Transformations of Attributed Graphs with Cloning

Dominique Duval with Rachid Echahed, Frédéric Prost and Leila Ribeiro

LJK-LIG, Université de Grenoble, France Universidade Federal do Rio Grande do Sul, Brazil

June 26., 2014 – LJK – Grenoble – Bipop-Casys seminar

- Rewriting / Transformation of:
 - terms
 - graphs
 - attributed graphs
- with algebraic methods:
 - ► PO (add, merge)
 - ► DPO (add, merge, delete)
 - SqPO (add, merge, delete, copy)

Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

$$1 + 1 = 2$$
?

$$1 + 1 \sim 2$$
?

$$1+1 \rightarrow 2$$
?

Specification:

- N
- \triangleright 0: N, $s: N \rightarrow N$, $+: N, N \rightarrow N$

Rules:

$$(R_0): x + 0 \rightsquigarrow x$$
 $(R_1): x + s(y) \rightsquigarrow s(x + y)$

Reduction:

$$s(0) + s(0) \stackrel{(R_1)}{\leadsto} s(s(0) + 0) \stackrel{(R_0)}{\leadsto} s(s(0))$$

$$1+1 \rightarrow 2$$
?

Rules (dim. 2):

$$(R_0): + \sim x$$

Rules (diffi. 2).
$$(R_0): + \sim x \qquad (R_1): + \sim s \qquad s \qquad + \qquad y \qquad x \qquad y$$

Reduction (dim. 2):

Terms and graphs

A term "is" a tree, and a tree "is" a graph.

However:

► Trees are defined inductively ("generalized" lists):

$$T ::= r \mid TrT$$

Graphs are defined as "presheaves" ("generalized" sets):

$$V \rightleftharpoons E$$

Consequence:

It is difficult to adapt term rewriting to graphs!

Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

Graph transformation

L, R, G, H are graphs.

Given a rewrite rule:

$$L \longrightarrow F$$

and a matching:

$$\downarrow \subseteq G$$

a rewrite step builds H by replacing the occurrence of L in G by some occurrence of R in H:

$$R$$
 $\downarrow \subseteq$
 H

Graph transformation

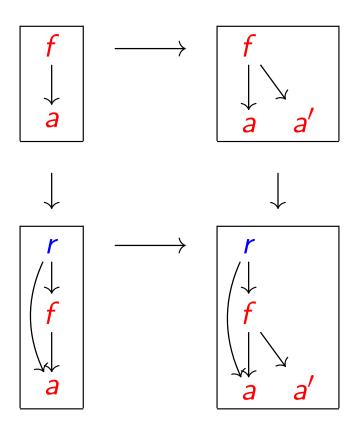
A rewrite step:

$$\begin{array}{c|ccc}
\hline L & & & \hline R \\
\downarrow & & & \downarrow \\
\hline G & & & \hline H \\
\end{array}$$

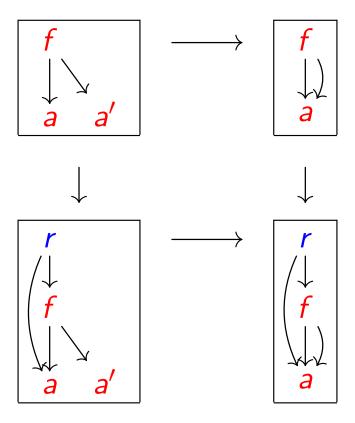
Elementary transformations:

- ADD
- MERGE
- DELETE
- ► COPY (= clone)

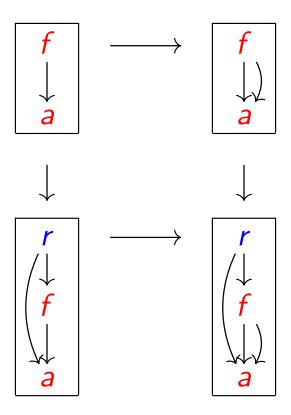
Graph transformation: ADD



Graph transformation: MERGE



Graph transformation: ADD and MERGE



Graph transformation: ADD and MERGE

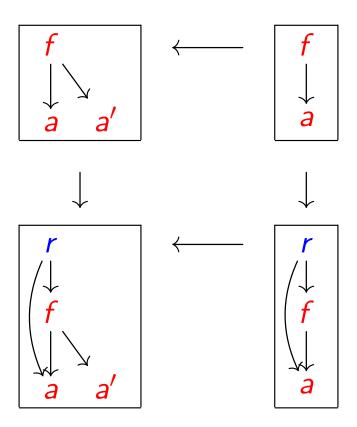
- ▶ A rule $L \rightsquigarrow R$ is a graph homomorphism $L \rightarrow R$ from L to R
- A step

$$\begin{array}{c|ccc}
L & & & R \\
\downarrow & & \downarrow \\
\hline
G & & \sim \sim \rightarrow & H
\end{array}$$

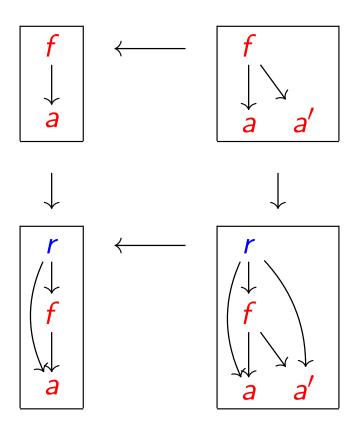
is a pushout (PO, "generalized union")

$$\begin{array}{ccc}
L & \longrightarrow & R \\
\downarrow & PO & \downarrow \\
\hline
G & \longrightarrow & H
\end{array}$$

Graph transformation: DELETE



Graph transformation: COPY



Graph transformation: DELETE and COPY

- ▶ A rule $L \rightsquigarrow R$ is a graph homomorphism $L \leftarrow R$ from R to L
- A step

$$\begin{array}{c|ccc}
L & & & R \\
\downarrow & & \downarrow \\
\hline
G & & & H
\end{array}$$

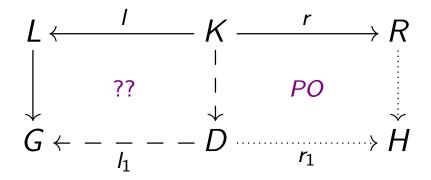
is a ?? kind of converse of pushout ??

$$\begin{array}{cccc}
L & \longleftarrow & R \\
\downarrow & ?? & \downarrow \\
\hline
G & \longleftarrow & H
\end{array}$$

Algebraic graph transformation

Algebraic graph rewriting is based on:

- some kind of "converse of pushout" (DELETE and COPY)
- followed by a pushout (ADD and MERGE)



- ► Double-pushout: DPO: when ??=POC
 - Variant: Single-pushout: SPO
- Sesqui-pushout: SqPO: when ??=FPBC
 - Generalization of DPO and SPO

By: H. Ehrig, U. Montanari, H.J. Kreowski, M. Löwe, A. Corradini, B. König, F. Orejas, L. Ribeiro, T. Heindel, F. Hermann, U. Golas,

. . .

FASE 2014

- D. Duval, R. Echahed, F. Prost.
 - ► TERMGRAPH 2006
 - ► RTA 2007
 - ► RTA 2009
 - ► GT-VMT 2011
 - ► ICGT 2012
- D. Duval, R. Echahed, F. Prost, L. Ribeiro.
 - ► FASE 2014

Fundamental Approaches to Software Engineering

Transformation of Attributed Structures with Cloning

Outline

Term rewriting

Graph transformation

Attributed graph transformation: FASE 2014

Transformations of Attributed Structures with Cloning

Dominique Duval, Rachid Echahed, Frederic Prost, Leila Ribeiro

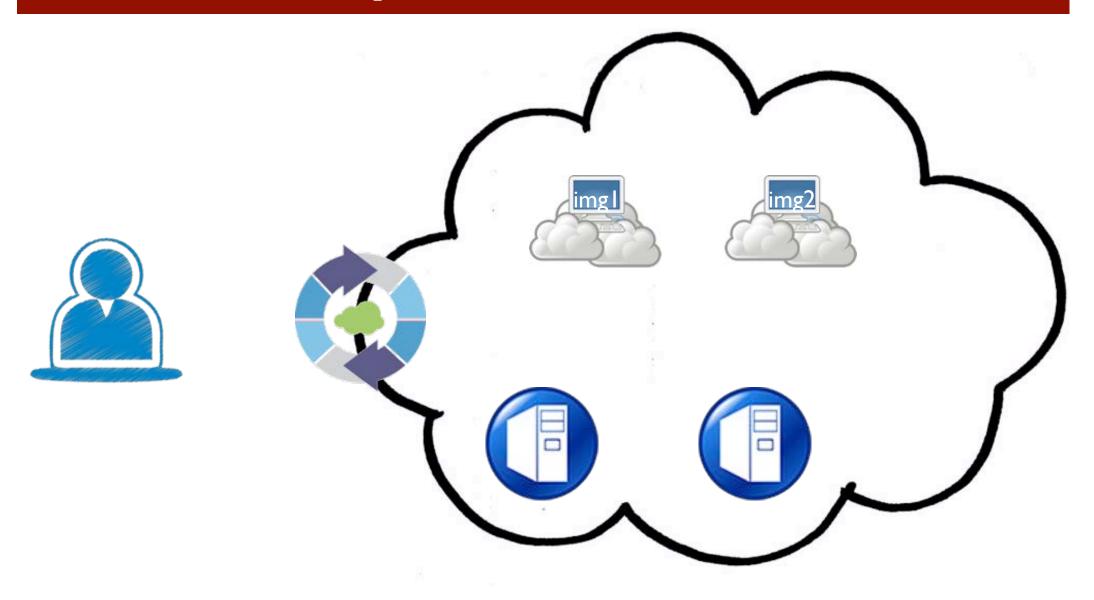
Outline

- Motivation
- Example : Cloud administration
- Attributed Structures
- Sesqui-PO Rewriting of Attributed Structures
- Conclusion and Future work

