

About the authors

Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, C, C++,...

About terminology SPECIFICATION vs. THEORY

In this talk, a logical theory is "saturated": every theorem that can be deduced from the theory belongs to the theory. We call specification a family of axioms and theorems that may be non-saturated. A specification presents (= generates) a theory, and several different specifications may present the same theory.

About terminology SYNTAX vs. SEMANTICS In this talk, the syntax may include some axioms (logical semantics) and the semantics is denotational

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Imperative programming

In imperative programming the state of the memory may be observed (lookup) and modified (update) However, the state never appears explicitly in the syntax: there no "type of states"

After *updating* a location X to a value n:

- ▶ a lookup to X returns n
- ▶ while a lookup to Y (≠ X) returns the same value as the lookup to Y before updating X.

This can be written in a loose functorial style: $\begin{cases}
lookup_X(update_X(n)) = n \\
lookup_Y(update_X(n)) = lookup_Y()
\end{cases}$

This is now formalized, by defining three specifications

The apparent specification

Notations: $Loc = \{X, Y, ...\} =$ the set of locations 1 for "Unit", with ()_A : A \rightarrow 1 for all A

From the syntax we get the apparent equational specification Σ_1 : for each location $i \in Loc$:

- a type V_i for the values of i
- ▶ two functions: $\begin{cases} lookup \quad l_i : 1 \rightarrow V_i \\ update \quad u_i : V_i \rightarrow 1 \end{cases}$ ▶ equations: $\int l_i \circ u_i = id_{V_i}$
 - $\left\{ \begin{array}{l} l_i \circ u_i = \mathrm{id}_{V_i} \\ l_j \circ u_i = l_j \circ ()_{V_i} \text{ for all } j \neq i \end{array} \right.$

EFFECT: the intended semantics is not a model of Σ_1 .

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

The explicit specification

Let *S* be the "type of states".

From the semantics we get the explicit equational specification Σ_2 : For each location $i \in Loc$:

$$V_i$$

$$\begin{cases}
I_i : S \to V_i \\
u_i : V_i \times S \to S \\
I_i \circ u_i = \operatorname{pr}_{V_i} \\
I_j \circ u_i = I_j \circ \operatorname{pr}_S \text{ for all } j \neq i
\end{cases}$$

EFFECT: the intended semantics is a model of Σ_2 , but Σ_2 does not fit with the syntax, because of the "type of states" S

Decorations

Let us introduce decorations for functions:

- ▶ (0) for pure functions
- ▶ (1) for accessors (= inspectors)
- (2) for modifiers

AND for equations:

- $ightarrow \sim$ for weak equations (equality on values only)
- ▶ = for strong equations (equality on values and state)

The decorated specification

With the decorations we form the decorated specification Σ_0 : for each location $i \in Loc$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$V_{i} \\ \begin{cases} I_{i}^{(1)} : 1 \to V_{i} \\ u_{i}^{(2)} : V_{i} \to 1 \\ \begin{cases} I_{i}^{(1)} \circ u_{i}^{(2)} \sim \operatorname{id}_{V_{i}}^{(0)} \\ I_{j}^{(1)} \circ u_{i}^{(2)} \sim I_{j}^{(1)} \circ ()_{V_{i}}^{(0)} \text{ for all } j \neq i \end{cases}$$

Claim. The decorated specification Σ_0 is "the most relevant":

- both the apparent and the explicit specification may be recovered from Σ₀
- Σ_0 fits with the syntax (no type S)
- the intended semantics is a "decorated model" of Σ_0

• "decorated proofs" may be performed from Σ_0

Three specifications

▶ F₁: from decorated to apparent: wipe out all decorations

► F₂: from decorated to explicit: according to the decoration

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Three logics

Claim: the 3 specifications are defined in 3 "logics" related by a "span of logics":

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- What is a logic?
- What is a morphism of logics?

