# States and exceptions are dual effects 

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud

LJK, University of Grenoble

August 29, 2010
Workshop on Categorical Logic in Brno
(this is a long version of the talk presented at the workshop)

## Outline

Introduction

## States

Diagrammatic logics

Exceptions

Conclusion

## Semantics of computational effects?

The categorical semantics of functional programming languages is based on the Curry-Howard-Lambek correspondence:

| logic | programming | categories |
| :---: | :---: | :---: |
| propositions | types | objects |
| proofs | terms | morphisms |
| intuitionistic | simply typed | cartesian closed |
| logic | lambda calculus | categories |

What about categorical semantics of non-functional programming languages, i.e., languages with effects?

| programming | categories |
| :---: | :---: |
| effect | categorical structure ?? |
| (global) states | ?? |
| exceptions | $? ?$ |

## Effects as monads

Moggi [1989], cf. Haskell:
Programs of type $B$ with a parameter of type $A$ are interpreted by morphisms from $A$ to $T(B)$.

$$
p: A \rightarrow B \text { is interpreted as } p: A \rightarrow T(B)
$$

States. $p: A \rightarrow B$ is interpreted as $p: A \times S t \rightarrow B \times S t$, or $p: A \rightarrow(B \times S t)^{S t}$, where $S t$ is the set of states Exceptions. $p: A \rightarrow B$ is interpreted as $p: A \rightarrow$ Exc, where Exc is the set of exceptions

| effect | monad $(T, \eta, \mu)$ |
| :---: | :---: |
| states | $T(X)=(X \times S t)^{S t}$ |
| exceptions | $T(X)=X+E x c$ |

Note. What about the handling (catching) of exceptions?

## Effects as Lawvere theories

Plotkin \& Power [2001]:
Use the connection between monads and Lawvere theories to give operations a primitive role, with the monad as derived

States. Loc is the set of locations, Val is the set of values (St $=V_{a l}{ }^{\text {Loc }}$ is the set of states)
Exceptions. Exc is the set of exceptions

| effect | Lawvere theory generated by |
| :---: | :--- |
| states | lookup $: V a l \rightarrow L o c$ <br> update $: 1 \rightarrow L o c \times V a l$ <br> with 7 equations |
| exceptions | raise $: 0 \rightarrow 1$ for $e \in E \times c$ <br> with no equation |

Note. What about the handling (catching) of exceptions?

## Effects as zooms (= spans of logics)

Following Moggi's remark:

$$
p: A \rightarrow B \text { is interpreted as } p: A \rightarrow T(B)
$$

More generally, we claim that an effect occurs when there is an apparent mismatch between syntax and semantics

- Without effects: a unique logic for syntax and semantics
- With effects: a logic for the (apparent) syntax, another logic for the semantics, and a span of logics (= a zoom) relating them


## Notes

About the authors
Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, $\mathrm{C}, \mathrm{C}++, \ldots$

## Notes

About the authors
Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, $\mathrm{C}, \mathrm{C}++, \ldots$

About terminology SPECIFICATION vs. THEORY In this talk, a logical theory is "saturated": every theorem that can be deduced from the theory belongs to the theory. We call specification a family of axioms and theorems that may be non-saturated. A specification presents (= generates) a theory, and several different specifications may present the same theory.

## Notes

About the authors
Our background lies in computer algebra: abstract algebra, algorithmic, programmation (exact, efficient, generic,...) in languages such as Axiom, $\mathrm{C}, \mathrm{C}++, \ldots$

About terminology SPECIFICATION vs. THEORY In this talk, a logical theory is "saturated": every theorem that can be deduced from the theory belongs to the theory. We call specification a family of axioms and theorems that may be non-saturated. A specification presents (= generates) a theory, and several different specifications may present the same theory.
About terminology SYNTAX vs. SEMANTICS
In this talk, the syntax may include some axioms (logical semantics) and the semantics is denotational

## Outline

## Introduction

States

Diagrammatic logics

Exceptions

Conclusion


## Imperative programming

In imperative programming the state of the memory may be observed (lookup) and modified (update) However, the state never appears explicitly in the syntax: there no "type of states"

After updating a location $X$ to a value $n$ :

