Sequential products in effect categories

Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud work in progress

Journées ARROWS Nancy — June 7., 2007

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

The problem

In some languages, like \mathbb{C} , the order of evaluation of function arguments is unspecified.

- when there is no computational effect, the order of evaluation does not matter
- when effects do occur, the order of evaluation becomes fundamental e.g. a [i]=++i;

The problem is to design a formal framework for imposing an evaluation order

Some solutions

The language Haskell provides a framework for dealing with computational effects:

► Monads [Moggi 91, Wadler 93]

with generalizations:

- Freyd categories [Power-Robinson 97]
- Arrows [Hughes 00]

Comparisons [Heunen-Jacobs 06]: "all are monoids":

Monads "are" Arrows "are" Freyd categories

Sequentialization

without effects, the function:

(1)
$$(a_1, a_2) \mapsto (f_1(a_1), f_2(a_2))$$

can be decomposed as:
(2) $(a_1, a_2) \mapsto (f_1(a_1), a_2) \mapsto (f_1(a_1), f_2(a_2))$

with effects, (1) is ambiguous, but (2) is not: "compute first $f_1(a_1)$, then $f_2(a_2)$ "

So, the issue is about:

$$(a_1,a_2)\mapsto (f(a_1),a_2)$$

"compute $f(a_1)$ and keep the information about a_2 "

- strength for Monads
- premonoidal category for Freyd categories
- first operator for Arrows

Our solution

Like the other frameworks, we distinguish two kinds of functions:

- ▶ (general) functions →: maybe with effect
- ▶ pure functions : effect-free

pure functions are functions cf. [Moggi 91]: values are computations

Unlike the other frameworks, we distinguish two kinds of equations:

- ▶ (strong) equations =: for equalities
- ► semi-equations | ≤ |: some kind of "local comparability" strong equations are semi-equations

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Two examples

- Partiality
 - can be handled with the monad $X \mapsto X + 1$
 - our semi-equations form an partial order relation
- State
 - can be handled with the monad $X \mapsto (S \times X)^S$
 - our semi-equations form an equivalence relation

Partiality

Two kinds of functions:

- general functions may be partial
- pure functions are total functions

Two kinds of equations:

- ▶ an equation $f \equiv g$ is an equality (of domains and values)
- ▶ a semi-equation $f \lesssim g$ is a (usual) inequality: $\mathcal{D}(f) \subseteq \mathcal{D}(g)$ and f(x) = g(x) for all $x \in \mathcal{D}(f)$.

Key property:

State

Two kinds of functions:

- general functions may use and modify the state
- pure functions neither use nor modify the state

Two kinds of equations:

- ▶ an equation $f \equiv g$ is an equality
- ▶ a semi-equation $f \lesssim g$ (or $f \cong g$) only means that the resulting values are equal: f(s,x) = (s',y), g(s,x) = (s'',y) with the same y.

Key property:

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Multivariate functions: $f(x_1, ..., x_n)$

- ► "Logical" view: several arguments: x₁,...,x_n
- "Categorical" view: one argument: $\langle x_1, \dots, x_n \rangle$

$$f(x_1,\ldots,x_n)=f(\langle x_1,\ldots,x_n\rangle)$$

Substitution is split in two parts:

- 1. formation of the tuple $t = \langle t_1, \dots, t_n \rangle$
- 2. substitution of one argument f(t)

Categories

Categories = the framework for substituting one argument
$$f(t) = f.t$$

Definition

A category is a graph with composition:

generalizing monoids: $h(g.f) \equiv (h.g).f$, $f.id \equiv f$, $id.f \equiv f$.

Words

drawings	graphs	categories	computer sc.
point	vertex	object	type
arrow	edge	morphism	function

All functions are univariate!

(Categorical) Products

An abstraction of the cartesian product of sets (here, n = 2)

Multivariate functions

- 1. formation of the tuple $t = \langle t_1, \dots, t_n \rangle$
- 2. substitution of one argument f(t)

$$f(t_1,\ldots,t_n)=f.\langle t_1,\ldots,t_n\rangle$$

Cartesian categories

Cartesian categories = the framework for substituting several arguments $f(t_1, \ldots, t_n) = f.\langle t_1, \ldots, t_n \rangle$

Definition

A cartesian category is a category with products.

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Effect categories (1/2)

Definition

An effect category is a decorated category:

- two kinds of functions:
 - (general) functions →
 - pure functions →
 every pure function is a function
 identities are pure, composition of pures is pure
- two kinds of equations:
 - (strong) equations ≡
 - semi-equations \lesssim every equation is a semi-equation on pure functions, \lesssim and \equiv coincide

and...

