Transformations of Attributed Graphs with Cloning

Dominique Duval
with Rachid Echahed, Frédéric Prost and Leila Ribeiro

LJK-LIG, Université de Grenoble, France
Universidade Federal do Rio Grande do Sul, Brazil
June 26., 2014 - LJK - Grenoble - Bipop-Casys seminar

- Rewriting / Transformation of:
- terms
- graphs
- attributed graphs
with algebraic methods:
- PO (add, merge)
- DPO (add, merge, delete)
- SqPO (add, merge, delete, copy)

Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

Example: term rewriting
$1+1=2 ?$

Example: term rewriting
$1+1 \sim 2$?

Example: term rewriting

$$
1+1 \leadsto 2 ?
$$

Specification:

- N
- $0: N, s: N \rightarrow N,+: N, N \rightarrow N$

Rules:
$\left(R_{0}\right): x+0 \leadsto x \quad\left(R_{1}\right): x+s(y) \leadsto s(x+y)$
Reduction:

$$
s(0)+s(0) \stackrel{\left(R_{1}\right)}{\sim} s(s(0)+0) \xrightarrow{\left(R_{0}\right)} s(s(0))
$$

Example: term rewriting

$$
1+1 \leadsto 2 ?
$$

Rules (dim. 2):

Reduction (dim. 2):

Terms and graphs

A term "is" a tree, and a tree "is" a graph.
However:

- Trees are defined inductively ("generalized" lists):

$$
T::=r \mid \operatorname{Tr} T
$$

- Graphs are defined as "presheaves" ("generalized" sets):

Consequence:
It is difficult to adapt term rewriting to graphs!

Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

Graph transformation

L, R, G, H are graphs.
Given a rewrite rule:
$L \sim \sim \sim \sim$
and a matching:

a rewrite step builds H by replacing the occurrence of L in G by some occurrence of R in H :

Graph transformation

A rewrite step:

Elementary transformations:

- ADD
- MERGE
- DELETE
- COPY (= clone)

Graph transformation: ADD

Graph transformation: MERGE

Graph transformation: ADD and MERGE

Graph transformation: ADD and MERGE

- A rule $L \leadsto R$ is a graph homomorphism $L \rightarrow R$ from L to R
- A step

is a pushout (PO, "generalized union")

Graph transformation: DELETE

Graph transformation: COPY

Graph transformation: DELETE and COPY

- A rule $L \leadsto R$ is a graph homomorphism $L \leftarrow R$ from R to L
- A step

is a ?? kind of converse of pushout ??

Algebraic graph transformation

Algebraic graph rewriting is based on:

- some kind of "converse of pushout" (DELETE and COPY)
- followed by a pushout (ADD and MERGE)

- Double-pushout: DPO: when ??=POC
- Variant: Single-pushout: SPO
- Sesqui-pushout: SqPO: when ??=FPBC
- Generalization of DPO and SPO

By: H. Ehrig, U. Montanari, H.J. Kreowski, M. Löwe, A. Corradini, B. König, F. Orejas, L. Ribeiro, T. Heindel, F. Hermann, U. Golas,

FASE 2014

D. Duval, R. Echahed, F. Prost.

- TERMGRAPH 2006
- RTA 2007
- RTA 2009
- GT-VMT 2011
- ICGT 2012
D. Duval, R. Echahed, F. Prost, L. Ribeiro.
- FASE 2014

Fundamental Approaches to Software Engineering
Transformation of Attributed Structures with Cloning

Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

三 \quad 気

Transformations of

 Attributed Structures with CloningDominique Duval, Rachid Echahed, Frederic Prost, Leila Ribeiro

Outline

- Motivation
- Example : Cloud administration
- Attributed Structures
- Sesqui-PO Rewriting of Attributed Structures
- Conclusion and Future work

Motivation

- Simple but generic attribute notion
- Cloning possibility

Example: Cloud Adm

Example: Cloud Adm

Create VM

Create VM

New request...