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Diagrammatic logic

A diagrammatic logic is a functor L with a full and faithful right adjoint R

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Diagrammatic logic

A diagrammatic logic is a functor L with a full and faithful right adjoint R

induced by a morphism of limit sketches (S and T are locally presentable categories)

(Y =the contravariant Yoneda functor)

イロト イポト イヨト イヨト

Diagrammatic logic

A diagrammatic logic is a functor L with a full and faithful right adjoint R

induced by a morphism of limit sketches (S and T are locally presentable categories)

(Y =the contravariant Yoneda functor)

Ex. Monadic equational logic

- ▶ S: "linear" sketches (= graphs with some composition)
- T: categories
- Ex. Equational logic
 - **S**: finite product sketches
 - **T**: categories with finite products

・ロト ・ 雪 ト ・ ヨ ト

Models

- ► **T**: category of theories
- ► S: category of specifications
- Σ is a presentation of $L(\Sigma)$ for every specification Σ
 - R full and faithful \iff R(Θ) is a presentation of Θ for every theory Θ
- ► a model *M* of a specification Σ with values in a theory Θ is a morphism $L\Sigma \rightarrow \Theta$ in **T**, i.e., a morphism $\Sigma \rightarrow R\Theta$ in **S**

Ex. Monadic equational logic with Θ_{set} the category of sets

•
$$\Sigma_{nat}$$
: $N, z: 1 \rightarrow N, s: N \rightarrow N$

 $\blacktriangleright M_{nat}: \Sigma_{nat} \to \Theta_{set}: M(N) = \mathbb{N}, M(z) = 0, M(s)(x) = x + 1$

Inference rules

[Gabriel-Zisman 1967] R is full and faithful \iff (up to equiv.) L is a localization: L makes some morphisms in **S** invertible in **T**

- ► an entailment is a morphism τ in **S** with $L\tau$ invertible in **T**: $\Sigma \xrightarrow{\tau}{\leftarrow} -- \Sigma'$
- ► an instance of Σ_0 in Σ is a cospan in **S** with τ an entailment: $\Sigma_0 \xrightarrow{\sigma} \Sigma' \xleftarrow{\tau}{\leftarrow - \rightarrow} \Sigma$
- an inference rule with hypothesis H and conclusion C is an instance of C in H:

$$H \xrightarrow[\leftarrow - -]{} H' \longleftarrow C$$

Ex. Substitution rule $\frac{f = g}{f \circ h = g \circ h}$

$$\blacktriangleright H: f, g, h, f = g$$

- ► H': $f, g, h, f = g, f \circ h = g \circ h$ with $H \xrightarrow{\leftarrow} H'$ the inclusion
- C: a, b, a = b with $C \longrightarrow H'$ such that $a \mapsto f \circ h$, $b \mapsto g \circ h$

Proofs

• the inference step with respect to an inference rule ρ : C → H maps every instance ι : H → Σ to the instance ι ∘ ρ : C → Σ Composition holds in the bicategory of spans over S, which involves a pushout in S:

- an inference system is a morphism of limit sketches e such that L is induced by e
- a proof is a morphism in T, described in terms of a given inference system

Languages

Given a logic and a theory:

in this talk, a language is:

- a syntax Σ : a specification Σ in **S**
- ▶ a semantics $M : \Sigma \rightarrow \Theta$: a model M of Σ with values in Θ

Languages

Given a logic and a theory:

in this talk, a language is:

- a syntax Σ : a specification Σ in **S**
- ▶ a semantics $M : \Sigma \rightarrow \Theta$: a model M of Σ with values in Θ

Note.

this syntax may include some axioms (logical semantics)

this semantics is denotational

Morphisms of logics

(Based on arrow categories.) A morphism $F : L_1 \to L_2$ is a pair of left adjoint functors (F_S, F_T) such that $L_2 \circ F_S \cong F_T \circ L_1$

induced by a commutative square of limit sketches. This provides the category of diagrammatic logics