- a lookup to $X$ returns $n$
- while a lookup to $Y(\neq X)$ returns the same value as the lookup to $Y$ before updating $X$.
This can be written in a loose functorial style:
$\left\{\operatorname{lookup}_{X}\left(\operatorname{update}_{X}(n)\right)=n\right.$
$\left\{\operatorname{lookup}_{Y}\left(\operatorname{update}_{X}(n)\right)=\right.$ lookup $_{Y}()$
This is now formalized, by defining three specifications


## The apparent specification

Notations: Loc $=\{X, Y, \ldots\}=$ the set of locations
1 for "Unit", with ( $)_{A}: A \rightarrow 1$ for all $A$
From the syntax we get the apparent equational specification $\Sigma_{1}$ : for each location $i \in$ Loc:

- a type $V_{i}$ for the values of $i$
- two functions:

$$
\begin{cases}\text { lookup } & I_{i}: 1 \rightarrow V_{i} \\ \text { update } & u_{i}: V_{i} \rightarrow 1\end{cases}
$$

- equations:

$$
\left\{\begin{array}{l}
l_{i} \circ u_{i}=\operatorname{id} v_{i} \\
l_{j} \circ u_{i}=l_{j} \circ() v_{i} \text { for all } j \neq i
\end{array}\right.
$$

EFFECT: the intended semantics is not a model of $\Sigma_{1}$.

## The explicit specification

Let $S$ be the "type of states".
From the semantics we get the explicit equational specification $\Sigma_{2}$ :
For each location $i \in$ Loc:

- $V_{i}$
- $\left\{\begin{array}{l}l_{i}: S \rightarrow V_{i} \\ u_{i}: V_{i} \times S \rightarrow S\end{array}\right.$
- $\left\{\begin{array}{l}l_{i} \circ u_{i}=\mathrm{pr}_{V_{i}} \\ l_{j} \circ u_{i}=l_{j} \circ \mathrm{pr}_{S} \text { for all } j \neq i\end{array}\right.$

EFFECT: the intended semantics is a model of $\Sigma_{2}$, but
$\Sigma_{2}$ does not fit with the syntax, because of the "type of states" $S$

## Decorations

Let us introduce decorations for functions:

- (0) for pure functions
- (1) for accessors (= inspectors)
- (2) for modifiers

AND for equations:

- ~ for weak equations (equality on values only)
- = for strong equations (equality on values and state)


## The decorated specification

With the decorations we form the decorated specification $\Sigma_{0}$ : for each location $i \in L o c$ :

- $V_{i}$
- $\left\{\begin{array}{l}l_{i}^{(1)}: 1 \rightarrow V_{i} \\ u_{i}^{(2)}: V_{i} \rightarrow 1\end{array}\right.$
- $\left\{\begin{array}{l}l_{i}^{(1)} \circ u_{i}^{(2)} \sim \operatorname{id}_{V_{i}}^{(0)} \\ l_{j}^{(1)} \circ u_{i}^{(2)} \sim l_{j}^{(1)} \circ()_{V_{i}}^{(0)} \text { for all } j \neq i\end{array}\right.$

Claim. The decorated specification $\Sigma_{0}$ is "the most relevant":

- both the apparent and the explicit specification may be recovered from $\Sigma_{0}$
- $\Sigma_{0}$ fits with the syntax (no type $S$ )
- the intended semantics is a "decorated model" of $\Sigma_{0}$
- "decorated proofs" may be performed from $\Sigma_{0}$


## Three specifications



$$
\begin{aligned}
& l_{i}: 1 \rightarrow V_{i} \\
& u_{i}: V_{i} \rightarrow 1 \\
& l_{i} \circ u_{i}=i d_{i} \\
& l_{j} \circ u_{i}=I_{j} \circ() v_{i} \\
& \hline \text { APPARENT: } \Sigma_{1} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& I_{i}: S \rightarrow V_{i} \\
& u_{i}: V_{i} \times S \rightarrow S \\
& I_{i} \circ u_{i}=\operatorname{pr}_{V_{i}} \\
& I_{j} \circ u_{i}=I_{j} \circ \mathrm{pr}_{S} \\
& \hline \text { EXPLICIT: } \Sigma_{2}
\end{aligned}
$$

- $F_{1}$ : from decorated to apparent: wipe out all decorations
- $F_{2}$ : from decorated to explicit: according to the decoration


## Three logics

Claim: the 3 specifications are defined in 3 "logics" related by a "span of logics":


- What is a logic?
- What is a morphism of logics?