Motivation

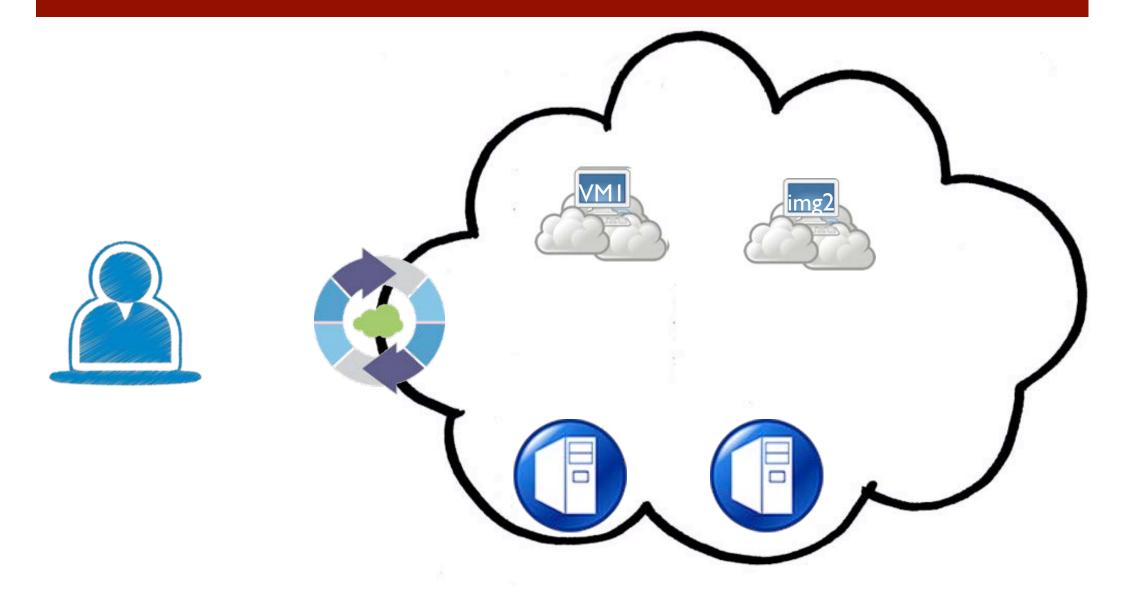
- Simple but generic attribute notion
- Cloning possibility

