About categorical semantics

Dominique Duval

LJK, University of Grenoble
October 15., 2010
Capp Café, LIG, University of Grenoble

Outline

Introduction

Logics

Effects

Conclusion

The issue

Semantics of programming languages

- several paradigms (functional, imperative, object-oriented,...)
- several kinds of semantics (denotational, operational,...)
more precisely
- effects (states, exceptions, ...)
still more precisely in this talk
- states in imperative programming

With Jean-Claude Reynaud, Jean-Guillaume Dumas,
Christian Lair, César Domínguez, Laurent Fousse
(Something else:
graph rewriting, with Rachid Echahed and Frédéric Prost)

The approach

We use category theory (rather than "usual" logic).

- 1940's Eilenberg and Mac Lane: categories, functors, ...
- 1950's Kan: adjunction
- 1960's Ehresmann: sketches
- 1960's Lawvere: adjunction in logic
- 1970's Lambek: the Curry-Howard-Lambek correspondence

Categorical semantics, for functional languages

Curry-Howard-Lambek correspondence:

logic	programming	categories
propositions	types	objects
proofs	terms	morphisms
intuitionistic logic	simply typed	
lambda calculus	cartesian closed	
categories		
$\frac{A \quad A \rightarrow B}{B}$	$\frac{\text { a:A } \lambda \times . t: A \rightarrow B}{(\lambda x . t) a: B}$	$\frac{\text { a }: U \rightarrow A \quad f: A \rightarrow B}{\text { foa: } U \rightarrow B}$

Categories

A category \mathbf{C} is made of

- objects X, Y, \ldots
- morphisms $f: X \rightarrow Y, \ldots$
with
- identities id $X: X \rightarrow X$
- composition $g \circ f: X \rightarrow Z$ for every $f: X \rightarrow Y, g: Y \rightarrow Z$ such that \circ is associative and id's are units for \circ
- A category with at most one $X \rightarrow Y$ for each X, Y is a preorder
- A category with one object X is a monoid

Functors

A functor $F: \mathbf{C} \rightarrow \mathbf{D}$ is a homomorphism of categories

Examples

Mon \rightarrow Set: a monoid $(M, \times, e) \mapsto$ the underlying set M
Set \rightarrow Mon: a set $A \mapsto$ the monoid of words $\left(A^{*}, ., \varepsilon\right)$

A category of logics

The study of computational effects led us to the question:
in categorical terms

- what is "a logic"?
- what is "a homomorphism of logics"?
i.e.: what is "the" category of logics?

We have built "a" category of logics: the category of diagrammatic logics

Outline

Introduction

Logics

Effects

Conclusion

Modus ponens vs. composition

Modus ponens

$$
\frac{A \quad A \Rightarrow B}{B}
$$

$$
A, A \Rightarrow B \quad A, A \Rightarrow B, B \longleftarrow \quad B
$$

Composition rule

$$
\frac{a: U \rightarrow A \quad f: A \rightarrow B}{f \circ a: U \rightarrow B}
$$

$U \xrightarrow{a} A \xrightarrow{f} B$	$\stackrel{\rightharpoonup}{\square}$	$U \xrightarrow[\text { foa }]{\xrightarrow{a} A \stackrel{f}{\rightarrow}} B$	\longleftarrow	$U \xrightarrow{\text { foa }} B$

Deduction rules

$$
\frac{H}{C} \text { seen as } H \underset{\leftarrow}{H}
$$

where $H, C, H \cup C$ are specifications,
i.e., presentations of theories $L(H), L(C), L(H \cup C)$

Specifications:

Theories:

$$
\begin{array}{|c|}
\hline(H) \stackrel{(\text { iso })}{\rightleftarrows} \\
\rightleftarrows \\
\leftrightarrows \\
\hline
\end{array}(C)
$$

Diagrammatic logics

Definition. A logic is an adjunction

with R full and faithful
i.e., with $L \circ R \cong \mathrm{id} \boldsymbol{T}$
i.e., with L a localizer [Gabriel-Zisman1967]
(and this comes from a morphism of limit sketches [Ehresmann1968])
Non-example

Example

Specifications and theories

With respect to a logic

- S: category of specifications
- T: category of theories

Every morphism in \mathbf{T} comes from some L-fraction ($\frac{c}{h} \ldots$)

So, a logic corresponds to a family of deduction rules

Equational logic

EqS: cat. of equational specifications
EqT: cat. of equational theories
Example (U stands for unit or void)
A specification $\Sigma_{\text {nat }}: U \xrightarrow{0} \overbrace{}^{2}+N^{2}$

$$
\begin{gathered}
0+y=y \\
s(x)+y=s(x+y)
\end{gathered}
$$

Two theories $L\left(\Sigma_{\text {nat }}\right)$ and $\Theta_{\text {set }}$

Terms as morphisms

A term for the equational specification $\Sigma_{\text {nat }}$: $s s 0+s s s 0$, closed term of type N

$$
\begin{aligned}
& U^{0} N \xrightarrow{s} N \xrightarrow{s} N N^{2}+{ }^{+} N \xrightarrow{s} N \xrightarrow{s} N \xrightarrow{s} N^{\swarrow} N
\end{aligned}
$$

composition rule

pairing rule

$$
U \xrightarrow{\langle s s 0, s s s 0\rangle} N^{2} \xrightarrow{+} N
$$

composition rule

$$
U \xrightarrow{s s 0+s s s 0} N
$$

Models

With respect to a logic

given a specification Σ and a theory Θ,
a model of Σ in Θ is (equivalently, by adjunction)

$$
\Sigma \xrightarrow{M} R(\Theta) \text { in } \mathbf{S} \text { or } L(\Sigma) \xrightarrow{M} \Theta \text { in } \mathbf{T}
$$