## Outline

## Introduction

## States

Diagrammatic logics

## Exceptions

## Conclusion

## Diagrammatic logic

A diagrammatic logic is a functor $L$ with a full and faithful right adjoint $R$


## Diagrammatic logic

A diagrammatic logic is a functor $L$ with a full and faithful right adjoint $R$

induced by a morphism of limit sketches
( $\mathbf{S}$ and $\mathbf{T}$ are locally presentable categories)
( $Y=$ the contravariant Yoneda functor)


## Diagrammatic logic

A diagrammatic logic is a functor $L$ with a full and faithful right adjoint $R$

induced by a morphism of limit sketches
( $\mathbf{S}$ and $\mathbf{T}$ are locally presentable categories)
( $Y=$ the contravariant Yoneda functor)

Ex. Monadic equational logic


- S: "linear" sketches (= graphs with some composition)
- T: categories

Ex. Equational logic

- S: finite product sketches
- T: categories with finite products


## Models

- T: category of theories
- S: category of specifications
- $\Sigma$ is a presentation of $L(\Sigma)$ for every specification $\Sigma$
$R$ full and faithful $\Longleftrightarrow$
$R(\Theta)$ is a presentation of $\Theta$ for every theory $\Theta$
- a model $M$ of a specification $\Sigma$ with values in a theory $\Theta$ is a morphism $L \Sigma \rightarrow \Theta$ in $\mathbf{T}$, i.e., a morphism $\Sigma \rightarrow R \Theta$ in $\mathbf{S}$


Ex. Monadic equational logic with $\Theta_{\text {set }}$ the category of sets

- $\Sigma_{\text {nat }}: N, z: 1 \rightarrow N, s: N \rightarrow N$
- $M_{n a t}: \Sigma_{\text {nat }} \rightarrow \Theta_{\text {set }}: M(N)=\mathbb{N}, M(z)=0, M(s)(x)=x+1$


## Inference rules

[Gabriel-Zisman 1967] $R$ is full and faithful $\Longleftrightarrow$ (up to equiv.)
$L$ is a localization: $L$ makes some morphisms in $\mathbf{S}$ invertible in $\mathbf{T}$

- an entailment is a morphism $\tau$ in $\mathbf{S}$ with $L \tau$ invertible in $\mathbf{T}$ :

$$
\Sigma \underset{\leftarrow-\longrightarrow}{\rightleftarrows} \Sigma^{\prime}
$$

- an instance of $\Sigma_{0}$ in $\Sigma$ is a cospan in $\mathbf{S}$ with $\tau$ an entailment:

$$
\Sigma_{0} \xrightarrow{\sigma} \Sigma^{\prime} \stackrel{\tau}{\leftrightarrows-\rightarrow} \Sigma
$$

- an inference rule with hypothesis $H$ and conclusion $C$ is an instance of C in H :

$$
H \rightleftarrows H^{\prime} \longleftarrow C
$$

Ex. Substitution rule $\frac{f=g}{f \circ h=g \circ h}$

- $H: f, g, h, f=g$
- $H^{\prime}: f, g, h, f=g, f \circ h=g \circ h$ with $H \rightleftarrows H^{\prime}$ the inclusion
- $C: a, b, a=b$ with $C \longrightarrow H^{\prime}$ such that $a \mapsto f \circ h, b \mapsto g \circ h$


## Proofs

- the inference step with respect to an inference rule $\rho: C \rightarrow H$ maps every instance $\iota: H \rightarrow \Sigma$ to the instance $\iota \circ \rho: C \rightarrow \Sigma$ Composition holds in the bicategory of spans over $\mathbf{S}$, which involves a pushout in $\mathbf{S}$ :

- an inference system is a morphism of limit sketches e such that $L$ is induced by $e$
- a proof is a morphism in $\mathbf{T}$, described in terms of a given inference system