Example: Cloud Adm

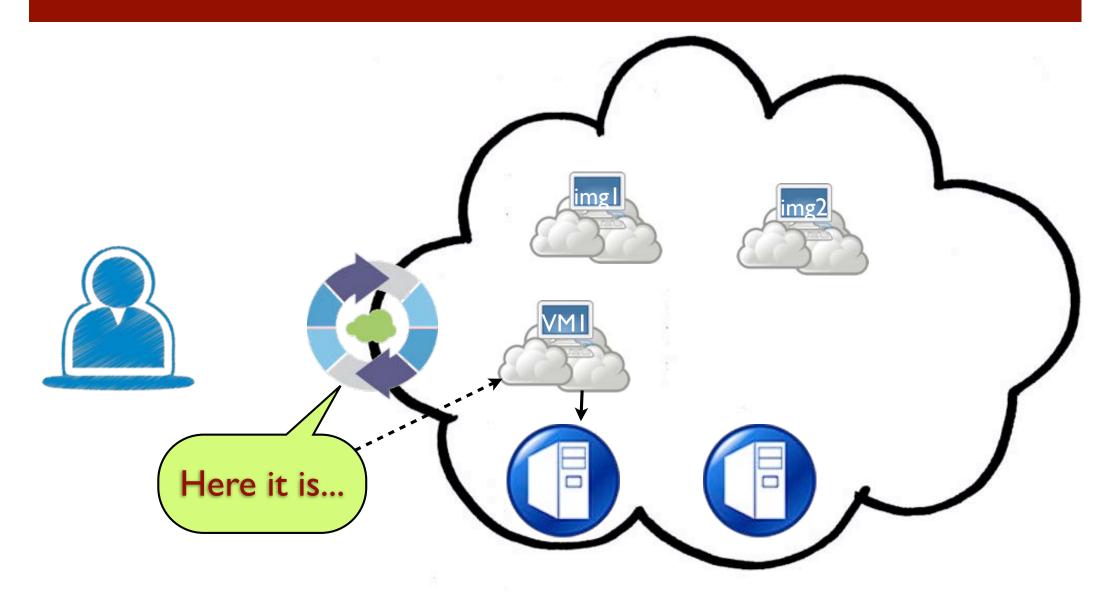


Example: Cloud Adm

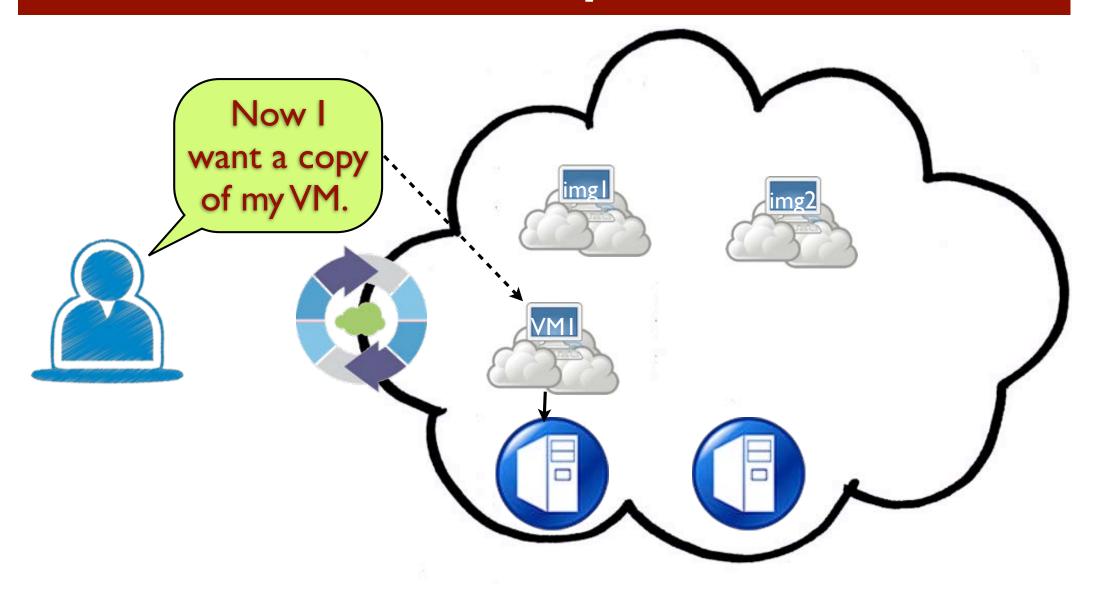
Create VM

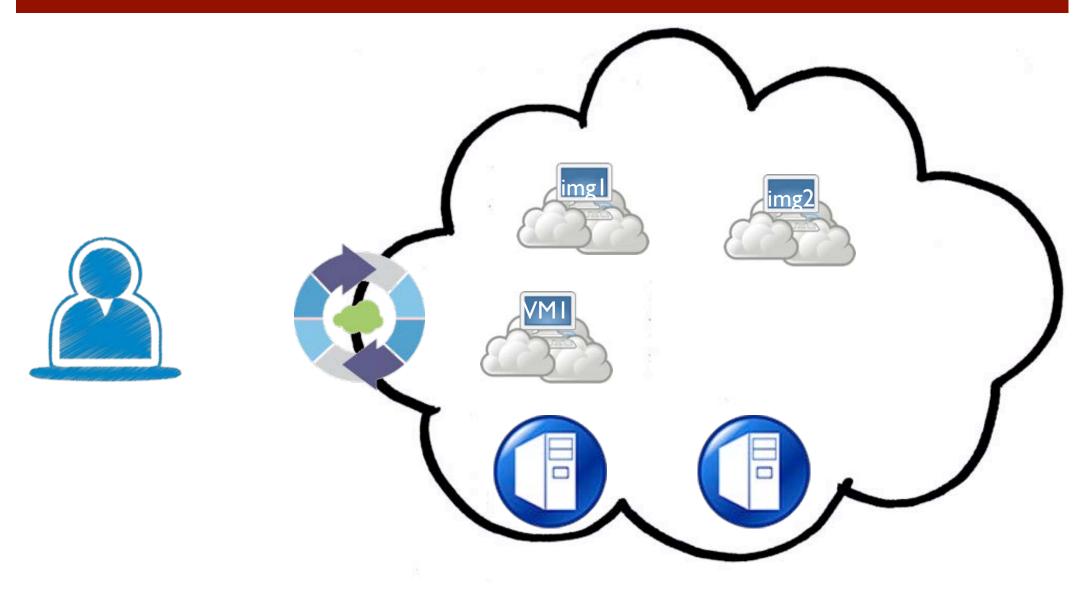


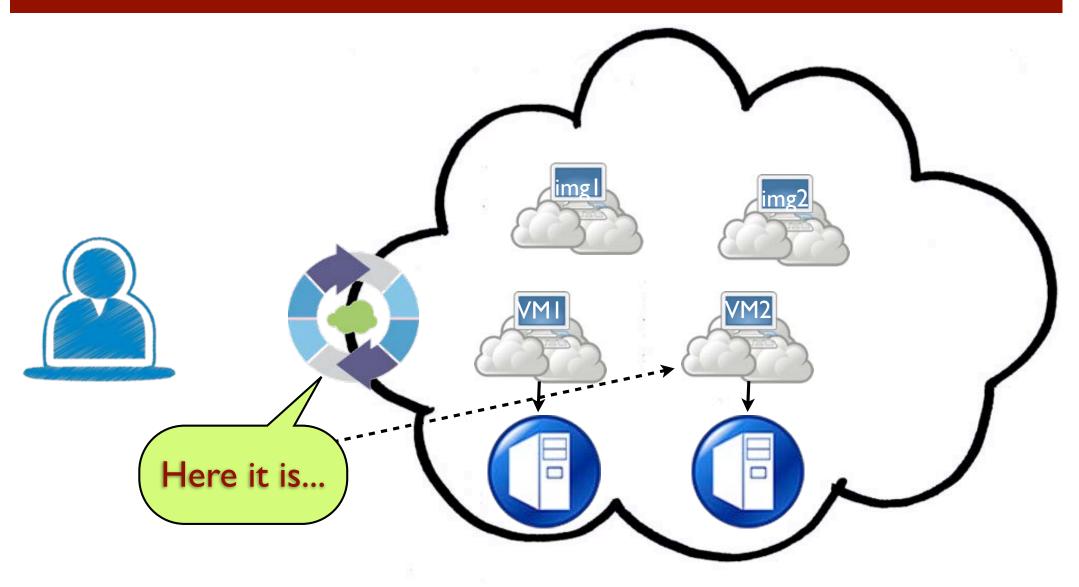
Create VM



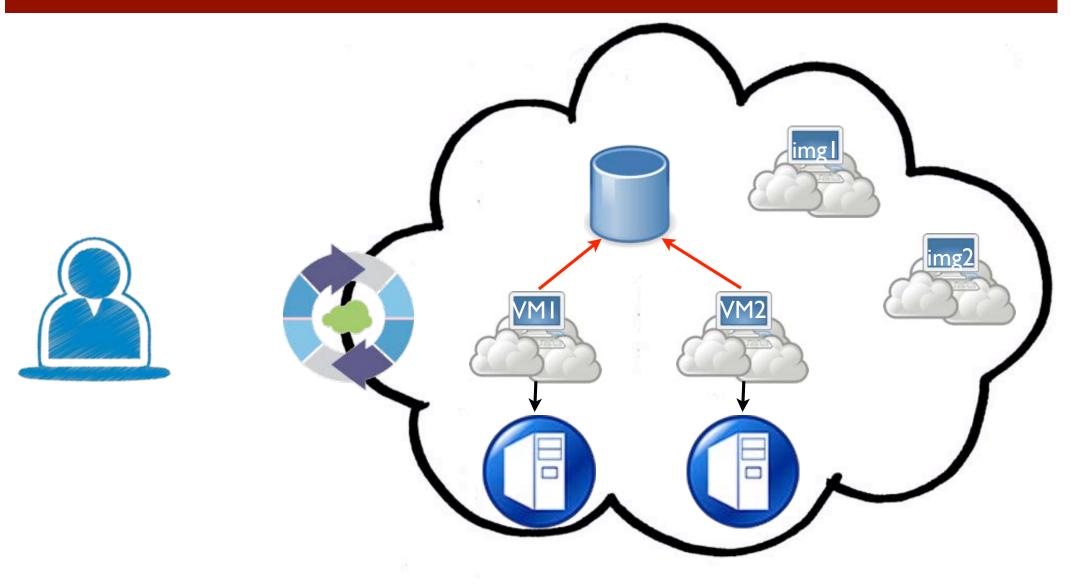
New request...