Replicate VM

Cloud needs more Mch

Cloud needs more Mch

Cloud needs more Mch

Turn on Computer

Turn on Computer

Create VM

Create VM

Turn Off Machine

Turn Off Machine

Turn Off Machine

Attributed Structures

Structures
S: G $\boldsymbol{\rightarrow}$ Set

Attributes

 $T: A \rightarrow S e t$

$$
\text { AttG }=(S \downarrow T)
$$

Attributed Structures

Attributed Structures

Partially Attributed Structures

Structures Attributes
 S: G Part T:A Part

PAttG $=(S+T)$

Partially Attributed Structures

Structures Attributes
 S: G Part T:A Part

PAttG $=(S+T)$

Graph Transformation Rule

rule CreateVM

eqns: $i d V M=n e w l d(c)$
$\leq(n V M, f)=$ true;
$f^{\prime}=f-n V M$;
$c^{\prime}=n e w V M(c, i d U, i d V M, n V M, t V M)$

Graph Transformation Rule

eqns: $i d V M=n e w / d(c)$
$\leq(n V M, f)=$ true ;
$f^{\prime}=f-n V M$;
$c^{\prime}=\operatorname{new} V M(c, i d U, i d V M, n V M, t V M)$

Rule Application

Rule Application

rule CreateVM

Sesqui-Pushout Approach

Final Pullback Complement (FPBC): Deletion and Copy

> Pushout (PO): Creation and Merge

Final Pullback Complement

SqPO-Rewriting of Attributed Structures

Structures:

Δ :

SqPO-Rewriting of Attributed Structures

Structures:
Δ :

Attributed Structures: $\widehat{\Delta}$:

SqPO-Rewriting of Attributed Structures

Attributed Structures:
$\widehat{\Delta}$:

$$
\begin{aligned}
& \widehat{L} \longleftarrow \widehat{\left(l, i d_{A}\right)} \widehat{K} \xrightarrow{\left(r, i d_{A}\right)} \widehat{R}
\end{aligned}
$$

SqPO-Rewriting of Attributed Structures

Attributed Structures:

$\widehat{\Delta}$:

$$
\begin{aligned}
& \widehat{L} \longleftarrow \widehat{\left(l, i d_{A}\right)} \widehat{K} \xrightarrow{\left(r, i d_{A}\right)} \widehat{R}
\end{aligned}
$$

\mathbf{x} is context: keep attribute

$$
l_{1}(x): t_{1} \longleftrightarrow x: t_{1} \longmapsto r_{1}(x): t_{1}
$$

SqPO-Rewriting of Attributed Structures

Attributed Structures:

$\widehat{\Delta}$:

$$
\begin{aligned}
& \widehat{L} \stackrel{\left(l, i d_{A}\right)}{\longleftrightarrow^{(}} \widehat{ } \xrightarrow{\left(r, i d_{A}\right)} \widehat{R}
\end{aligned}
$$

\mathbf{x} is context: keep attribute

$$
l_{1}(x): t_{1} \longleftrightarrow x: t_{1} \longmapsto r_{1}(x): t_{1}
$$

x is preserved by the rule:

$l() x: t \longleftarrow x: \perp \longmapsto r(x): t^{\prime}$
I change

$$
l_{1}(x): a(t) \longleftrightarrow x: \perp \longmapsto r_{1}(x): a\left(t^{\prime}\right)
$$

SqPO-Rewriting of Attributed Structures

- A nice framework to define systems in the presence of cloning (and merging) operations
- Simple attribute handling:
\Rightarrow allowing to use different kinds of values;
\Rightarrow enabling a modular approach to prove properties (due to the independency of the structure from the attributes)

λ-Terms as Attributes

Cloud Administration

rule ReplicateVM

rule TurnOnMachine

eqns: not(enoughSpace(c,nVM)); newld(c,id) ; nVM $\leq n M ; f^{\prime}=n M-n V M ; c^{\prime}=n e w M c h\left(c, i d, n M, f^{\prime}\right)$

rule TurnOffMachine

eqns: $n M 1-f 1 \leq f 2 ; f^{\prime}=f 2-(n M 1-f 1) ; c^{\prime}=$ mergeMch(c,id1,id2)

Future Work

- Analysis of SqPO-transformation systems over attributed structures
- Case studies
- Tool support

Transformations of

 Attributed Structures with Cloning
Thanks for your attention!

Dominique Duval, Rachid Echahed, Frederic Prost, Leila Ribeiro