## Languages

Given a logic and a theory:

in this talk, a language is:

- a syntax $\Sigma$ : a specification $\Sigma$ in $\mathbf{S}$
- a semantics $M: \Sigma \rightarrow \Theta$ : a model $M$ of $\Sigma$ with values in $\Theta$



## Languages

Given a logic and a theory:

in this talk, a language is:

- a syntax $\Sigma$ : a specification $\Sigma$ in $\mathbf{S}$
- a semantics $M: \Sigma \rightarrow \Theta$ : a model $M$ of $\Sigma$ with values in $\Theta$


Note.

- this syntax may include some axioms (logical semantics)
- this semantics is denotational


## Morphisms of logics

(Based on arrow categories.) A morphism $F: L_{1} \rightarrow L_{2}$ is a pair of left adjoint functors $\left(F_{S}, F_{T}\right)$ such that $L_{2} \circ F_{S} \cong F_{T} \circ L_{1}$

induced by a commutative square of limit sketches.
This provides the category of diagrammatic logics

## Languages with effects

Given a span of logics (a zoom) and a theory $\Theta_{2}$ in $L_{2}$

a language with effects is a language (without effects!) with respect to the decorated logic $L_{0}$ and the theory $\Theta_{0}=G_{2} \Theta_{2}$


## Effect as mismatch between apparent syntax and semantics

From the decorated syntax $\Sigma_{0}$ we get an explicit syntax $\Sigma_{2}$ in $L_{2}$ and an apparent syntax $\Sigma_{1}$ in $L_{1}$


The decorated semantics $M: \Sigma_{0} \rightarrow \Theta_{0}$ is "equivalent" to the explicit semantics $M: \Sigma_{2} \rightarrow \Theta_{2}$ provided by the adjunction but there is NO "equivalent" apparent semantics


## A zoom for states



- $L_{1}$ is the monadic equational logic: a theory of $L_{1}$ is a category
- a theory of $L_{2}$ is a category with a distinguished object $S$ and with a functor $-\times S$
- a theory of $L_{0}$ is made of three embedded categories with the same objects $\mathbf{C}^{(0)} \subseteq \mathbf{C}^{(1)} \subseteq \mathbf{C}^{(2)}$, with $1, \ldots$
- $F_{1}$ omits the decorations: it maps $\mathbf{C}^{(0)} \subseteq \mathbf{C}^{(1)} \subseteq \mathbf{C}^{(2)}$ to $\mathbf{C}^{(2)}$
- $F_{2}$ provides the meaning of the decorations, it can be described "pointwise" since it preserves colimits (next slide)


## Expansion of decoration, for states

the expansion functor $F_{2}$ provides the meaning of the decorations

$$
\begin{aligned}
& L_{0} \xrightarrow{F_{2}} \quad L_{2} \\
& X \xrightarrow{f^{(0)}} Y \stackrel{F_{2}}{\longmapsto} \quad X \xrightarrow{f} Y \\
& X \xrightarrow{g^{(1)}} Y \stackrel{F_{2}}{\longmapsto} \quad X \times S \xrightarrow{g} Y \\
& X \xrightarrow{h^{(2)}} Y \\
& \stackrel{F_{2}}{\longmapsto} \\
& X \times S \xrightarrow{h} Y \times S \\
& \underset{\substack{ \\
h^{(2)} \sim k^{(2)}}}{\stackrel{h^{(2)}}{k^{(2)}}} Y \\
& \stackrel{F_{2}}{\longmapsto} \\
& X \times \underset{\text { pr }_{Y} \circ h=\text { pr }_{Y} \circ k}{\xrightarrow[\text { k }]{h}} Y \times S
\end{aligned}
$$

## Outline

## Introduction

## States

Diagrammatic logics

## Exceptions

## Conclusion

## Exceptions as dual of states?

Monads:

| states | $T(X)=(X \times S t)^{S t}$ |
| :---: | :---: |
| exceptions | $T(X)=X+E x c$ |

## Exceptions as dual of states?

Monads:

| states | $T(X)=(X \times S t)^{S t}$ |
| :---: | :---: |
| exceptions | $T(X)=X+E x c$ |