Languages with effects

a language with effects is a language (without effects!) with respect to the decorated logic L_0 and the theory $\Theta_0 = G_2 \Theta_2$

Effect as mismatch between apparent syntax and semantics

From the decorated syntax Σ_0 we get an explicit syntax Σ_2 in L_2 and an apparent syntax Σ_1 in L_1

The decorated semantics $M : \Sigma_0 \to \Theta_0$ is "equivalent" to the explicit semantics $M : \Sigma_2 \to \Theta_2$ provided by the adjunction but there is NO "equivalent" apparent semantics

A zoom for states

- L₁ is the monadic equational logic: a theory of L₁ is a category
- ▶ a theory of L_2 is a category with a distinguished object S and with a functor $\times S$
- A theory of L₀ is made of three embedded categories with the same objects C⁽⁰⁾ ⊆ C⁽¹⁾ ⊆ C⁽²⁾, with 1,...
- F_1 omits the decorations: it maps $C^{(0)} \subseteq C^{(1)} \subseteq C^{(2)}$ to $C^{(2)}$
- F₂ provides the meaning of the decorations, it can be described "pointwise" since it preserves colimits (next slide)

Expansion of decoration, for states

the expansion functor F_2 provides the meaning of the decorations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

Exceptions as dual of states?

Monads:

states	$T(X) = (X \times St)^{St}$
exceptions	T(X) = X + Exc

Exceptions as dual of states?

Monads:

states	$T(X) = (X \times St)^{St}$
exceptions	T(X) = X + Exc

Lawvere theories:

	lookup : Val \rightarrow Loc
states	update : 1 $ ightarrow$ Loc $ imes$ Val
	with 7 equations
exceptions	$\mathit{raise}_e: 0 ightarrow 1$ for $e \in \mathit{Exc}$
	with no equation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Exceptions as dual of states!

When effects are described by zooms there is a duality which provides a new point of view on exceptions

- States involve the functor X × S for some distinguished "type of states" S
- Exceptions involve the functor X + E for some distinguished "type of exceptions" E

The well-known duality between $X \times S$ and X + E extends as a duality between states and exceptions

states	$egin{aligned} & I_i^{(1)}: 1 ightarrow V_i \ & u_i^{(2)}: V_i ightarrow 1 \ & ext{with 2 equations} \end{aligned}$
exceptions	$egin{aligned} r_i^{(1)} &: P_i ightarrow 0 \ h_i^{(2)} &: 0 ightarrow P_i \ with 2 \ ext{equations} \end{aligned}$

Decorations for exceptions

The same decorations for exceptions as for states, with different meaning

The meaning of decorations for functions:

- (0) for pure functions
- ▶ (1) for propagators
- ► (2) for handlers

and for equations:

 \blacktriangleright ~ for weak equations (equality on non-exceptional arguments)

for strong equations (equality on all arguments)

Expansion of decoration, for exceptions

The expansion functor F_2 provides the meaning of the decorations it is dual to the expansion functor F_2 for states

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exceptions as dual of states (informally)

States (in a pointer-free language)

$$\left\{\begin{array}{l} I_i \circ u_i = \operatorname{id}_{V_i} \\ I_j \circ u_i = I_j \circ ()_{V_i} \end{array}\right.$$

In order to lookup the value of a location, only the **previous** updating of *this* location is required, everything that has been executed since this previous updating is irrelevant

Exceptions

$$\begin{cases} h_i \circ r_i = id_{P_i} \\ h_i \circ r_j = []_{P_i} \circ r_j \end{cases}$$

When some exception is raised, the **following** handler for *this* type of exceptions is immediately executed, everything that is written until this following handler is irrelevant

Exceptions as dual of states (formally)

Notations: *Etype* is the set of exceptional types for each $i \in Etype$ a type P_i for the parameters of type i0 for "Empty", with $[]_A : 0 \rightarrow A$ for all AE is the "type of exceptions"

Three specifications

Exceptions: encapsulation of r_i

Claim.

