About categorical semantics

Dominique Duval

LJK, University of Grenoble

October 15., 2010 Capp Café, LIG, University of Grenoble

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Outline

Introduction

Logics

Effects

Conclusion

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

The issue

Semantics of programming languages

- several paradigms (functional, imperative, object-oriented,...)
- several kinds of semantics (denotational, operational,...)

more precisely

effects (states, exceptions, ...)

still more precisely in this talk

states in imperative programming

With Jean-Claude Reynaud, Jean-Guillaume Dumas, Christian Lair, César Domínguez, Laurent Fousse

(Something else: graph rewriting, with Rachid Echahed and Frédéric Prost)

We use category theory (rather than "usual" logic).

- ▶ 1940's Eilenberg and Mac Lane: categories, functors, ...
- 1950's Kan: adjunction
- 1960's Ehresmann: sketches
- ▶ 1960's Lawvere: adjunction in logic
- ▶ 1970's Lambek: the Curry-Howard-Lambek correspondence

Categorical semantics, for functional languages

Curry-Howard-Lambek correspondence:

logic	programming	categories
propositions	types	objects
proofs	terms	morphisms
intuitionistic	simply typed	cartesian closed
logic	lambda calculus	categories
$\frac{A A \Rightarrow B}{B}$	$\frac{a:A \lambda x.t:A \rightarrow B}{(\lambda x.t) a:B}$	$\frac{a:U \to A f:A \to B}{f \circ a:U \to B}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Categories

A category \boldsymbol{C} is made of

- objects X, Y, ...
- morphisms $f: X \to Y, ...$

with

• identities $id_X : X \to X$

▶ composition $g \circ f : X \to Z$ for every $f : X \to Y, g : Y \to Z$ such that \circ is associative and id's are units for \circ

• A category with at most one $X \rightarrow Y$ for each X, Y is a preorder

A category with one object X is a monoid

Functors

A functor $F : \mathbf{C} \to \mathbf{D}$ is a homomorphism of categories

Examples

Mon \rightarrow **Set**: a monoid $(M, \times, e) \mapsto$ the underlying set M**Set** \rightarrow **Mon**: a set $A \mapsto$ the monoid of words $(A^*, ., \varepsilon)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A category of logics

The study of computational effects led us to the question:

in categorical terms

- what is "a logic"?
- what is "a homomorphism of logics"?
- i.e.: what is "the" category of logics?

We have built "a" category of logics: the category of diagrammatic logics

Introduction

Logics

Effects

Conclusion

(4日) (個) (目) (目) (目) (の)()

Modus ponens vs. composition

Modus ponens

$$\frac{A \quad A \Rightarrow B}{B}$$

$$A, A \Rightarrow B \quad \longleftrightarrow \quad A, A \Rightarrow B, B \quad \longleftarrow \quad B$$

Composition rule

$$\frac{a: U \to A \quad f: A \to B}{f \circ a: U \to B}$$

$$U \xrightarrow{a} A \xrightarrow{f} B \qquad \longrightarrow \qquad U \xrightarrow{a} A \xrightarrow{f} B \qquad \longleftarrow \qquad U \xrightarrow{f \circ a} B \qquad \longleftarrow \qquad U \xrightarrow{f \circ a} B$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ @

Deduction rules

$$\frac{H}{C} \quad \text{seen as} \quad H \quad \overleftarrow{\leftarrow -} \quad H \cup C \quad \longleftarrow \quad C$$

where H, C, $H \cup C$ are specifications, i.e., presentations of theories L(H), L(C), $L(H \cup C)$

Specifications:

$$H \xrightarrow{(homo)} H \cup C \longleftarrow C$$

Theories:

$$\begin{array}{c|c} L(H) & \xrightarrow{(iso)} & L(H \cup C) & \longleftarrow & L(C) \end{array}$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Diagrammatic logics

Definition. A logic is an adjunction

with R full and faithful

i.e., with $L \circ R \cong id_{\mathbf{T}}$

i.e., with L a localizer [Gabriel-Zisman1967]

(and this comes from a morphism of limit sketches [Ehresmann1968])

Specifications and theories

With respect to a logic

► S: category of specifications

► **T**: category of theories

Every morphism in **T** comes from some *L*-fraction $\left(\frac{c}{h}...\right)$

$$H \quad \stackrel{h}{\leftarrow} \quad \xrightarrow{} \quad H' \quad \leftarrow \quad C$$

So, a logic corresponds to a family of deduction rules

Equational logic

EqS: cat. of equational specifications **EqT**: cat. of equational theories

Example (*U* stands for unit or void)

A specification
$$\Sigma_{nat}$$
: $U \xrightarrow{0} N \xleftarrow{+} N^2$

$$0+y=y$$

s(x)+y=s(x+y)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Two theories $L(\Sigma_{nat})$ and Θ_{set}