Lawvere theories:

| states | lookup $: V a l \rightarrow$ Loc <br> update $: 1 \rightarrow$ Loc $\times$ Val <br> with 7 equations |
| :---: | :--- |
| exceptions | raise $: 0 \rightarrow 1$ for $e \in E x c$ <br> with no equation |

## Exceptions as dual of states!

When effects are described by zooms there is a duality which provides a new point of view on exceptions

- States involve the functor $X \times S$ for some distinguished "type of states" $S$
- Exceptions involve the functor $X+E$ for some distinguished "type of exceptions" $E$
The well-known duality between $X \times S$ and $X+E$ extends as a duality between states and exceptions

| states | $l_{i}^{(1)}: 1 \rightarrow V_{i}$ <br>  <br>  <br>  <br>  <br> exceptions <br>  <br> $r_{i}^{(1)}: P_{i} \rightarrow 0$ <br>  <br>  <br>  <br>  <br> $h_{i}^{(2)}: 0 \rightarrow P_{i}$ <br> with 2 equations |
| :---: | :--- |

## Decorations for exceptions

The same decorations for exceptions as for states, with different meaning

The meaning of decorations for functions:

- (0) for pure functions
- (1) for propagators
- (2) for handlers
and for equations:
- ~ for weak equations (equality on non-exceptional arguments)
- = for strong equations (equality on all arguments)


## Expansion of decoration, for exceptions

The expansion functor $F_{2}$ provides the meaning of the decorations it is dual to the expansion functor $F_{2}$ for states

$$
\begin{aligned}
& L_{0} \\
& \xrightarrow{\mathrm{~F}_{2}} \\
& L_{2}
\end{aligned}
$$

## Exceptions as dual of states (informally)

- States (in a pointer-free language)

$$
\left\{\begin{array}{l}
l_{i} \circ u_{i}=\operatorname{id} v_{i} \\
l_{j} \circ u_{i}=I_{j} \circ() v_{i}
\end{array}\right.
$$

In order to lookup the value of a location, only the previous updating of this location is required, everything that has been executed since this previous updating is irrelevant

- Exceptions

$$
\left\{\begin{array}{l}
h_{i} \circ r_{i}=\operatorname{id}_{P_{i}} \\
h_{i} \circ r_{j}=[]_{P_{i}} \circ r_{j}
\end{array}\right.
$$

When some exception is raised, the following handler for this type of exceptions is immediately executed, everything that is written until this following handler is irrelevant

## Exceptions as dual of states (formally)

Notations: Etype is the set of exceptional types
for each $i \in$ Etype a type $P_{i}$ for the parameters of type $i$ 0 for "Empty", with []$_{A}: 0 \rightarrow A$ for all $A$
$E$ is the "type of exceptions"
Three specifications


$$
\begin{aligned}
& r_{i}^{(1)}: P_{i} \rightarrow 0 \\
& h_{i}^{(2)}: 0 \rightarrow P_{i} \\
& h_{i}^{(2)} \circ r_{i}^{(1)}=\operatorname{id}_{P_{i}}^{(0)} \\
& h_{i}^{(2)} \circ r_{j}^{(1)}=[]_{P_{i}}^{(0)} \circ r_{j}^{(1)} \\
& \hline \text { DECORATED: } \Sigma_{0}
\end{aligned}
$$



| $r_{i}: P_{i} \rightarrow 0$ |
| :--- |
| $h_{i}: 0 \rightarrow P_{i}$ |
| $h_{i} \circ r_{i}=\mathrm{id}_{P_{i}}$ |
| $h_{i} \circ r_{j}=[]_{P_{i}} \circ r_{j}$ |
| APPARENT: $\Sigma_{1}$ |

$$
\begin{aligned}
& r_{i}: P_{i} \rightarrow E \\
& h_{i}: E \rightarrow P_{i}+E \\
& h_{i} \circ r_{i}=\operatorname{inj}_{P_{i}} \\
& h_{i} \circ r_{j}=\operatorname{inj}_{E} \circ r_{j} \\
& \text { EXPLICIT: } \Sigma_{2}
\end{aligned}
$$

## Exceptions: encapsulation of $r_{i}$

Claim.