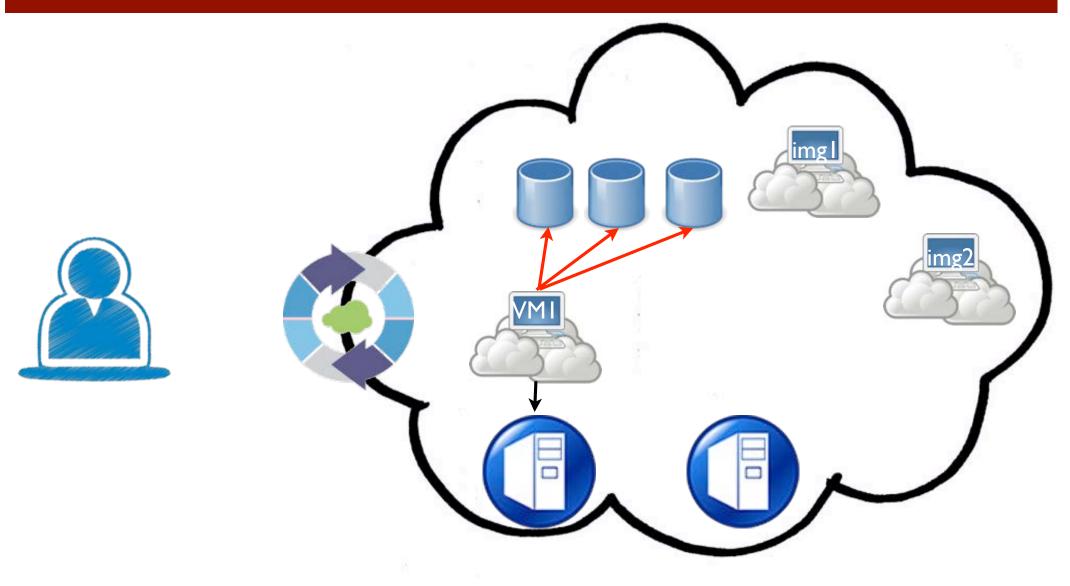


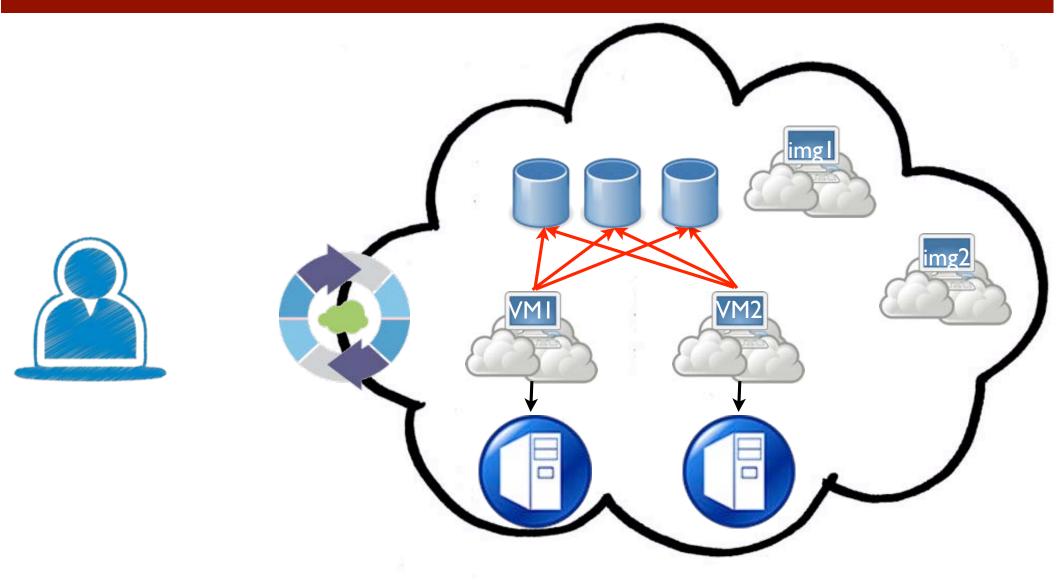




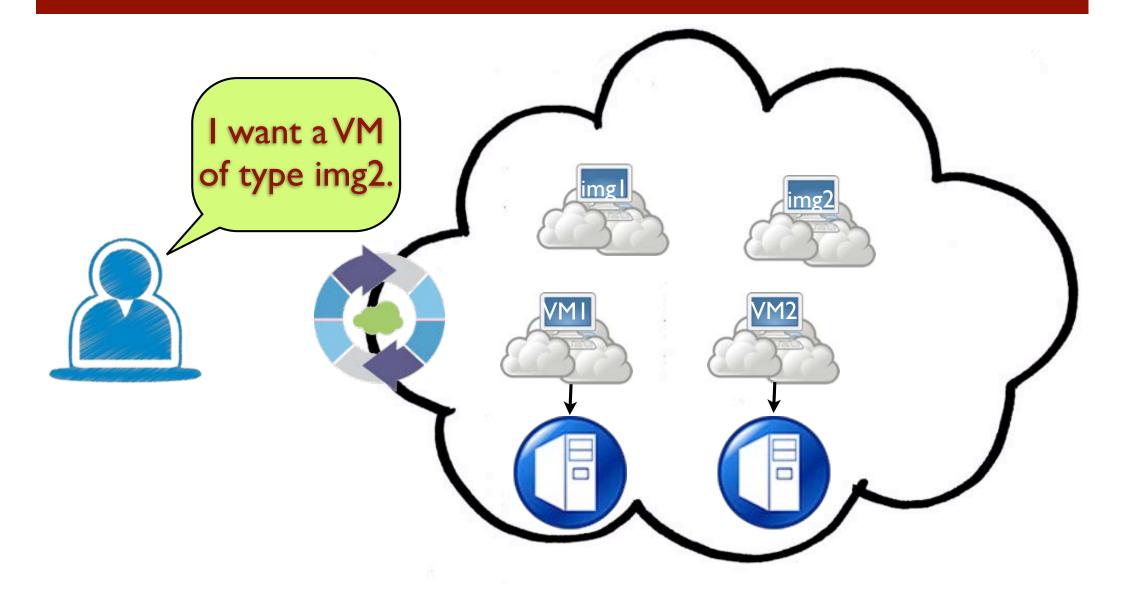




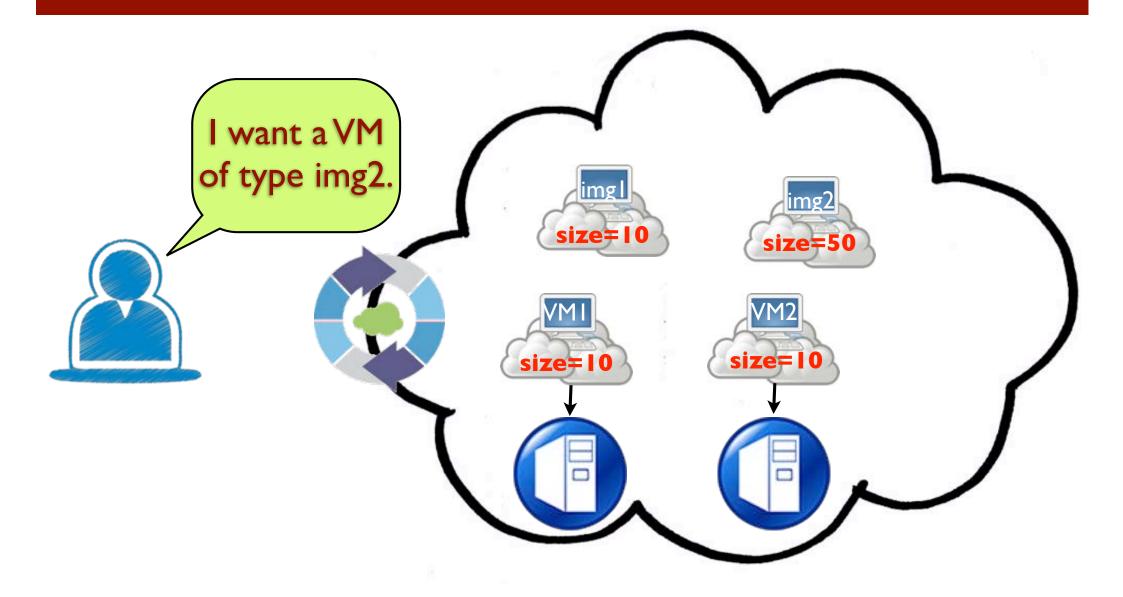




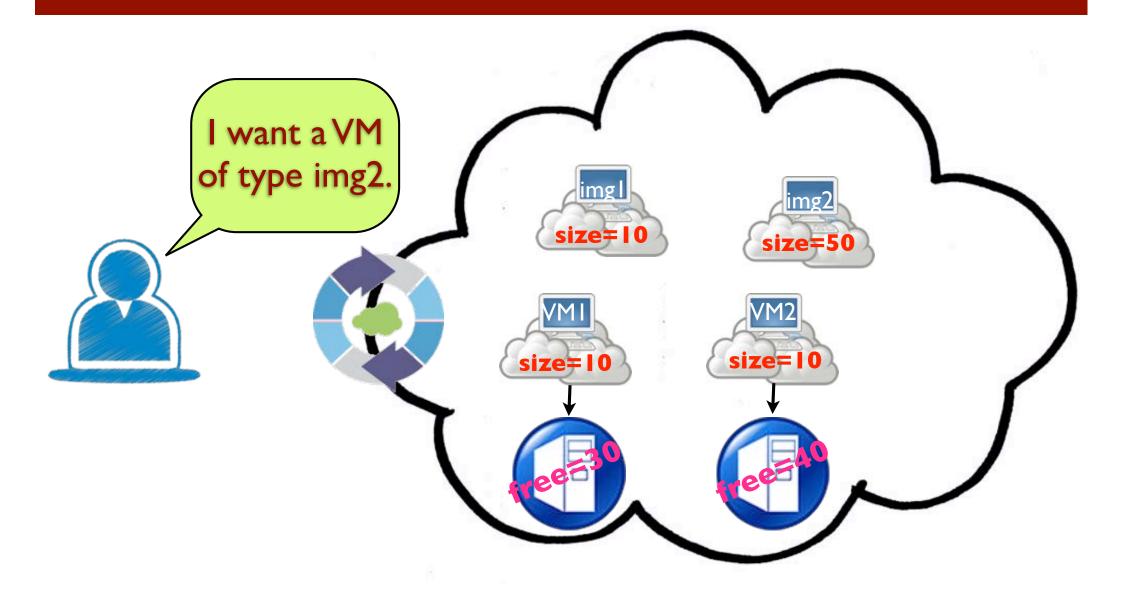
Cloud needs more Mch



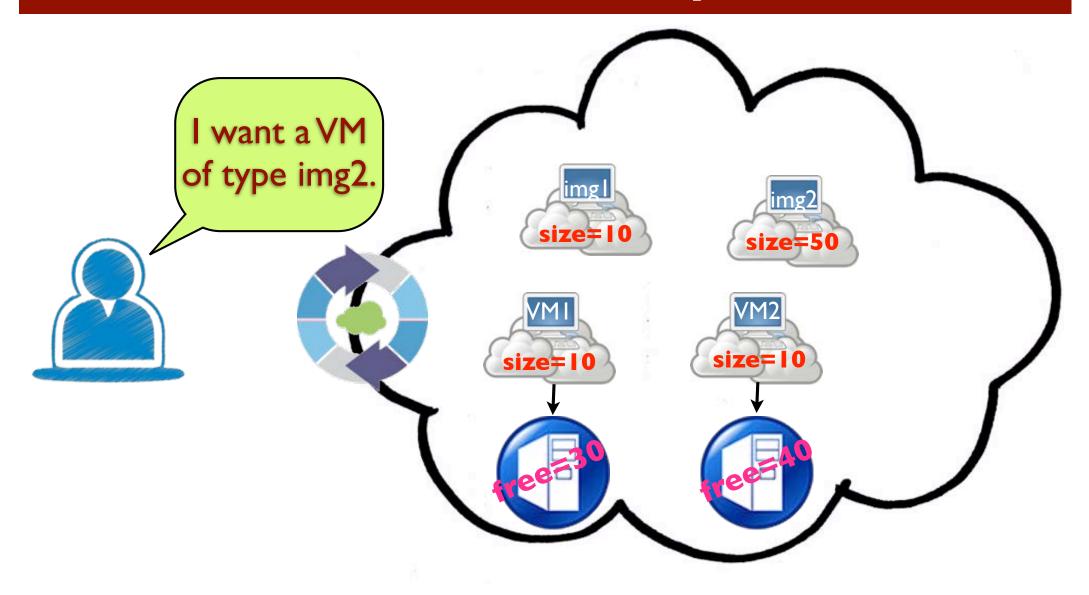
Cloud needs more Mch



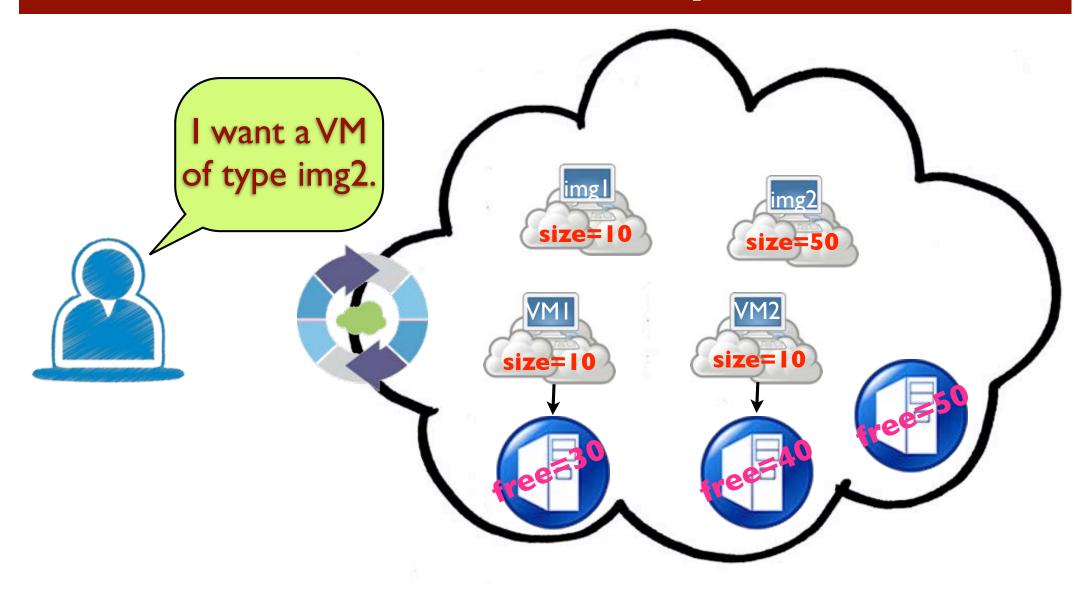
Cloud needs more Mch



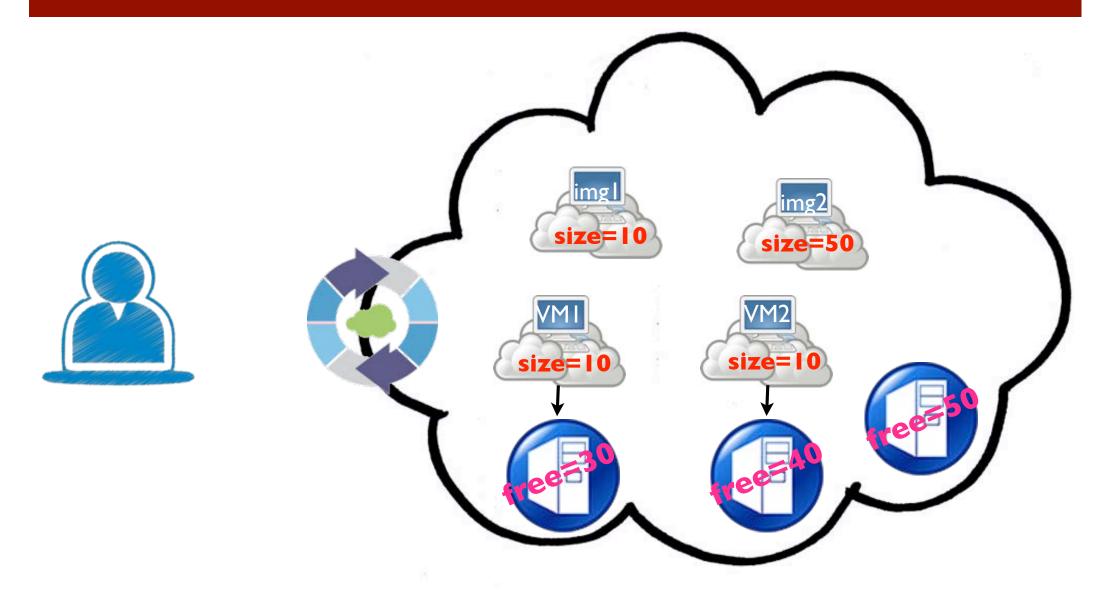
Turn on Computer



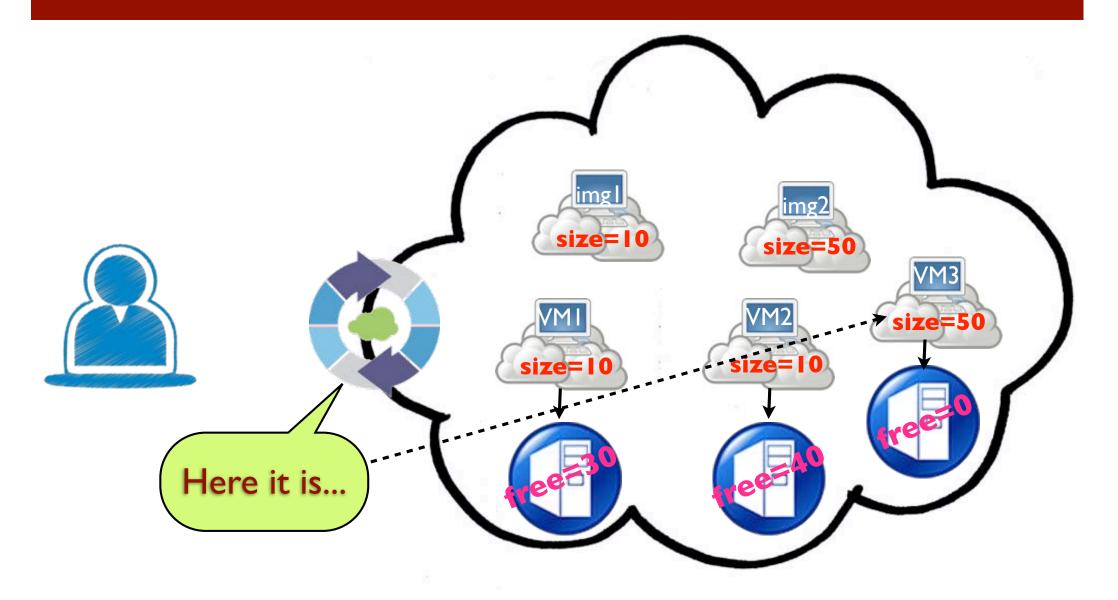
Turn on Computer



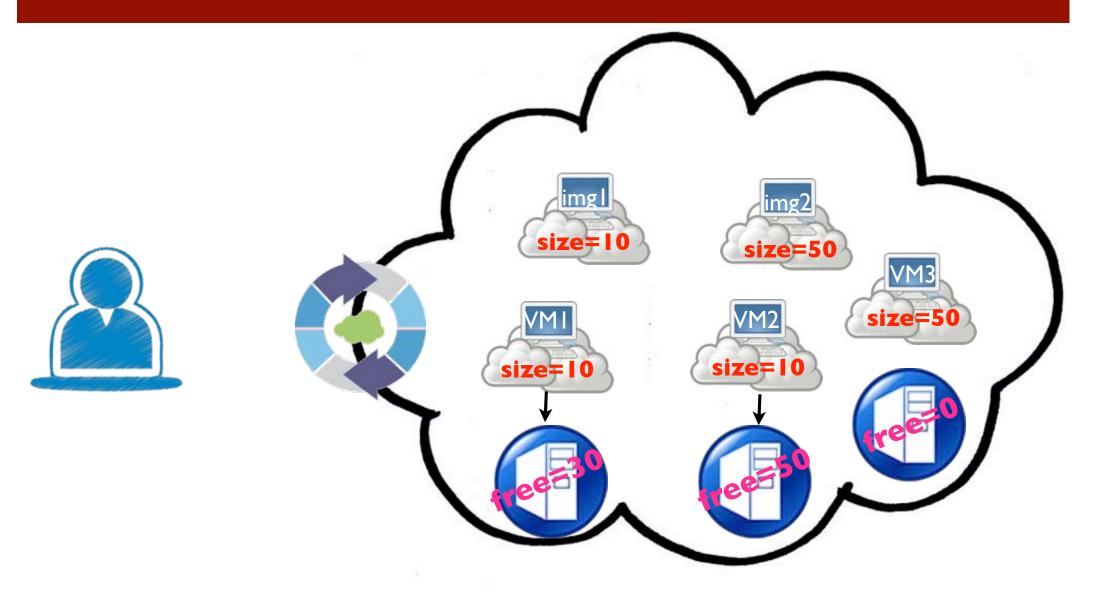
Create VM



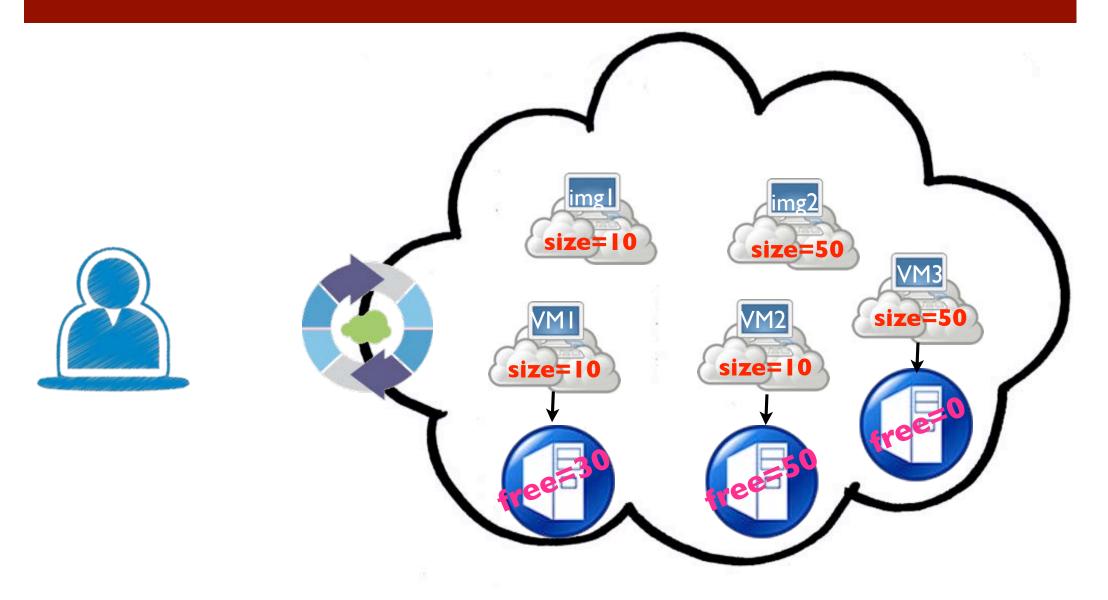
Create VM



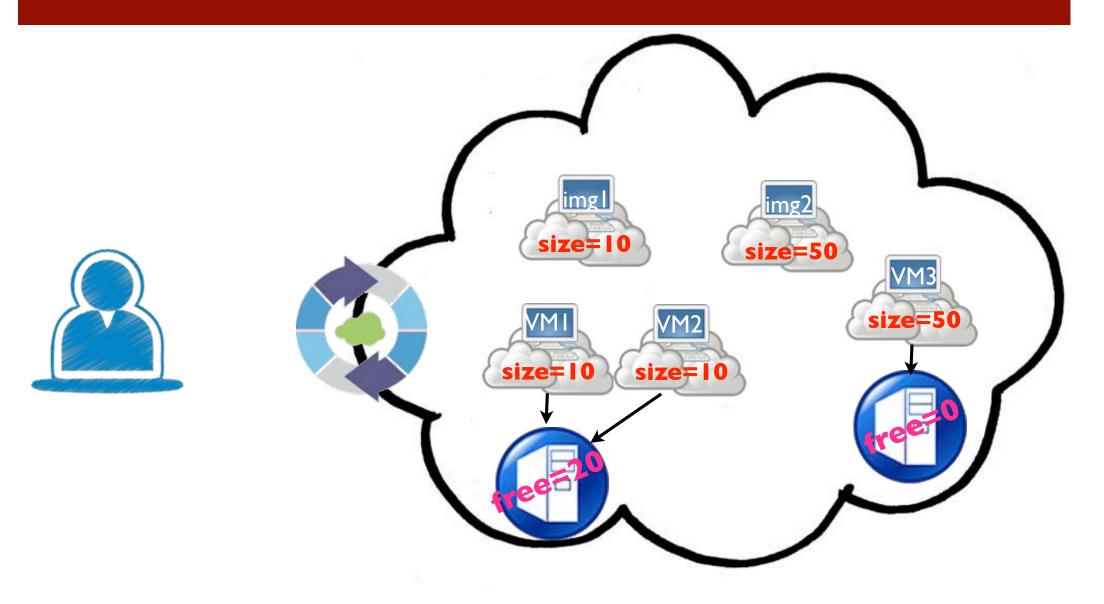
Turn Off Machine



Turn Off Machine



Turn Off Machine

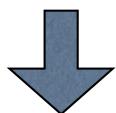