Effect categories (2/2)

... and in addition:

- ► \lesssim satisfies substitution: if $g_1 \lesssim g_2 : Y \to Z$ then $g_1.f \lesssim g_2.f$
- ► \leq satisfies replacement only for pure functions: if $g_1 \lesssim g_2 : Y \to Z$ and v pure then $v.g_1 \lesssim v.g_2$

Examples

partiality

C is the category of partial functions pure functions are total functions $f \equiv g$ means f = g (equality of domains and values) $f \lesssim g$ means $\mathcal{D}(f) \subseteq \mathcal{D}(g)$ and f(x) = g(x) for all $x \in \mathcal{D}(f)$.

state

S is the set of states C is the category with points $S \times X$ and with all functions pure functions are $\mathrm{id}_S \times v \colon (s,x) \mapsto (s,v(x))$ $f \equiv g$ means f = g $f \lesssim g$ means f and g return the same value $g \in Y$, maybe **not** the same state!

Semi-products

A semi-product is a decorated product it defines $\langle f_1, f_2 \rangle$ only when f_2 is pure

Identities are pure! Hence, we get:

$$\langle f, \mathrm{id} \rangle : (a_1, a_2) \mapsto (f(a_1), a_2)$$

"compute $f(a_1)$ and keep the information about a_2 "

Examples

partiality

$$\langle f_1, f_2 \rangle (x_1, x_2) = (f(x_1), x_2) \text{ when } x_1 \in \mathcal{D}(f)$$

= $\perp \text{ when } x_1 \notin \mathcal{D}(f)$

state

$$\langle f_1, f_2 \rangle (s, x_1, x_2) = (s', y_1, y_2)$$

where $f_1(s, x_1) = (s', y_1)$ and $f_2(s, x_2) = (s, x_2)$

Sequential product

"compute first $f_1(a_1)$, then $f_2(a_2)$ "

Definition

$$f_1 \ltimes f_2 = (\mathrm{id}_{Y_1} \times f_2).(f_1 \times \mathrm{id}_{X_2})$$

$$X_{1} \xrightarrow{f_{1}} Y_{1} \xrightarrow{id} Y_{1}$$

$$p_{1} \rangle \equiv s_{1} \rangle \geq q_{1} \rangle$$

$$X_{1} \times X_{2} \xrightarrow{f_{1} \times id} Y_{1} \times X_{2} \xrightarrow{id \times f_{2}} Y_{1} \times Y_{2}$$

$$p_{2} \rangle \geq s_{2} \rangle \equiv q_{2} \rangle$$

$$X_{2} \xrightarrow{id} X_{2} \xrightarrow{f_{2}} Y_{2}$$

A sequential product is a "weak product"

Theorem

For each $f_1: X_1 \rightarrow Y_1$, $f_2: X_2 \rightarrow Y_2$ and pure values $x_1: U \rightsquigarrow X_1$ and $x_2: U \rightsquigarrow X_2$:

$$q_1.(f_1 \ltimes f_2).\langle x_1, x_2 \rangle \lesssim f_1.x_1$$

$$q_2.(f_1 \ltimes f_2).\langle x_1, x_2 \rangle \equiv f_2.x_2.\langle \rangle.f_1.x_1$$

Decorated results and proofs

By forgetting the decorations:

- every decorated result remains a result
- every decorated proof remains a proof

By adding decorations:

- some results can be decorated, maybe in several ways,
- and for these results, some proofs can be decorated

Cartesian effect categories vs. Arrows

Arrows generalize Monads: [Hugues 00] for Haskell

Theorem

Every cartesian effect category determines an Arrow

Arrows	Effect category	
A X Y	$\mathbf{C}(X,Y)$	
$\operatorname{arr}:(X o Y) o \operatorname{A}XY$	$P(X,Y) \subseteq C(X,Y)$	
(>>>) :: A X $Y o$ A Y $Z o$ A X Z	g.f	
first :: A $X Y \rightarrow A(X,Z)(Y,Z)$	$f \times id$	

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

- a new categorical framework for imposing an order of evaluation
- another application of decorated categories cf. exceptions [Duval-Reynaud 05] (decorated doctrines? [Lawvere])
- with one more level of abstraction: decorations are obtained from morphisms between logics, in the context of diagrammatic logics [Duval-Lair 02]

Références

around Haskell

- [Moggi 91] Notions of Computation and Monads, *Information and Computation* 93, p.55–92.
- [Wadler 93] Monads for functional programming, *Program Design Calculi* Springer-Verlag.
- [Power Robinson 97] Premonoidal Categories and Notions of Computation, *Mathematical Structures in Computer Science* 7, p.453–468.
- [Hughes 00] Generalising monads to arrows, *Science of Computer Programming* 37, p.67–111.
- [Heunen Jacobs 06] Arrows, like Monads, are Monoids, *Electronic Notes in Theoretical Computer Science* p.219–236.

decorated logic

- [Duval Lair 03] Diagrammatic Specifications, *Mathematical Structures in Computer Science* 13, p.857–890.
- [Duval Reynaud 05] Dynamic logic and exceptions: an introduction, MAP'05, Dagstuhl Seminars