- $r_{i}^{(1)}$ and $h_{i}^{(2)}$ are the core operations for raising and handling exceptions of type $i$
- they are encapsulated inside operations raise $e_{i, X}^{(1)}$ and handle $e_{i f}^{(1)}$ which are expanded as the usual operations raise and handle

In raising an exception, the empty type is hidden

$$
\operatorname{raise}_{i, X}^{(1)}=[]_{X}^{(0)} \circ r_{i}^{(1)}: P_{i} \rightarrow X
$$


first $r_{i}$ raises an exception of exceptional type $i$ then [] $X$ converts this exception to type $X$

## Exceptions: encapsulation of $h_{i}$

The handling of exceptions is a powerful programming technique, carefully encapsulated thanks to the property:

$$
\forall f^{(2)}: X \rightarrow Y \quad \exists!\lfloor f\rfloor^{(1)}: X \rightarrow Y \quad f^{(2)} \sim\lfloor f\rfloor^{(1)}
$$

explicitly:

$$
\forall f: X+E \rightarrow Y+E \exists!\lfloor f\rfloor: X+E \rightarrow Y+E
$$

such that $\lfloor f\rfloor=f$ on $X$ and $\lfloor f\rfloor$ propagates exceptions.
For all $f^{(1)}: X \rightarrow Y$ and $g^{(1)}: P_{i} \rightarrow Y$ the handling by $g^{(1)}$ of an exception of type $i$ raised in $f^{(1)}$ is

$$
\text { handle }_{i, f, g}^{(1)}=\left\lfloor\left[\operatorname{id}_{Y} \mid g \circ h_{i}\right]_{Y}^{(2)} \circ f^{(1)}\right\rfloor^{(1)}: X \rightarrow Y
$$



## Some details

The handling by $g^{(1)}$ of an exception of type $i$ raised in $f^{(1)}$ is

$$
\text { handle }_{i, f, g}^{(1)}=\left\lfloor\left[\operatorname{id}_{Y} \mid g \circ h_{i}\right]_{Y}^{(2)} \circ f^{(1)}\right\rfloor^{(1)}: X \rightarrow Y
$$

which means: first build $\left[\mathrm{id}_{Y} \mid g \circ h_{i}\right]^{(2)} \circ f^{(1)}$

then encapsulate $\left[i d_{Y} \mid g \circ h_{i}\right]_{Y}^{(2)} \circ f^{(1)}$


## Duality, backwards

The rule for decorated sums builds $\left[f_{1}^{(0)} \mid f_{2}^{(2)}\right]^{(2)}$


## Duality, backwards

The rule for decorated sums builds $\left[f_{1}^{(0)} \mid f_{2}^{(2)}\right]^{(2)}$


Dually, the rule for decorated products builds $\left(f_{1}^{(0)}, f_{2}^{(2)}\right)^{(2)}$


This rule is the key for dealing with multivariate functions when there are effects (an alternative to the strength of the monad)

## Outline

## Introduction

## States

Diagrammatic logics

Exceptions

Conclusion

This talk.

- effect as an apparent mismatch between syntax and semantics
- the category of diagrammatic logics
- zooms (= spans of logics) for effects
- a new point of view on states
- a completely new point of view on exceptions with handling
- a duality between states and exceptions

This talk.

- effect as an apparent mismatch between syntax and semantics
- the category of diagrammatic logics
- zooms (= spans of logics) for effects
- a new point of view on states
- a completely new point of view on exceptions with handling
- a duality between states and exceptions

Future work.

- other effects
- combining effects
- operational semantics


## Some papers

- J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud.

States and exceptions are dual effects.
arXiv:1001.1662 (2010).

- J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. JSC (2010).
- C. Dominguez, D. Duval. Diagrammatic logic applied to a parameterization process. MSCS 20(04) p. 639-654 (2010).
- D. Duval, J.-C. Reynaud.

Dynamic logic and exceptions: an introduction.
Mathematics, Algorithms, Proofs. Dagstuhl Seminar 05021 (2005).

- D. Duval.

Diagrammatic Specifications.
MSCS (13) 857-890 (2003).