Attributed Structures

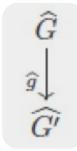
Structures

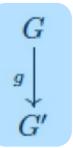
Attributes

 $S: G \rightarrow Set$ $T: A \rightarrow Set$



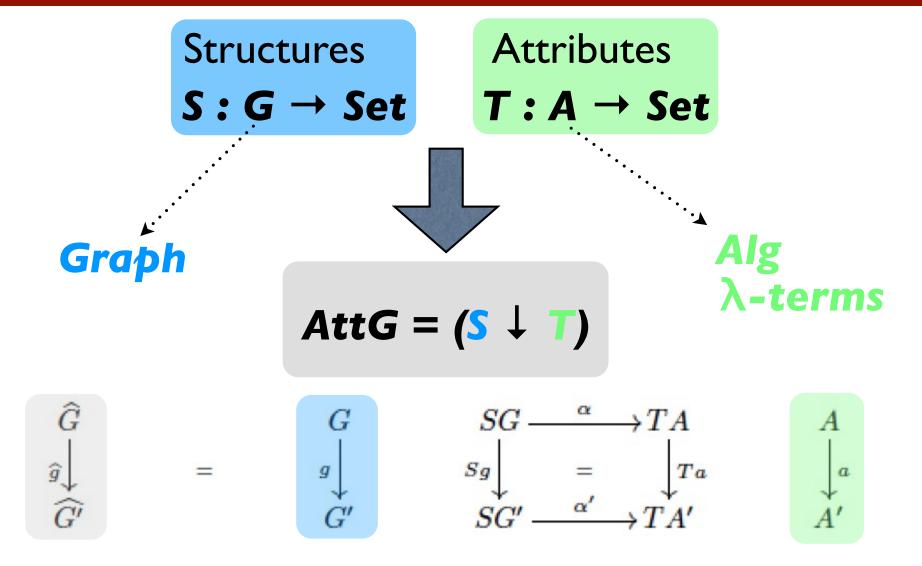
$$AttG = (S \downarrow T)$$



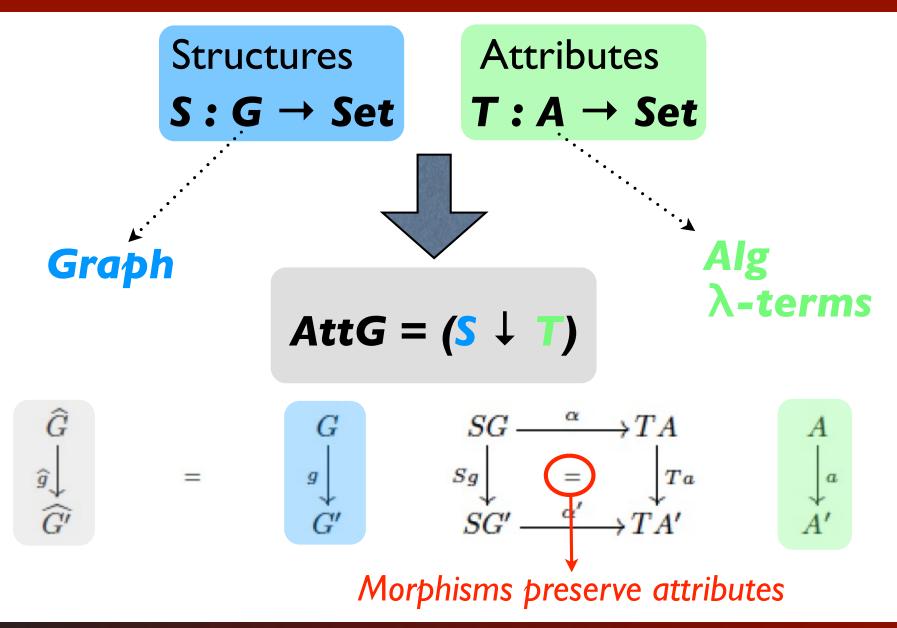


$$SG \xrightarrow{\alpha} TA$$
 $Sg \downarrow \qquad = \qquad \downarrow Ta$
 $SG' \xrightarrow{\alpha'} TA'$

Attributed Structures



Attributed Structures



Partially Attributed Structures

Structures Attributes

 $S: G \rightarrow Part T: A \rightarrow Part$



$$PAttG = (S \stackrel{\downarrow}{+} T)$$

$$G$$
 $S_pG \xrightarrow{\alpha} T_pA$
 $S_pg \downarrow \qquad \geq \qquad \downarrow T_pa$
