Sequential products in effect categories

Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud work in progress

Journées ARROWS
Nancy — June 7., 2007

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

The problem

In some languages, like c,
the order of evaluation of function arguments is unspecified.

- when there is no computational effect, the order of evaluation does not matter
- when effects do occur, the order of evaluation becomes fundamental e.g. a[i]=++i;

The problem is to design a formal framework for imposing an evaluation order

Some solutions

The language Haskell provides a framework for dealing with computational effects:

- Monads [Moggi 91, Wadler 93]
with generalizations:
- Freyd categories [Power-Robinson 97]
- Arrows [Hughes 00]

Comparisons [Heunen-Jacobs 06]: "all are monoids":
Monads "are" Arrows "are" Freyd categories

Sequentialization

- without effects, the function:
(1) $\quad\left(a_{1}, a_{2}\right) \mapsto\left(f_{1}\left(a_{1}\right), f_{2}\left(a_{2}\right)\right)$
can be decomposed as:
(2) $\quad\left(a_{1}, a_{2}\right) \mapsto\left(f_{1}\left(a_{1}\right), a_{2}\right) \mapsto\left(f_{1}\left(a_{1}\right), f_{2}\left(a_{2}\right)\right)$
- with effects, (1) is ambiguous, but (2) is not: "compute first $f_{1}\left(a_{1}\right)$, then $f_{2}\left(a_{2}\right)$ "
So, the issue is about:

$$
\left(a_{1}, a_{2}\right) \mapsto\left(f\left(a_{1}\right), a_{2}\right)
$$

"compute $f\left(a_{1}\right)$ and keep the information about a_{2} "

- strength for Monads
- premonoidal category for Freyd categories
- first operator for Arrows

Our solution

Like the other frameworks, we distinguish two kinds of functions:

- (general) functions \rightarrow : maybe with effect
- pure functions \rightsquigarrow : effect-free
pure functions are functions
cf. [Moggi 91]: values are computations
Unlike the other frameworks, we distinguish two kinds of equations:
- (strong) equations \equiv : for equalities
- semi-equations \lesssim : some kind of "local comparability" strong equations are semi-equations

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

Two examples

- Partiality
- can be handled with the monad $X \mapsto X+1$
- our semi-equations form an partial order relation
- State
- can be handled with the monad $X \mapsto(S \times X)^{S}$
- our semi-equations form an equivalence relation

Partiality

Two kinds of functions:

- general functions may be partial
- pure functions are total functions

Two kinds of equations:

- an equation $f \equiv g$ is an equality (of domains and values)
- a semi-equation $f \lesssim g$ is a (usual) inequality: $\mathcal{D}(f) \subseteq \mathcal{D}(g)$ and $f(x)=g(x)$ for all $x \in \mathcal{D}(f)$.
Key property:

State

Two kinds of functions:

- general functions may use and modify the state
- pure functions neither use nor modify the state

Two kinds of equations:

- an equation $f \equiv g$ is an equality
- a semi-equation $f \lesssim g$ (or $f \cong g$) only means that the resulting values are equal: $f(s, x)=\left(s^{\prime}, y\right), g(s, x)=\left(s^{\prime \prime}, y\right)$ with the same y.
Key property:

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

Multivariate functions: $f\left(x_{1}, \ldots, x_{n}\right)$

- "Logical" view: several arguments: x_{1}, \ldots, x_{n}
- "Categorical" view: one argument: $\left\langle x_{1}, \ldots, x_{n}\right\rangle$

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)
$$

Substitution is split in two parts:

1. formation of the tuple $t=\left\langle t_{1}, \ldots, t_{n}\right\rangle$
2. substitution of one argument $f(t)$

Categories

Categories =
the framework for substituting one argument

$$
f(t)=f . t
$$

Definition

A category is a graph with composition:

$$
\begin{aligned}
& X \xrightarrow{+--} \quad X \longrightarrow \mathrm{id}_{x}
\end{aligned}
$$

generalizing monoids: $h .(g . f) \equiv(h . g) . f, f . \mathrm{id} \equiv f$, id.$f \equiv f$.

Words

drawings	graphs	categories	computer sc.
point	vertex	object	type
arrow	edge	morphism	function

All functions are univariate!

(Categorical) Products

An abstraction of the cartesian product of sets (here, $n=2$)

Multivariate functions

1. formation of the tuple $t=\left\langle t_{1}, \ldots, t_{n}\right\rangle$
2. substitution of one argument $f(t)$

$$
f\left(t_{1}, \ldots, t_{n}\right)=f .\left\langle t_{1}, \ldots, t_{n}\right\rangle
$$

Cartesian categories

Cartesian categories = the framework for substituting several arguments

$$
f\left(t_{1}, \ldots, t_{n}\right)=f_{.}\left\langle t_{1}, \ldots, t_{n}\right\rangle
$$

Definition
A cartesian category is a category with products.

Outline

Introduction
Examples
Cartesian categories

Cartesian effect categories

Conclusion

Effect categories (1/2)

Definition
An effect category is a decorated category:

- two kinds of functions:
- (general) functions \rightarrow
- pure functions \rightsquigarrow
every pure function is a function
identities are pure, composition of pures is pure
- two kinds of equations:
- (strong) equations \equiv
- semi-equations \lesssim
every equation is a semi-equation
on pure functions, \lesssim and \equiv coincide
and. . .

