
About categorical semantics

Dominique Duval

LJK, University of Grenoble

October 15., 2010
Capp Café, LIG, University of Grenoble

Outline

Introduction

Logics

Effects

Conclusion

The issue

Semantics of programming languages

◮ several paradigms (functional, imperative, object-oriented,...)

◮ several kinds of semantics (denotational, operational,...)

more precisely

◮ effects (states, exceptions, ...)

still more precisely in this talk

◮ states in imperative programming

With Jean-Claude Reynaud, Jean-Guillaume Dumas,
Christian Lair, César Doḿınguez, Laurent Fousse

(Something else:
graph rewriting, with Rachid Echahed and Frédéric Prost)

The approach

We use category theory (rather than “usual” logic).

◮ 1940’s Eilenberg and Mac Lane: categories, functors, ...

◮ 1950’s Kan: adjunction

◮ 1960’s Ehresmann: sketches

◮ 1960’s Lawvere: adjunction in logic

◮ 1970’s Lambek: the Curry-Howard-Lambek correspondence

Categorical semantics, for functional languages

Curry-Howard-Lambek correspondence:

logic programming categories

propositions types objects

proofs terms morphisms

intuitionistic

logic

simply typed

lambda calculus

cartesian closed

categories
A A⇒B

B
a:A λ x .t:A→B

(λ x .t) a:B
a:U→A f :A→B

f ◦a:U→B

Categories

A category C is made of

◮ objects X ,Y , ...

◮ morphisms f : X → Y , ...

with

◮ identities idX : X → X

◮ composition g ◦ f : X → Z for every f : X → Y , g : Y → Z

such that ◦ is associative and id’s are units for ◦

◮ A category with at most one X→Y for each X ,Y is a preorder

◮ A category with one object X is a monoid

Functors

A functor F : C → D is a homomorphism of categories

Examples

Mon → Set: a monoid (M,×, e) 7→ the underlying set M

Set → Mon: a set A 7→ the monoid of words (A∗
, ., ε)

A category of logics

The study of computational effects led us to the question:

in categorical terms

◮ what is “a logic”?

◮ what is “a homomorphism of logics”?

i.e.: what is “the” category of logics?

We have built “a” category of logics:
the category of diagrammatic logics

Outline

Introduction

Logics

Effects

Conclusion

Modus ponens vs. composition

Modus ponens
A A ⇒ B

B

A,A ⇒ B A,A ⇒ B ,B B

Composition rule
a : U → A f : A → B

f ◦ a : U → B

U
a

A
f

B U
a

f ◦a

A
f

B U
f ◦a

B

Deduction rules

H

C
seen as H H ∪ C C

where H, C , H ∪ C are specifications,
i.e., presentations of theories L(H), L(C), L(H ∪ C)

Specifications:

H
(homo)

H ∪ C C

Theories:

L(H)
(iso)

L(H ∪ C) L(C)

Diagrammatic logics

Definition. A logic is an adjunction

S
L

T

R

⊥

with R full and faithful
i.e., with L ◦ R ∼= idT

i.e., with L a localizer [Gabriel-Zisman1967]

(and this comes from a morphism of limit sketches [Ehresmann1968])

Non-example Set
L

Mon

R

⊥

Example PMon
L

Mon

R

⊥

Specifications and theories

With respect to a logic

S
L

T

R

⊥

◮ S: category of specifications

◮ T: category of theories

Every morphism in T comes from some L-fraction (
c

h
...)

H
h

H ′ c
C

So, a logic corresponds to a family of deduction rules

Equational logic

EqS
L

EqT

R

⊥

EqS: cat. of equational specifications
EqT: cat. of equational theories

Example (U stands for unit or void)

A specification Σnat: U
0

N

s

N2
+ 0+y=y

s(x)+y=s(x+y)

Two theories L(Σnat) and Θset

Terms as morphisms

A term for the equational specification Σnat:
ss0 + sss0, closed term of type N

N
s

N
s

N

U

0

0

N2
+

N

N
s

N
s

N
s

N

composition rule

N

U

ss0

sss0

N2
+

N

N

pairing rule

U
〈ss0,sss0〉

N2
+

N

composition rule

U
ss0+sss0

N

Models

With respect to a logic

S
L

T

R

⊥

given a specification Σ and a theory Θ,
a model of Σ in Θ is (equivalently, by adjunction)

Σ
M

R(Θ) in S or L(Σ)
M

Θ in T

Example (equational logic)

a model of Σnat in Θset: {∗}
0

N

x 7→x+1

N
2

+

Homomorphisms of logics

Definition. A homomorphism of logics F : L1 → L2 is a pair of left
adjoints (FS ,FT) such that

S1
L1

FS

T1

FT

S2
L2

T2

∼=

(and this comes from a commutative square of morphisms of limit sketches)

So, we get the category of diagrammatic logics

Outline

Introduction

Logics

Effects

Conclusion

“Bank account”, in C++

Class BankAccount {...

int balance () const ;

void deposit (int) ;

...}

from this C++ syntax to an equational specification?