 $S_pG' \xrightarrow{\alpha'} T_pA'$

Partially Attributed Structures

Structures

Attributes

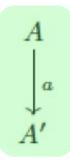
 $S: G \rightarrow Part T: A \rightarrow Part$

$$PAttG = (S \stackrel{\downarrow}{+} T)$$

$$S_{p}G \xrightarrow{\alpha} T_{p}A$$

$$S_{p}g \downarrow \qquad \geq \qquad \downarrow T_{p}a$$

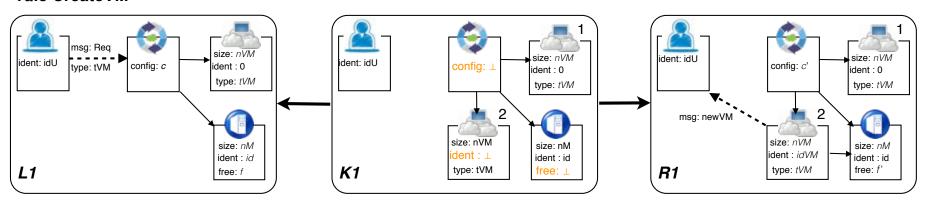
$$S_{p}G' \xrightarrow{\alpha'} T_{p}A'$$



Morphisms preserve defined attributes

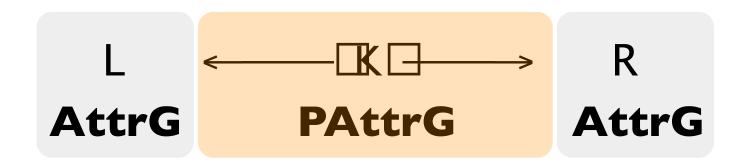
Graph Transformation Rule

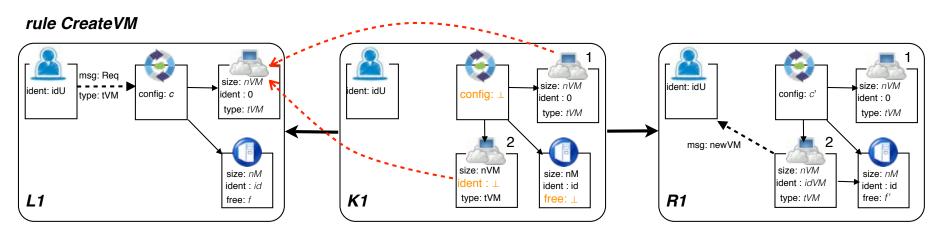
rule CreateVM



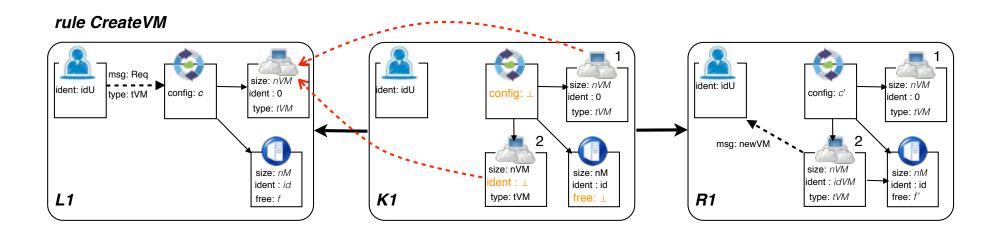
```
eqns: idVM = newId(c) ;
      ≤ (nVM,f) = true;
      f' = f - nVM;
      c'= newVM(c,idU,idVM,nVM,tVM)
```