Effect categories (2/2)

... and in addition:

- \lesssim satisfies substitution: if $g_{1} \lesssim g_{2}: Y \rightarrow Z$ then $g_{1} . f \lesssim g_{2} . f$
- \lesssim satisfies replacement only for pure functions: if $g_{1} \lesssim g_{2}: Y \rightarrow Z$ and v pure then $v . g_{1} \lesssim v . g_{2}$

Examples

- partiality

C is the category of partial functions pure functions are total functions
$f \equiv g$ means $f=g$ (equality of domains and values)
$f \lesssim g$ means $\mathcal{D}(f) \subseteq \mathcal{D}(g)$ and $f(x)=g(x)$ for all $x \in \mathcal{D}(f)$.

- state
S is the set of states
C is the category with points $S \times X$ and with all functions
pure functions are $\mathrm{id}_{S} \times v:(s, x) \mapsto(s, v(x))$
$f \equiv g$ means $f=g$
$f \lesssim g$ means f and g return the same value $y \in Y$, maybe not the same state!

Semi-products

A semi-product is a decorated product it defines $\left\langle f_{1}, f_{2}\right\rangle$ only when f_{2} is pure

Identities are pure! Hence, we get:

$$
\langle f, \mathrm{id}\rangle:\left(a_{1}, a_{2}\right) \mapsto\left(f\left(a_{1}\right), a_{2}\right)
$$

"compute $f\left(a_{1}\right)$ and keep the information about a_{2} "

Examples

- partiality

$$
\begin{aligned}
\left\langle f_{1}, f_{2}\right\rangle\left(x_{1}, x_{2}\right) & =\left(f\left(x_{1}\right), x_{2}\right) \text { when } x_{1} \in \mathcal{D}(f) \\
& =\perp \text { when } x_{1} \notin \mathcal{D}(f)
\end{aligned}
$$

- state
$\left\langle f_{1}, f_{2}\right\rangle\left(s, x_{1}, x_{2}\right)=\left(s^{\prime}, y_{1}, y_{2}\right)$ where $f_{1}\left(s, x_{1}\right)=\left(s^{\prime}, y_{1}\right)$ and $f_{2}\left(s, x_{2}\right)=\left(s, x_{2}\right)$

Sequential product

"compute first $f_{1}\left(a_{1}\right)$, then $f_{2}\left(a_{2}\right)$ "
Definition

$$
f_{1} \ltimes f_{2}=\left(\operatorname{id}_{Y_{1}} \times f_{2}\right) \cdot\left(f_{1} \times \operatorname{id}_{X_{2}}\right)
$$

A sequential product is a "weak product"

Theorem

For each $f_{1}: X_{1} \rightarrow Y_{1}, f_{2}: X_{2} \rightarrow Y_{2}$
and pure values $x_{1}: U \rightsquigarrow X_{1}$ and $x_{2}: U \rightsquigarrow X_{2}$:

$$
\begin{gathered}
q_{1} \cdot\left(f_{1} \ltimes f_{2}\right) \cdot\left\langle x_{1}, x_{2}\right\rangle \lesssim f_{1} \cdot x_{1} \\
q_{2} \cdot\left(f_{1} \ltimes f_{2}\right) \cdot\left\langle x_{1}, x_{2}\right\rangle \equiv f_{2} \cdot x_{2} \cdot\langle \rangle \cdot f_{1} \cdot x_{1}
\end{gathered}
$$

Decorated results and proofs

By forgetting the decorations:

- every decorated result remains a result
- every decorated proof remains a proof

By adding decorations:

- some results can be decorated, maybe in several ways,
- and for these results, some proofs can be decorated

Cartesian effect categories vs. Arrows

Arrows generalize Monads: [Hugues 00] for Haskell
Theorem
Every cartesian effect category determines an Arrow

Arrows	Effect category
$\mathrm{A} X Y$	$\mathbf{C}(X, Y)$
arr $::(X \rightarrow Y) \rightarrow \mathrm{A} X Y$	$\mathbf{P}(X, Y) \subseteq \mathbf{C}(X, Y)$
$(\gg):: \mathrm{A} X Y \rightarrow \mathrm{~A} Y Z \rightarrow \mathrm{~A} X Z$	g.f
first $:: \mathrm{A} X Y \rightarrow \mathrm{~A}(X, Z)(Y, Z)$	$f \times \mathrm{id}$

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

Conclusion

- a new categorical framework for imposing an order of evaluation
- another application of decorated categories cf. exceptions [Duval-Reynaud 05] (decorated doctrines? [Lawvere])
- with one more level of abstraction: decorations are obtained from morphisms between logics, in the context of diagrammatic logics [Duval-Lair 02]

Références

- around Haskell
- [Moggi 91] Notions of Computation and Monads, Information and Computation 93, p.55-92.
- [Wadler 93] Monads for functional programming, Program Design

Calculi Springer-Verlag.

- [Power Robinson 97] Premonoidal Categories and Notions of Computation, Mathematical Structures in Computer Science 7, p.453-468.
- [Hughes 00] Generalising monads to arrows, Science of Computer Programming 37, p.67-111.
- [Heunen Jacobs 06] Arrows, like Monads, are Monoids, Electronic Notes in Theoretical Computer Science p.219-236.
- decorated logic
- [Duval Lair 03] Diagrammatic Specifications, Mathematical Structures in Computer Science 13, p.857-890.
- [Duval Reynaud 05] Dynamic logic and exceptions: an introduction, MAP'05, Dagstuhl Seminars