Terms as morphisms

A term for the equational specification Σ_{nat} : ss0 + sss0, closed term of type N

composition rule

pairing rule

$$U \xrightarrow{\langle ss0, sss0 \rangle} N^2 \xrightarrow{+} N$$

composition rule

$$U \xrightarrow{ss0+sss0} N$$

Models

With respect to a logic

given a specification Σ and a theory Θ , a model of Σ in Θ is (equivalently, by adjunction)

$$\Sigma \xrightarrow{M} R(\Theta)$$
 in **S** or $L(\Sigma) \xrightarrow{M} \Theta$ in **T**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example (equational logic)

a model of
$$\Sigma_{\mathrm{nat}}$$
 in Θ_{set} : $\{*\} \xrightarrow{0} \mathbb{N} \xleftarrow{+} \mathbb{N}^2$

Homomorphisms of logics

Definition. A homomorphism of logics $F : L_1 \to L_2$ is a pair of left adjoints (F_S, F_T) such that

(and this comes from a commutative square of morphisms of limit sketches)

▲日▼▲□▼▲□▼▲□▼ □ ののの

So, we get the category of diagrammatic logics

Outline

Introduction

Logics

Effects

Conclusion

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

"Bank account", in C++

```
Class BankAccount {...
       int balance () const ;
       void deposit (int) ;
 ...}
from this C++ syntax to an equational specification?
  apparent specification
             balance: void \rightarrow int
             \texttt{deposit}: \texttt{int} \rightarrow \texttt{void}
     the intended interpretation is not a model
  explicit specification
             balance: state \rightarrow int
             \texttt{deposit}: \texttt{int} \times \texttt{state} \rightarrow \texttt{state}
     the intended interpretation is a model.
     but the object-oriented flavour is lost
```

"Decorations"

Decorations:

m for modifiers

a for accessors (const methods)

p for pure functions

► decorated specification balance^a : void→int deposit^m : int→void the intended interpretation is a model and the object-oriented flavour is preserved but this is not an equational specification!

However, it is a specification for some diagrammatic logic L_{dec} called the decorated equational logic

▲日▼▲□▼▲□▼▲□▼ □ ののの

Homomorphisms of logics

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Instructions as decorated morphisms

A program in C

- int x, y, z; x = 1; y = 2; z = (y = ++x) + (x = ++y);
- ▶ if y = ++x is evaluated before x = ++y then in the resulting state x = 3, y = 2, z = 5
- if x = ++y is evaluated before y = ++x then in the resulting state x = 3, y = 4, z = 7

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

x = 1;

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三回 - のへの

z = (y = ++x) + (x = ++y);

Apparently (cf. ss0 + sss0)

$$U \xrightarrow{x \to N} N \xrightarrow{++} N \xrightarrow{y=} N \underset{x \to N}{\longrightarrow} N^2 \xrightarrow{+} N \xrightarrow{z=} N \xrightarrow{;} U$$

composition rule

pairing rule

$$U \xrightarrow{\langle y=++x,x=++y \rangle} N^2 \xrightarrow{+} N \xrightarrow{z=} N \xrightarrow{;} U$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

composition rule

$$U \xrightarrow{z=(y=++x)+(x=++y);} U$$

The pairing rule(s)

BUT the pairing rule cannot be decorated! Pairing rule

$$egin{array}{cccc} \mathbf{a}:X
ightarrow A & b:X
ightarrow B \ \hline \langle \mathbf{a},b
angle:X
ightarrow A imes B \end{array}$$

The pairing rule can be decorated when either *a* or *b* is pure When both *a* and *b* are modifiers, the pairing rule may be replaced by one of the two sequential pairing rules, which are apparently equivalent and which can be decorated Sequential pairing rules

$$\frac{a: X \to A \quad b: X \to B}{(\mathrm{id}_A \times b) \circ \langle a, \mathrm{id}_X \rangle : X \to A \times B} \quad \frac{a: X \to A \quad b: X \to B}{(a \times \mathrm{id}_B) \circ \langle \mathrm{id}_X, b \rangle : X \to A \times B}$$

A decorated pairing rule

Outline

Introduction

Logics

Effects

Conclusion

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Categorical semantics, beyond functional languages

What is an effect?

- Moggi [1989], cf. Haskell: an effect "is" a monad
- Plotkin & Power [2001]: an effect "is" a Lawvere theory
- DDFR [2010]

an effect "is" a mismatch between syntax and semantics which can be described by a span of diagrammatic logics

In favour of our approach:

- (+) a new point of view on states
- (+) a new point of view on multivariate operations
- (+) a completely new point of view on exceptions with handling
- (+) a duality between states and exceptions

Some papers

 J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud. States and exceptions are dual effects. arXiv:1001.1662 (2010).

 J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. JSC (2010).

 C. Dominguez, D. Duval. Diagrammatic logic applied to a parameterization process. MSCS 20(04) p. 639-654 (2010).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

 D. Duval. Diagrammatic Specifications. MSCS (13) 857-890 (2003).