◮ apparent specification

balance : void → int

deposit : int → void

the intended interpretation is not a model

◮ explicit specification

balance : state→ int

deposit : int× state → state

the intended interpretation is a model,
but the object-oriented flavour is lost

“Decorations”

Decorations:

m for modifiers

a for accessors (const methods)

p for pure functions

◮ decorated specification

balancea : void→int

depositm : int→void

the intended interpretation is a model
and the object-oriented flavour is preserved
but this is not an equational specification!

However, it is a specification for some diagrammatic logic Ldec

called the decorated equational logic

Homomorphisms of logics

ba : void→int

dm : int→void

b : void → int

d : int → void

b : st → int

d : int× st → st

Σdec

Σapp Σexpl

Ldec

Leq Leq,st

Instructions as decorated morphisms

A program in C

int x, y, z;

x = 1;

y = 2;

z = (y = ++x) + (x = ++y);

◮ if y = ++x is evaluated before x = ++y

then in the resulting state x = 3, y = 2, z = 5

◮ if x = ++y is evaluated before y = ++x

then in the resulting state x = 3, y = 4, z = 7

x = 1;

U
1p

N
x=m

N
;p

U

U
1

N
x=

N
;

U S N.S N.S S

z = (y = ++x) + (x = ++y);

Apparently (cf. ss0 + sss0)

N
++

N
y=

N

U

x

y
N2

+
N

z=
N

;
U

N
++

N
x=

N

composition rule

N

U

y=++x

x=++y

N2
+

N
z=

N
;

U

N

pairing rule

U
〈y=++x ,x=++y〉

N2
+

N
z=

N
;

U

composition rule

U
z=(y=++x)+(x=++y);

U

The pairing rule(s)

BUT the pairing rule cannot be decorated!

Pairing rule
a : X → A b : X → B

〈a, b〉 : X → A × B

A

X

a

b B

A

X

a

b

〈a,b〉 A.B

B

X
〈a,b〉

A.B

The pairing rule can be decorated when either a or b is pure
When both a and b are modifiers, the pairing rule may be replaced
by one of the two sequential pairing rules, which are apparently
equivalent and which can be decorated
Sequential pairing rules

a : X → A b : X → B

(idA×b) ◦ 〈a, idX 〉 : X → A×B

a : X → A b : X → B

(a×idB) ◦ 〈idX , b〉 : X → A×B

A decorated pairing rule

A

X

B

A

X
=

≈ A.B

B

A

X

B

A

X
=

= A.B

B

A.S

X .S

B

A.S

X .S
=

= A.B .S

B

Outline

Introduction

Logics

Effects

Conclusion

Categorical semantics, beyond functional languages

What is an effect?

◮ Moggi [1989], cf. Haskell:
an effect “is” a monad

◮ Plotkin & Power [2001]:
an effect “is” a Lawvere theory

◮ DDFR [2010]
an effect “is” a mismatch between syntax and semantics
which can be described by a span of diagrammatic logics

In favour of our approach:

(+) a new point of view on states

(+) a new point of view on multivariate operations

(+) a completely new point of view on exceptions with handling

(+) a duality between states and exceptions

Some papers

◮ J.-G. Dumas, D. Duval, L. Fousse, J.-C. Reynaud.
States and exceptions are dual effects.

arXiv:1001.1662 (2010).

◮ J.-G. Dumas, D. Duval, J.-C. Reynaud.
Cartesian effect categories are Freyd-categories.

JSC (2010).

◮ C. Dominguez, D. Duval.
Diagrammatic logic applied to a parameterization process.

MSCS 20(04) p. 639-654 (2010).

◮ D. Duval.
Diagrammatic Specifications.

MSCS (13) 857-890 (2003).

	Introduction
	Logics
	Effects
	Conclusion