Example (equational logic)
a model of $\Sigma_{\text {nat }}$ in $\Theta_{\text {set }}$:

Homomorphisms of logics

Definition. A homomorphism of logics $F: L_{1} \rightarrow L_{2}$ is a pair of left adjoints $\left(F_{S}, F_{T}\right)$ such that

(and this comes from a commutative square of morphisms of limit sketches)
So, we get the category of diagrammatic logics

Outline

Introduction

Logics

Effects

Conclusion

"Bank account", in C++

Class BankAccount \{...
int balance () const ;
void deposit (int) ;
...\}
from this $C++$ syntax to an equational specification?

- apparent specification

$$
\begin{aligned}
& \text { balance }: \text { void } \rightarrow \text { int } \\
& \text { deposit }: \text { int } \rightarrow \text { void }
\end{aligned}
$$

the intended interpretation is not a model

- explicit specification

$$
\begin{aligned}
& \text { balance }: \text { state } \rightarrow \text { int } \\
& \text { deposit }: \text { int } \times \text { state } \rightarrow \text { state }
\end{aligned}
$$

the intended interpretation is a model, but the object-oriented flavour is lost

"Decorations"

Decorations:
m for modifiers
a for accessors (const methods)
p for pure functions

- decorated specification

$$
\begin{aligned}
& \text { balance }{ }^{\text {a }}: \text { void } \rightarrow \text { int } \\
& \text { deposit }{ }^{m}: \text { int } \rightarrow \text { void }
\end{aligned}
$$

the intended interpretation is a model and the object-oriented flavour is preserved but this is not an equational specification!

However, it is a specification for some diagrammatic logic $L_{\text {dec }}$ called the decorated equational logic

Homomorphisms of logics

Instructions as decorated morphisms

A program in C

$$
\begin{aligned}
& \text { int } x, y, z ; \\
& x=1 ; \\
& y=2 ; \\
& z=(y=++x)+(x=++y) ;
\end{aligned}
$$

- if $\mathrm{y}=++\mathrm{x}$ is evaluated before $\mathrm{x}=++\mathrm{y}$ then in the resulting state $x=3, y=2, z=5$
- if $\mathrm{x}=++\mathrm{y}$ is evaluated before $\mathrm{y}=++\mathrm{x}$ then in the resulting state $x=3, y=4, z=7$

$$
x=1 ;
$$

$$
\mathrm{U} \xrightarrow{1^{p}} \mathrm{~N}^{\times=m} N \xrightarrow{\dot{;}^{p}} \mathrm{U}
$$

$$
z=(y=++x)+(x=++y)
$$

Apparently (cf. ss0 + sss0)

$$
U_{U^{x}}^{\stackrel{x}{y} N \xrightarrow{++} N \xrightarrow{y=} N_{k}} N^{++} N \xrightarrow{x=} N N^{\leftarrow} N \xrightarrow{z=} N \xrightarrow{;} U
$$

composition rule

pairing rule

$$
U \xrightarrow{\langle y=++x, x=++y\rangle} N^{2} \xrightarrow{+} N \xrightarrow{z=} N \xrightarrow{;} U
$$

composition rule

$$
U \xrightarrow{z=(y=++x)+(x=++y) ;} U
$$

The pairing rule(s)

BUT the pairing rule cannot be decorated!
Pairing rule

$$
\frac{a: X \rightarrow A \quad b: X \rightarrow B}{\langle a, b\rangle: X \rightarrow A \times B}
$$

The pairing rule can be decorated when either a or b is pure When both a and b are modifiers, the pairing rule may be replaced by one of the two sequential pairing rules, which are apparently equivalent and which can be decorated
Sequential pairing rules

$$
\frac{a: X \rightarrow A \quad b: X \rightarrow B}{\left(\operatorname{id}_{A} \times b\right) \circ\left\langle a, \operatorname{id}_{X}\right\rangle: X \rightarrow A \times B} \quad \frac{a: X \rightarrow A \quad b: X \rightarrow B}{\left(a \times \operatorname{id}_{B}\right) \circ\left\langle\operatorname{id}_{X}, b\right\rangle: X \rightarrow A \times B}
$$

A decorated pairing rule

Outline

Introduction

Effects

Conclusion

Categorical semantics, beyond functional languages

What is an effect?

- Moggi [1989], cf. Haskell: an effect "is" a monad
- Plotkin \& Power [2001]: an effect "is" a Lawvere theory
- DDFR [2010] an effect "is" a mismatch between syntax and semantics which can be described by a span of diagrammatic logics

In favour of our approach:
$(+)$ a new point of view on states
$(+)$ a new point of view on multivariate operations
$(+)$ a completely new point of view on exceptions with handling
$(+)$ a duality between states and exceptions

Some papers

- J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud. States and exceptions are dual effects. arXiv:1001.1662 (2010).
- J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. JSC (2010).
- C. Dominguez, D. Duval.

Diagrammatic logic applied to a parameterization process. MSCS 20(04) p. 639-654 (2010).

- D. Duval.

Diagrammatic Specifications.
MSCS (13) 857-890 (2003).

