About categorical semantics

Dominique Duval

LJK, University of Grenoble

October 15., 2010
Capp Café, LIG, University of Grenoble

Outline

Introduction

The issue

Semantics of programming languages
» several paradigms (functional, imperative, object-oriented,...)

» several kinds of semantics (denotational, operational,...)

more precisely
» effects (states, exceptions, ...)
still more precisely in this talk

> states in imperative programming

With Jean-Claude Reynaud, Jean-Guillaume Dumas,
Christian Lair, César Dominguez, Laurent Fousse

(Something else:
graph rewriting, with Rachid Echahed and Frédéric Prost)

The approach

We use category theory (rather than “usual” logic).

1940’s Eilenberg and Mac Lane: categories, functors, ...
1950’s Kan: adjunction
1960's Ehresmann: sketches

1960's Lawvere: adjunction in logic

vV v.v v VY

1970's Lambek: the Curry-Howard-Lambek correspondence

Categorical semantics, for functional languages

Curry-Howard-Lambek correspondence:

logic programming categories
propositions types objects
proofs terms morphisms
intuitionistic simply typed cartesian closed
logic lambda calculus categories
A A=B aA Ax.t:A—B aU—A f:A—B
B (Ax.t) a:B foa:U—B

Categories

A category C is made of
» objects X, Y, ...
» morphisms f : X —= Y, ...
with
> identities idx : X — X
» composition gof: X — Zforevery f: X =Y, g: Y —>Z

such that o is associative and id’s are units for o

> A category with at most one X—Y for each X, Y is a preorder

» A category with one object X is a monoid

Functors

A functor F : C — D is a homomorphism of categories

Examples
Mon — Set: a monoid (M, X, e) +— the underlying set M

Set — Mon: a set A — the monoid of words (A*, ., ¢)

A category of logics

The study of computational effects led us to the question:

in categorical terms
» what is “a logic"?
» what is “a homomorphism of logics"?

i.e.: what is “the” category of logics?

We have built “a” category of logics:
the category of diagrammatic logics

Outline

Logics

Modus ponens vs. composition

Modus ponens
A A=B

B

— [AA=BB]| «—

Composition rule
a:U—-A f.A—B

foa:U—B

f a f
U—A—B U—A—B U—B
rad N —

foa

Deduction rules

g seen as i} HuUC —

where H, C, H U C are specifications,
i.e., presentations of theories L(H), L(C), L(HU C)

Specifications:

homo
H| Y hoc| — | ¢

Theories:

(iso)

LH) | — | L(HUC) | «—— | L(O)

Diagrammatic logics

Definition. A logic is an adjunction

S T
W

R
with R full and faithful
i.e., with Lo R & idy
i.e., with L a localizer [Gabriel-Zisman1967]

(and this comes from a morphism of limit sketches [Ehresmann1968])

Non-example Set Mon
\i/
R
Example PMon i Mon

Specifications and theories

With respect to a logic

\£/

R

» S: category of specifications
» T: category of theories

Every morphism in T comes from some L-fraction (%

H| 2 ||+ | c

So, a logic corresponds to a family of deduction rules

Equational logic

EqS

EqS: cat. of equational specifications

EqT: cat. of equational theories

Example (U stands for unit or void)
S

I _ 0 () + o O+y=y
A specification Lpat: U—— N<—— N 5(x)+y=s(x+y)

Two theories L(Xat) and Oget

Terms as morphisms

A term for the equational specification X ,:
ss0 + sss0, closed term of type N

U

o\/ \o

composition rule

N
/
%N

pairing rule
(ss0,sss0)

N->N-N-2N

N%NQN(\
+
NZ —

v

N2—>N

composition rule

ss0-+sss0
U

Models

With respect to a logic

\i/

R

given a specification ¥ and a theory ©,
a model of X in © is (equivalently, by adjunction)

ys—"RO) nSo L)Y 50 in T

Example (equational logic)

x—x+1

a model of X, in Ogeg: {x} LN N e N2

Homomorphisms of logics

Definition. A homomorphism of logics F : L1 — Ly is a pair of left
adjoints (Fs, Fr) such that

51 Tl
FsJ/ >~ J/FT
S> = T>

(and this comes from a commutative square of morphisms of limit sketches)

So, we get the category of diagrammatic logics

Outline

Effects

“Bank account”, in C++

Class BankAccount {...
int balance () const ;
void deposit (int) ;
frori this C4++ syntax to an equational specification?
» apparent specification
balance : void — int
deposit : int — void
the intended interpretation is not a model
» explicit specification
balance : state — int

deposit : int X state — state
the intended interpretation is a model,
but the object-oriented flavour is lost

“Decorations”

Decorations:
m for modifiers
a for accessors (const methods)

p for pure functions

» decorated specification
balance® : void—int
deposit™ : int—void
the intended interpretation is a model
and the object-oriented flavour is preserved
but this is not an equational specification!

However, it is a specification for some diagrammatic logic Lgec
called the decorated equational logic

Homomorphisms of logics

b* : void—int

d™ : int—void

-~ .

b:void — int b:st — int
d:int — void d:int X st — st
zdec Ldec

SN

zapp zexpl Leq Leq,st

Instructions as decorated morphisms

A program in C
int x, y, Z;
x =1;
y =2

z = (y = ++x) + (x = ++y);

» if y = ++x is evaluated before x = ++y
then in the resulting state x =3,y =2,z =5

» if x = ++y is evaluated before y = ++x
then in the resulting state x =3,y =4,z =7

—

ULNSNSU

N

S—NS—NS—S

z = (y = ++x) + (x = ++y);
Apparently (cf. ssO + sss0)

Tt Y=
NHNHN&

U M EOSNS NS U

VAR

NENS N

composition rule

yl\/(\ + z=

V) N2 N N
m/\//
pairing rule
U (y=++x,x=++y) N2 + N

composition rule

U z=(y=++x)+(x=++y); U

The pairing rule(s)

BUT the pairing rule cannot be decorated!

Pairing rule
a: X—=A b:X—B
(a,b) : X - Ax B
a A a A <a,b)
x_ T x—anSaB| T | XTTAB
b\B b~ B

The pairing rule can be decorated when either a or b is pure
When both a and b are modifiers, the pairing rule may be replaced
by one of the two sequential pairing rules, which are apparently
equivalent and which can be decorated

Sequential pairing rules

a:X—-A b:X—B a:X—-A b:X—B
(idaxb) o (a,idx) : X — AxB (axidg)o (idx,b) : X — AxB

A decorated pairing rule

Av
X%A.B

~SEe

Outline

Conclusion

Categorical semantics, beyond functional languages

What is an effect?
» Moggi [1989], cf. Haskell:

an effect “is” a monad
» Plotkin & Power [2001]:

an effect “is” a Lawvere theory
» DDFR [2010]
an effect “is” a mismatch between syntax and semantics

which can be described by a span of diagrammatic logics

In favour of our approach:
(+) a new point of view on states

+

(+) a new point of view on multivariate operations
(+) a completely new point of view on exceptions with handling

+) a duality between states and exceptions

Some papers

» J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud.
States and exceptions are dual effects.
arXiv:1001.1662 (2010).
» J.-G. Dumas, D. Duval, J.-C. Reynaud.
Cartesian effect categories are Freyd-categories.
JSC (2010).
» C. Dominguez, D. Duval.
Diagrammatic logic applied to a parameterization process.
MSCS 20(04) p. 639-654 (2010).
» D. Duval.

Diagrammatic Specifications.
MSCS (13) 857-890 (2003).

	Introduction
	Logics
	Effects
	Conclusion