- $r_i^{(1)}$ and $h_i^{(2)}$ are the core operations for raising and handling exceptions of type i
- they are encapsulated inside operations $raise_{i,X}^{(1)}$ and $handle_{i,f,g}^{(1)}$ which are expanded as the usual operations raise and handle

In raising an exception, the empty type is hidden

$$\mathit{raise}_{i,X}^{(1)} = []_X^{(0)} \circ r_i^{(1)} : P_i
ightarrow X$$

first r_i raises an exception of exceptional type ithen []_X converts this exception to type X

Exceptions: encapsulation of h_i

The handling of exceptions is a powerful programming technique, carefully encapsulated thanks to the property:

 $\forall f^{(2)} : X \to Y \quad \exists ! \ \lfloor f \rfloor^{(1)} : X \to Y \quad f^{(2)} \sim \lfloor f \rfloor^{(1)}$ explicitly:

 $\forall f: X + E \to Y + E \exists ! [f]: X + E \to Y + E$

such that $\lfloor f \rfloor = f$ on X and $\lfloor f \rfloor$ propagates exceptions.

For all $f^{(1)}: X \to Y$ and $g^{(1)}: P_i \to Y$ the handling by $g^{(1)}$ of an exception of type *i* raised in $f^{(1)}$ is

$$\mathit{handle}_{i,f,g}^{(1)} = \lfloor [\mathtt{id}_{Y} | g \circ h_i]_{Y}^{(2)} \circ f^{(1)}
floor^{(1)} : X
ightarrow Y$$

Some details

The handling by $g^{(1)}$ of an exception of type *i* raised in $f^{(1)}$ is

$$\mathit{handle}_{i,f,g}^{(1)} = \lfloor [\operatorname{id}_{Y} | g \circ h_{i}]_{Y}^{(2)} \circ f^{(1)} \rfloor^{(1)} : X \to Y$$

which means: first build $[id_Y|g \circ h_i]^{(2)} \circ f^{(1)}$

then encapsulate $[\operatorname{id}_Y | g \circ h_i]_Y^{(2)} \circ f^{(1)}$

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Duality, backwards

The rule for decorated sums builds $[f_1^{(0)}|f_2^{(2)}]^{(2)}$

・ロト ・ 雪 ト ・ ヨ ト

э

Duality, backwards

The rule for decorated sums builds $[f_1^{(0)}|f_2^{(2)}]^{(2)}$

Dually, the rule for decorated products builds $(f_1^{(0)}, f_2^{(2)})^{(2)}$

This rule is the key for dealing with multivariate functions when there are effects (an alternative to the strength of the monad)

900

э

Outline

Introduction

States

Diagrammatic logics

Exceptions

Conclusion

This talk.

- effect as an apparent mismatch between syntax and semantics
- the category of diagrammatic logics
- zooms (= spans of logics) for effects
- a new point of view on states
- a completely new point of view on exceptions with handling

a duality between states and exceptions

This talk.

- effect as an apparent mismatch between syntax and semantics
- the category of diagrammatic logics
- zooms (= spans of logics) for effects
- a new point of view on states
- a completely new point of view on exceptions with handling

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

a duality between states and exceptions

Future work.

- other effects
- combining effects
- operational semantics

Some papers

- J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud. States and exceptions are dual effects. arXiv:1001.1662 (2010).
- J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. JSC (2010).
- C. Dominguez, D. Duval.
 Diagrammatic logic applied to a parameterization process.
 MSCS 20(04) p. 639-654 (2010).
- D. Duval, J.-C. Reynaud. Dynamic logic and exceptions: an introduction. Mathematics, Algorithms, Proofs. Dagstuhl Seminar 05021 (2005).

 D. Duval. Diagrammatic Specifications. MSCS (13) 857-890 (2003).