# Transformations of Attributed Graphs with Cloning

Dominique Duval with Rachid Echahed, Frédéric Prost and Leila Ribeiro

LJK-LIG, Université de Grenoble, France Universidade Federal do Rio Grande do Sul, Brazil

June 26., 2014 – LJK – Grenoble – Bipop-Casys seminar



- Rewriting / Transformation of:
  - terms
  - graphs
  - attributed graphs
- with algebraic methods:
  - ► PO (add, merge)
  - ► DPO (add, merge, delete)
  - SqPO (add, merge, delete, copy)

#### Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

$$1 + 1 = 2$$
?

$$1 + 1 \sim 2$$
?

$$1+1 \rightarrow 2$$
?

#### Specification:

- N
- $\triangleright$  0: N,  $s: N \rightarrow N$ ,  $+: N, N \rightarrow N$

#### Rules:

$$(R_0): x + 0 \rightsquigarrow x$$
  $(R_1): x + s(y) \rightsquigarrow s(x + y)$ 

#### Reduction:

$$s(0) + s(0) \stackrel{(R_1)}{\leadsto} s(s(0) + 0) \stackrel{(R_0)}{\leadsto} s(s(0))$$

$$1+1 \rightarrow 2$$
?

#### Rules (dim. 2):

$$(R_0): + \sim x$$

Rules (diffi. 2).
$$(R_0): + \sim x \qquad (R_1): + \sim s \qquad s \qquad + \qquad y \qquad x \qquad y$$

#### Reduction (dim. 2):

#### Terms and graphs

A term "is" a tree, and a tree "is" a graph.

#### However:

► Trees are defined inductively ("generalized" lists):

$$T ::= r \mid TrT$$

Graphs are defined as "presheaves" ("generalized" sets):

$$V \rightleftharpoons E$$

#### Consequence:

It is difficult to adapt term rewriting to graphs!



#### Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

#### Graph transformation

L, R, G, H are graphs.

Given a rewrite rule:

$$L \longrightarrow F$$

and a matching:

$$\downarrow \subseteq G$$

a rewrite step builds H by replacing the occurrence of L in G by some occurrence of R in H:

$$R$$
 $\downarrow \subseteq$ 
 $H$ 

#### Graph transformation

#### A rewrite step:

$$\begin{array}{c|ccc}
\hline L & & & \hline R \\
\downarrow & & & \downarrow \\
\hline G & & & \hline H \\
\end{array}$$

#### Elementary transformations:

- ADD
- MERGE
- DELETE
- ► COPY (= clone)

#### Graph transformation: ADD



#### Graph transformation: MERGE



#### Graph transformation: ADD and MERGE



#### Graph transformation: ADD and MERGE

- ▶ A rule  $L \rightsquigarrow R$  is a graph homomorphism  $L \rightarrow R$  from L to R
- A step

$$\begin{array}{c|ccc}
L & & & R \\
\downarrow & & \downarrow \\
\hline
G & & \sim \sim \rightarrow & H
\end{array}$$

is a pushout (PO, "generalized union")

$$\begin{array}{ccc}
L & \longrightarrow & R \\
\downarrow & PO & \downarrow \\
\hline
G & \longrightarrow & H
\end{array}$$

#### Graph transformation: DELETE



#### Graph transformation: COPY



#### Graph transformation: DELETE and COPY

- ▶ A rule  $L \rightsquigarrow R$  is a graph homomorphism  $L \leftarrow R$  from R to L
- A step

$$\begin{array}{c|ccc}
L & & & R \\
\downarrow & & \downarrow \\
\hline
G & & & H
\end{array}$$

is a ?? kind of converse of pushout ??

$$\begin{array}{cccc}
L & \longleftarrow & R \\
\downarrow & ?? & \downarrow \\
\hline
G & \longleftarrow & H
\end{array}$$

#### Algebraic graph transformation

Algebraic graph rewriting is based on:

- some kind of "converse of pushout" (DELETE and COPY)
- followed by a pushout (ADD and MERGE)



- ► Double-pushout: DPO: when ??=POC
  - Variant: Single-pushout: SPO
- Sesqui-pushout: SqPO: when ??=FPBC
  - Generalization of DPO and SPO

By: H. Ehrig, U. Montanari, H.J. Kreowski, M. Löwe, A. Corradini, B. König, F. Orejas, L. Ribeiro, T. Heindel, F. Hermann, U. Golas,

. . .

#### FASE 2014

- D. Duval, R. Echahed, F. Prost.
  - ► TERMGRAPH 2006
  - ► RTA 2007
  - ► RTA 2009
  - ► GT-VMT 2011
  - ► ICGT 2012
- D. Duval, R. Echahed, F. Prost, L. Ribeiro.
  - ► FASE 2014

Fundamental Approaches to Software Engineering

Transformation of Attributed Structures with Cloning

#### Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

# Transformations of Attributed Structures with Cloning

Dominique Duval, Rachid Echahed, Frederic Prost, Leila Ribeiro







## Outline

- Motivation
- Example : Cloud administration
- Attributed Structures
- Sesqui-PO Rewriting of Attributed Structures
- Conclusion and Future work

