Sequential products in effect categories

Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud
work in progress

Journées ARROWS
Nancy — June 7., 2007

Outline

Introduction

The problem

In some languages, like C,
the order of evaluation of function arguments is unspecified.

» when there is no computational effect,
the order of evaluation does not matter

» when effects do occur,
the order of evaluation becomes fundamental
e.g. alil=++i;

The problem is to design a formal framework
for imposing an evaluation order

Some solutions

The language Haskel1 provides a framework
for dealing with computational effects:

» Monads [Moggi 91, Wadler 93]

with generalizations:
» Freyd categories [Power-Robinson 97]
» Arrows [Hughes 00]

Comparisons [Heunen-Jacobs 06]: “all are monoids”:

Monads “are” Arrows “are” Freyd categories

Sequentialization

» without effects, the function:

(1) (a1, a) — (fi(a1), k(a2))
can be decomposed as:
(2) (a1, @)~ (fi(ar), @) — (fi(a1), 2(a2))

» with effects, (1) is ambiguous, but (2) is not:
“compute first fy(ay), then f2(az)”

So, the issue is about:

(a1.3) — (f(a1), 2)|

“compute f(a1) and keep the information about ax”

» strength for Monads

» premonoidal category for Freyd categories
» first operator for Arrows

Our solution

Like the other frameworks,
we distinguish two kinds of functions:

» (general) functions [—1]: maybe with effect
» pure functions [~]: effect-free

pure functions are functions
cf. [Moggi 91]: values are computations

Unlike the other frameworks,

we distinguish two kinds of equations:
» (strong) equations [=: for equalities

» semi-equations : some kind of “local comparability
strong equations are semi-equations

Outline

Examples

Two examples

» Partiality
— can be handled with the monad X — X + 1
— our semi-equations form an partial order relation

» State
— can be handled with the monad X — (S x X)®
— our semi-equations form an equivalence relation

Partiality

Two kinds of functions:
» general functions may be partial

» pure functions are total functions

Two kinds of equations:
» an equation f = g is an equality (of domains and values)

» a semi-equation f < g is a (usual) inequality:
D(f) € D(g) and f(x) = g(x) for all x € D(f).

Key property:
! f(xq) or L

R

(X1, %0) ————— ((x1), xg) or L
3

X

—_

!
2 {
v

id
: Xo 0r L

Xo |

State

Two kinds of functions:
» general functions may use and modify the state
» pure functions neither use nor modify the state
Two kinds of equations:
» an equation f = g is an equality
» a semi-equation f < g (or f = g)
only means that the resulting values are equal:
f(s,x) = (8,y),9(s, x) = (s", y) with the same y.
Key property:

(8.%1) = f(8,31) = (&, 1)

N

(s, XLXz)* (S’,y:qu)

{ 2

!
.
. v
(s, X2) PO S (s, %) () (S, X2)

Outline

Cartesian categories

Multivariate functions: f(x1, ..., Xn)

» “Logical” view:
several arguments: xq,..., Xp

» “Categorical” view:
one argument: (X, ..., Xp)

f(X1,...,%n) = F({X1,...,Xn))

Substitution is split in two parts:
1. formation of the tuple t = (t1, ..., t,)
2. substitution of one argument f(t)

Categories

Categories =
the framework for substituting one argument
f(t)=f.t

Definition
A category is a graph with composition:

X— sy . 7| | x—t-y?
—)_//
g.f

X | =5 XDidx

generalizing monoids: h.(g.f) = (h.g).f, fid = f, id.f = f.

Words

| drawings | graphs | categories |computer sc. |
point vertex object type
arrow edge morphism function

All functions are univariate!

(Categorical) Products

An abstraction of the cartesian product of sets (here, n = 2)

Yi Y;

Y2 Y2

X

Multivariate functions

1. formation of the tuple t = (t, ...

’ tn>

2. substitution of one argument f(t)

Y,
ey “
X Y1><Y2f—>Z = X—>5’1
| \ o
b Y, o>
f(t17 7tn)—f-<t17 atn>

Cartesian categories

Cartesian categories =
the framework for substituting several arguments
f(t‘],,tn) = f<t1,,tn>

Definition
A cartesian category is a category with products.