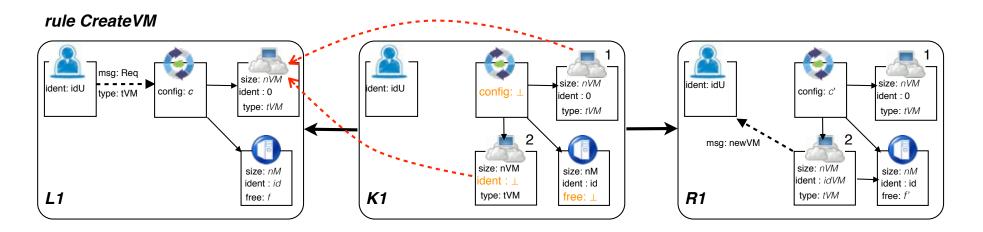
Graph Transformation Rule

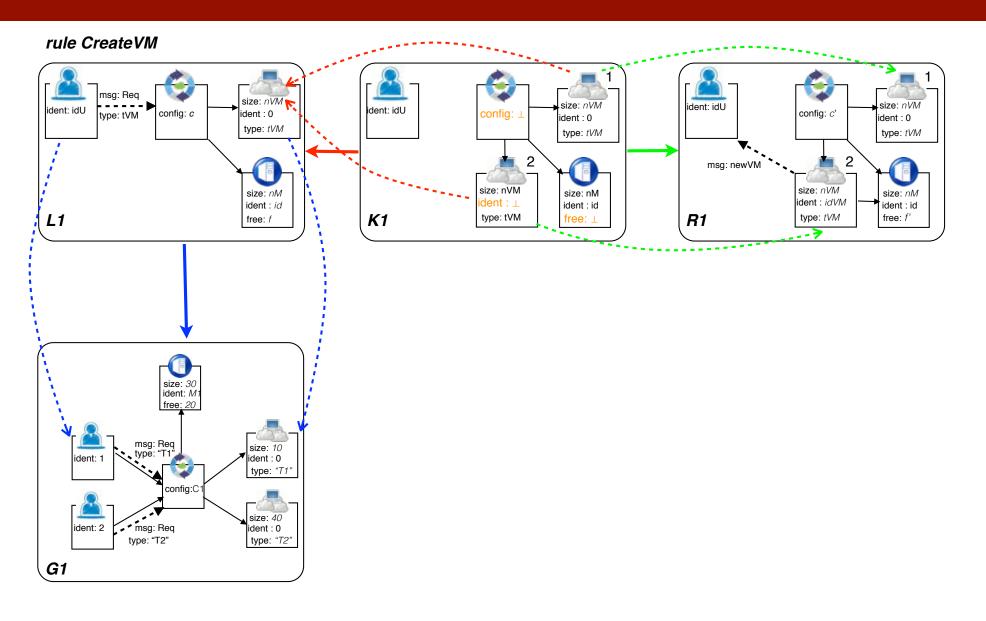


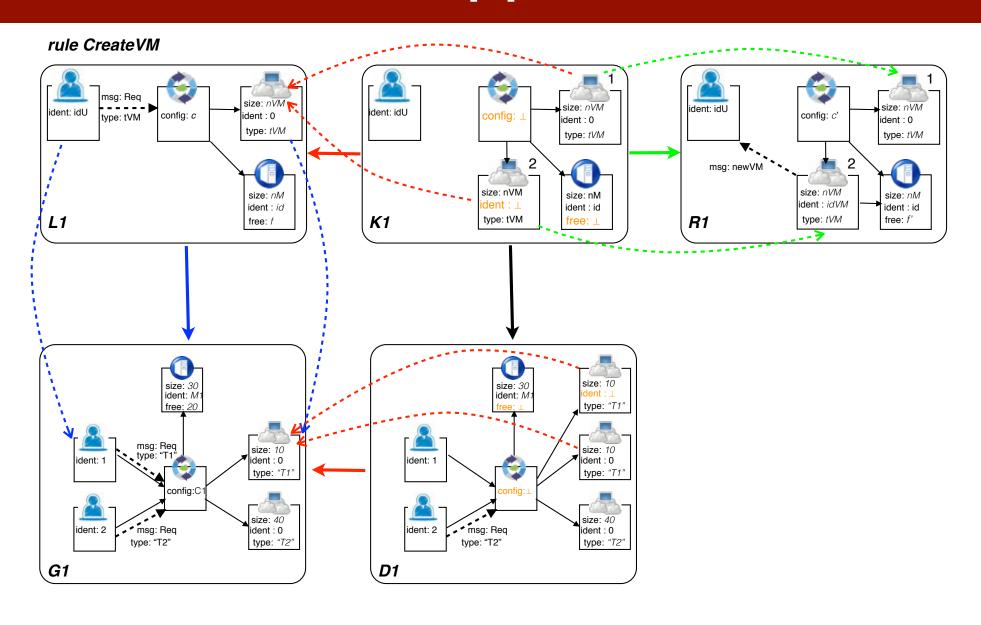


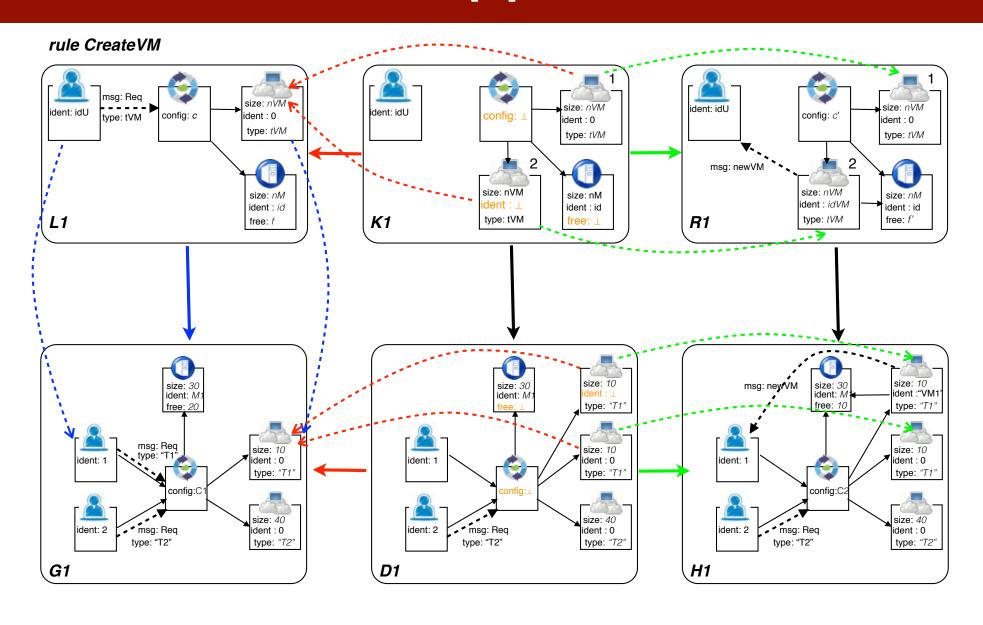
```
eqns: idVM = newId(c) ;
      ≤ (nVM,f) = true;
      f' = f - nVM;
      c'= newVM(c,idU,idVM,nVM,tVM)
```