### Motivation

- Simple but generic attribute notion
- Cloning possibility

# Example: Cloud Adm



# Example: Cloud Adm



## Create VM



## Create VM



## New request...















## Cloud needs more Mch



#### Cloud needs more Mch



#### Cloud needs more Mch



## Turn on Computer



## Turn on Computer



#### Create VM



#### Create VM



### Turn Off Machine



### Turn Off Machine



### Turn Off Machine



#### Attributed Structures

Structures

**Attributes** 

 $S: G \rightarrow Set$   $T: A \rightarrow Set$ 



$$AttG = (S \downarrow T)$$





$$SG \xrightarrow{\alpha} TA$$
 $Sg \downarrow \qquad = \qquad \downarrow Ta$ 
 $SG' \xrightarrow{\alpha'} TA'$ 



#### Attributed Structures



#### Attributed Structures



#### Partially Attributed Structures

**Structures** Attributes

 $S: G \rightarrow Part T: A \rightarrow Part$ 



$$PAttG = (S \stackrel{\downarrow}{+} T)$$





$$G$$
 $S_pG \xrightarrow{\alpha} T_pA$ 
 $S_pg \downarrow \qquad \geq \qquad \downarrow T_pa$ 
 $S_pG' \xrightarrow{\alpha'} T_pA'$ 

#### Partially Attributed Structures

Structures

**Attributes** 

 $S: G \rightarrow Part T: A \rightarrow Part$ 



$$PAttG = (S \stackrel{\downarrow}{+} T)$$





$$S_{p}G \xrightarrow{\alpha} T_{p}A$$

$$S_{p}g \downarrow \qquad \geq \qquad \downarrow T_{p}a$$

$$S_{p}G' \xrightarrow{\alpha'} T_{p}A'$$



Morphisms preserve defined attributes

#### Graph Transformation Rule



#### rule CreateVM



```
eqns: idVM = newId(c) ;
      ≤ (nVM,f) = true;
      f' = f - nVM;
      c'= newVM(c,idU,idVM,nVM,tVM)
```

#### Graph Transformation Rule





```
eqns: idVM = newId(c) ;
      ≤ (nVM,f) = true;
      f' = f - nVM;
      c'= newVM(c,idU,idVM,nVM,tVM)
```















## Sesqui-Pushout Approach



Final Pullback Complement (FPBC): Deletion and Copy

Pushout (PO): Creation and Merge

















#### Structures:

 $\Delta$ :



#### Structures:

#### $\Delta$ :



#### **Attributed Structures:**

 $\widehat{\Delta}$ 

$$\widehat{L} \xleftarrow{(l,id_A)} \widehat{K} \xrightarrow{(r,id_A)} \widehat{R} \\
\downarrow^{(m_L,a)} \qquad \downarrow^{(m_K,a)} \qquad \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{D} \xrightarrow{(r_1,id_{A_1})} \widehat{H}$$

#### **Attributed Structures:**

 $\widehat{\Delta}$  :

$$\widehat{\widehat{L}} \xleftarrow{(l,id_A)} \widehat{K} \xrightarrow{(r,id_A)} \widehat{\widehat{R}} \\
\downarrow^{(m_L,a)} \qquad \downarrow^{(m_K,a)} \qquad \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{\widehat{D}} \xrightarrow{(r_1,id_{A_1})} \widehat{\widehat{H}}$$

x is context: keep attribute

 $l_1(x): t_1 \longleftrightarrow x: t_1 \longmapsto r_1(x): t_1$ 

#### **Attributed Structures:**

 $\widehat{\Delta}$  :

$$\widehat{L} \xleftarrow{(l,id_A)} \widehat{K} \xrightarrow{(r,id_A)} \widehat{R} \\
\downarrow^{(m_L,a)} \stackrel{(m_K,a)}{\underset{(PO)}{(PO)}} \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{D} \xrightarrow{(r_1,id_{A_1})} \widehat{H}$$

#### **Attributed Structures:**

 $\widehat{\Delta}$  :

$$\widehat{L} \xleftarrow{(l,id_A)} - \widehat{K} \xrightarrow{(r,id_A)} \widehat{R} \\
\downarrow^{(m_L,a)} \qquad \downarrow^{(m_K,a)} \qquad \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{D} \xrightarrow{(r_1,id_{A_1})} \widehat{H}$$

x is context: keep attribute

$$l_1(x): t_1 \longleftrightarrow x: t_1 \longmapsto r_1(x): t_1$$

x is preserved by the rule:

- A nice framework to define systems in the presence of cloning (and merging) operations
- Simple attribute handling:
  - allowing to use different kinds of values;
  - enabling a modular approach to prove properties (due to the independency of the structure from the attributes)

#### λ-Terms as Attributes



#### Cloud Administration

#### rule ReplicateVM



eqns: newId(c,id0);  $id1 \neq id2$ ;  $nVM \leq f$ ; f' = f - nVM; c' = repIVM(c,idU,id0)

#### rule TurnOnMachine



eqns: not(enoughSpace(c,nVM)); newld(c,id);  $nVM \le nM$ ; f' = nM-nVM; c' = newMch(c,id,nM,f')

#### rule TurnOffMachine



**eqns**:  $nM1-f1 \le f2$ ; f' = f2 - (nM1-f1); c' = mergeMch(c,id1,id2)

#### Future Work

- Analysis of SqPO-transformation systems over attributed structures
- Case studies
- Tool support

# Transformations of Attributed Structures with Cloning

Thanks for your attention!

Dominique Duval, Rachid Echahed, Frederic Prost, Leila Ribeiro