Outline

Cartesian effect categories

Effect categories (1/2)

Definition
An effect category is a decorated category:
» two kinds of functions:
— (general) functions —
— pure functions ~
every pure function is a function
identities are pure, composition of pures is pure

» two kinds of equations:
— (strong) equations =
— semi-equations <
every equation is a semi-equation
on pure functions, < and = coincide
and...

Effect categories (2/2)

...and in addition:

» < gatisfies substitution:
ifg1<go:Y— Zthengy.f < go.f

» < satisfies replacement only for pure functions:
ifg1 S92 Y —Zand vpurethenv.gy S v.go

Examples

» partiality
C is the category of partial functions
pure functions are total functions
f = g means f = g (equality of domains and values)
f < g means D(f) C D(g) and f(x) = g(x) for all x € D(f).

» state
S is the set of states
C is the category with points S x X
and with all functions
pure functions are idg x v: (s, x) — (s, v(x))
f=gmeansf=g
f < g means f and g return the same value y € Y,
maybe not the same state!

Semi-products

A semi-product is a decorated product
it defines (fy, f») only when £ is pure

Y] Yi
/ ! ?Ch
- fi.b)
X 5 R (f1,2) Y, x Y,
AN 2
fz\ \\k f s/%
Y2 Y2

Identities are pure! Hence, we get:

(£,id) : (a1, @) = (f(a), @) |

“compute f(ay) and keep the information about a,”

Examples

» partiality
(fi, B)(x1, X2) = (f(x1), X2) when x; € D(f)
= 1 when x; € D(f)

» state

(fi, 2)(s, x1,%2) = (8", y1, ¥2)
where fi(s, x1) = (8, y1) and (s, X2) = (S, X2)

Sequential product

“compute first fi(a1), then f(a2)”

Definition
f1 X f2 = (idy1 X fg)(f1 X ing)
fi id
X Y, Y,
P1§ S1§ P Q1§
X1 X X2 hixid Y1 X X2 dxt Y1 X Y2
Pzé 2 525 = %3
X i Xz E Yz

A sequential product is a “weak product”

Theorem
Foreachfi : Xi — Y, 6: X0 — Yo
and pure values xy : U ~~ Xy and xo : U ~ Xo:

g1-(fi x B).(x1, x2) < fr.x4

Go.(fi x B).(x1, X2) = B.x2.().f1.xq

H (X1,X2) R fy x£; ,R\Ch
U S X1 X Xg 12 Y1 X Y2
| :
U~ X f Yi = qu
0 {

U Xo X, fa

Decorated results and proofs

By forgetting the decorations:
» every decorated result remains a result
» every decorated proof remains a proof

By adding decorations:
» some results can be decorated, maybe in several ways,
» and for these results, some proofs can be decorated

Cartesian effect categories vs. Arrows

Arrows generalize Monads: [Hugues 00] for Haskell

Theorem
Every cartesian effect category determines an Arrow

Arrows Effect category
AXY C(X,Y)
arr: (X —=Y)—=aXY P(X,Y)CC(X,Y)
(>>)uaXY—-aYZ—-AXZ g.f
first :A XY —=2a(X,2)(Y,2) fxid

Outline

Conclusion

Conclusion

» a new categorical framework
for imposing an order of evaluation

» another application of decorated categories
cf. exceptions [Duval-Reynaud 05]
(decorated doctrines? [Lawvere])

» with one more level of abstraction:
decorations are obtained from morphisms between logics,
in the context of diagrammatic logics [Duval-Lair 02]

Références

» around Haskell

— [Moggi 91] Notions of Computation and Monads, Information and
Computation 93, p.55-92.

— [Wadler 93] Monads for functional programming, Program Design
Calculi Springer-Verlag.

— [Power Robinson 97] Premonoidal Categories and Notions of
Computation, Mathematical Structures in Computer Science 7,
p.453—-468.

— [Hughes 00] Generalising monads to arrows, Science of Computer
Programming 37, p.67-111.

— [Heunen Jacobs 06] Arrows, like Monads, are Monoids, Electronic
Notes in Theoretical Computer Science p.219—-236.

» decorated logic

— [Duval Lair 03] Diagrammatic Specifications, Mathematical Structures
in Computer Science 13, p.857-890.

— [Duval Reynaud 05] Dynamic logic and exceptions: an introduction,
MAP’05, Dagstuhl Seminars

	Introduction
	Examples
	Cartesian categories
	Cartesian effect categories
	Conclusion