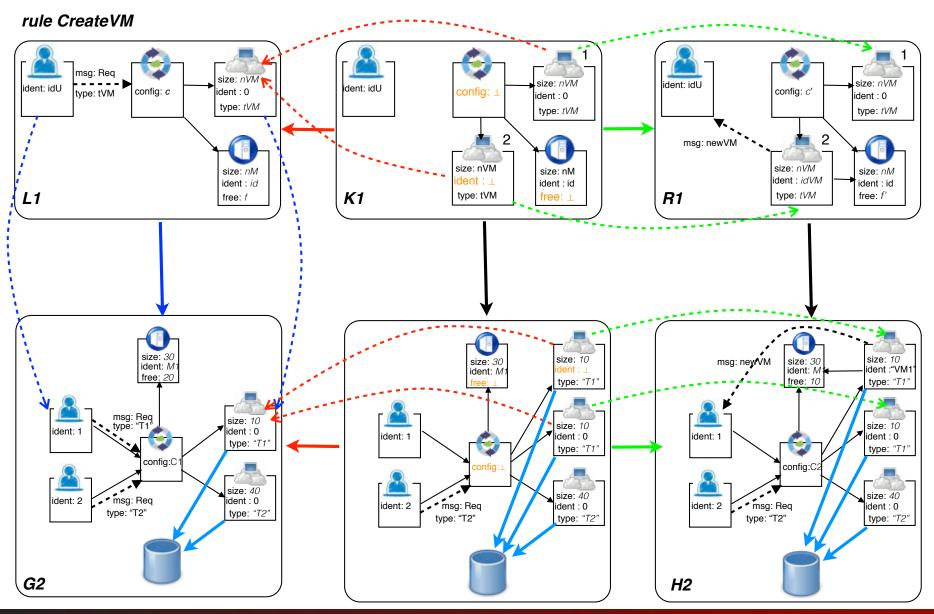


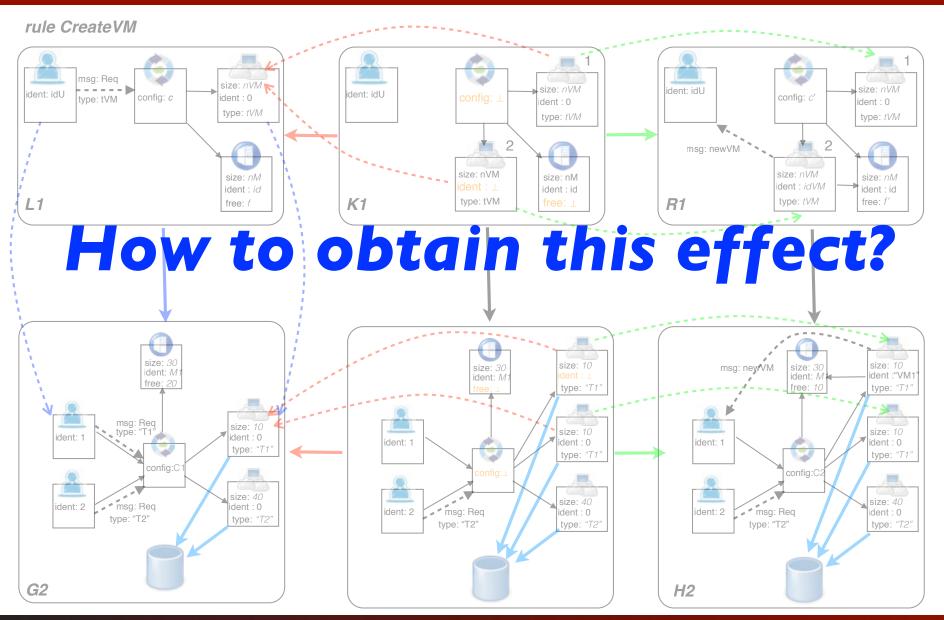




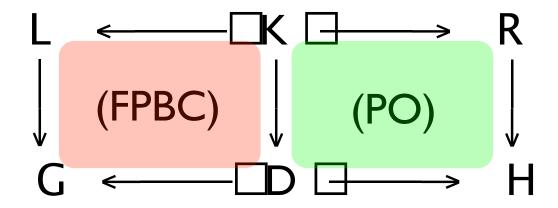






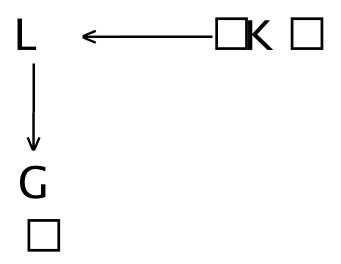


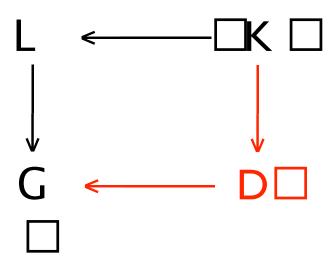
Sesqui-Pushout Approach

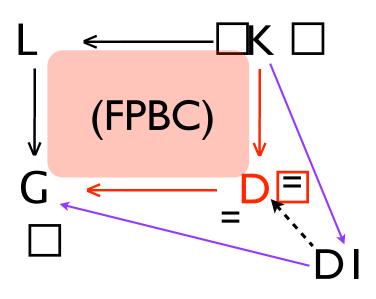


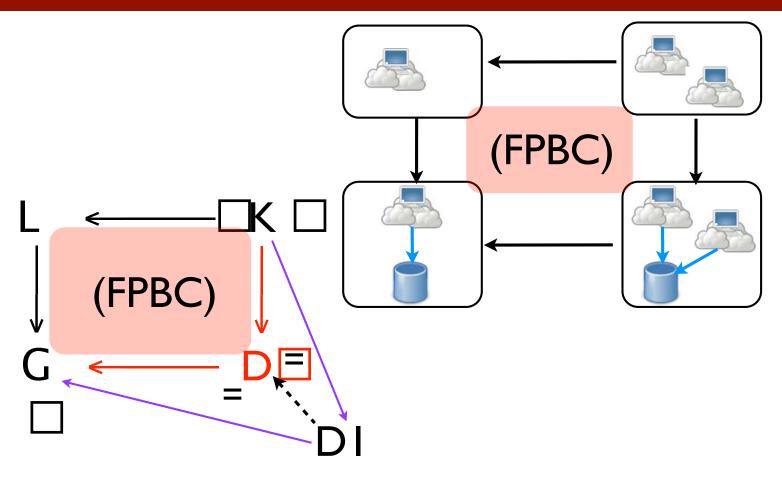
Final Pullback Complement (FPBC): Deletion and Copy

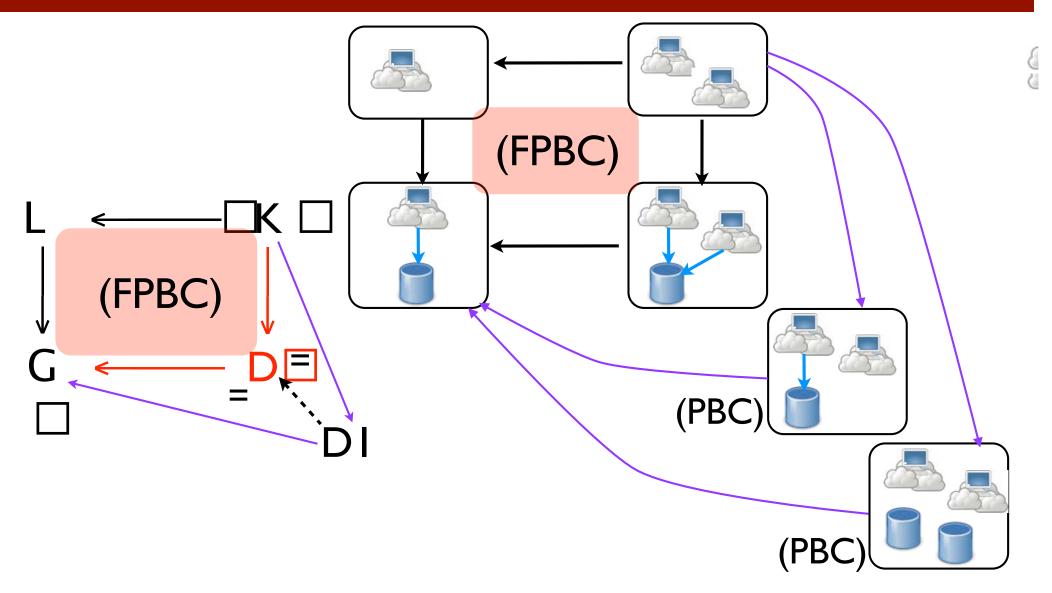
Pushout (PO): Creation and Merge





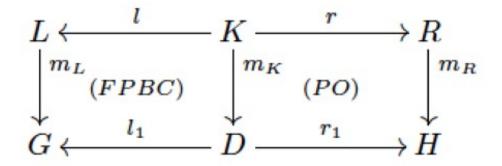






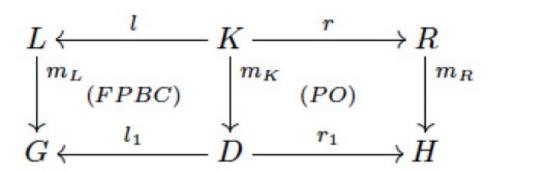
Structures:

 Δ :



Structures:

Δ :



Attributed Structures:

 $\widehat{\Delta}$

$$\widehat{L} \xleftarrow{(l,id_A)} \widehat{K} \xrightarrow{(r,id_A)} \widehat{R} \\
\downarrow^{(m_L,a)} \qquad \downarrow^{(m_K,a)} \qquad \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{D} \xrightarrow{(r_1,id_{A_1})} \widehat{H}$$

Attributed Structures:

 $\widehat{\Delta}$:

$$\widehat{\widehat{L}} \xleftarrow{(l,id_A)} \widehat{K} \xrightarrow{(r,id_A)} \widehat{\widehat{R}} \\
\downarrow^{(m_L,a)} \qquad \downarrow^{(m_K,a)} \qquad \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{\widehat{D}} \xrightarrow{(r_1,id_{A_1})} \widehat{\widehat{H}}$$

x is context: keep attribute

 $l_1(x): t_1 \longleftrightarrow x: t_1 \longmapsto r_1(x): t_1$

Attributed Structures:

 $\widehat{\Delta}$:

$$\widehat{L} \xleftarrow{(l,id_A)} \widehat{K} \xrightarrow{(r,id_A)} \widehat{R} \\
\downarrow^{(m_L,a)} \stackrel{(m_K,a)}{\underset{(PO)}{(PO)}} \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{D} \xrightarrow{(r_1,id_{A_1})} \widehat{H}$$

Attributed Structures:

 $\widehat{\Delta}$:

$$\widehat{L} \xleftarrow{(l,id_A)} - \widehat{K} \xrightarrow{(r,id_A)} \widehat{R} \\
\downarrow^{(m_L,a)} \qquad \downarrow^{(m_K,a)} \qquad \downarrow^{(m_R,a)} \\
\widehat{G} \xleftarrow{(l_1,id_{A_1})} \widehat{D} \xrightarrow{(r_1,id_{A_1})} \widehat{H}$$

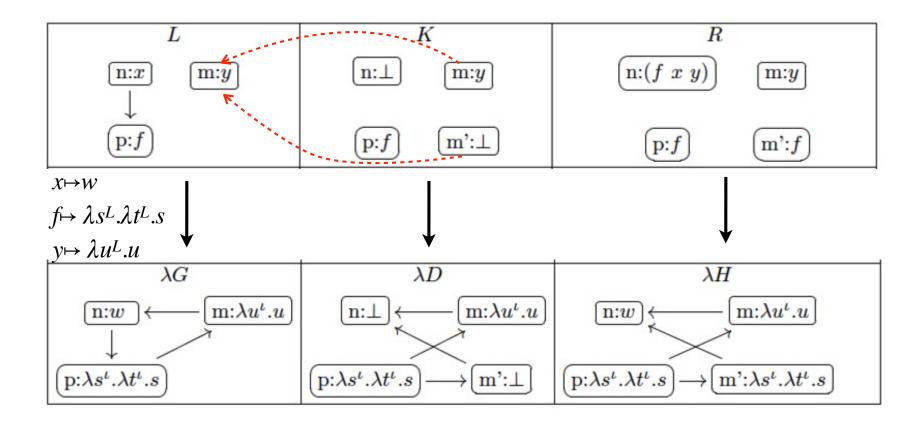
x is context: keep attribute

$$l_1(x): t_1 \longleftrightarrow x: t_1 \longmapsto r_1(x): t_1$$

x is preserved by the rule:

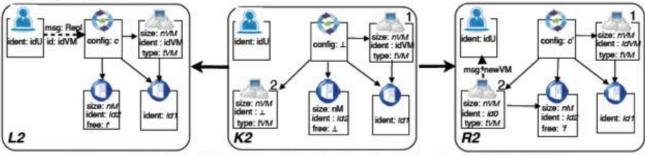
- A nice framework to define systems in the presence of cloning (and merging) operations
- Simple attribute handling:
 - allowing to use different kinds of values;
 - enabling a modular approach to prove properties (due to the independency of the structure from the attributes)

λ-Terms as Attributes



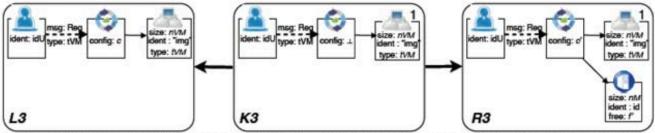
Cloud Administration

rule ReplicateVM



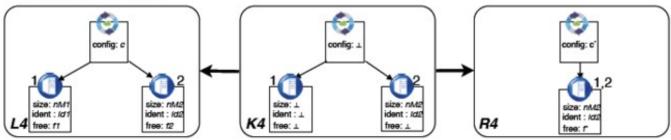
eqns: newId(c,id0); $id1 \neq id2$; $nVM \leq f$; f' = f - nVM; c' = repIVM(c,idU,id0)

rule TurnOnMachine



eqns: not(enoughSpace(c,nVM)); newld(c,id); $nVM \le nM$; f' = nM-nVM; c' = newMch(c,id,nM,f')

rule TurnOffMachine



eqns: $nM1-f1 \le f2$; f' = f2 - (nM1-f1); c' = mergeMch(c,id1,id2)

Future Work

- Analysis of SqPO-transformation systems over attributed structures
- Case studies
- Tool support

Transformations of Attributed Structures with Cloning

Thanks for your attention!

Dominique Duval, Rachid Echahed, Frederic Prost, Leila Ribeiro

