
Sequential products in effect categories

Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud
work in progress

Journées ARROWS
Nancy — June 7., 2007

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

The problem

In some languages, like C,
the order of evaluation of function arguments is unspecified.

I when there is no computational effect,
the order of evaluation does not matter

I when effects do occur,
the order of evaluation becomes fundamental
e.g. a[i]=++i;

The problem is to design a formal framework
for imposing an evaluation order

Some solutions

The language Haskell provides a framework
for dealing with computational effects:

I Monads [Moggi 91, Wadler 93]
with generalizations:

I Freyd categories [Power-Robinson 97]
I Arrows [Hughes 00]

Comparisons [Heunen-Jacobs 06]: “all are monoids”:

Monads “are” Arrows “are” Freyd categories

Sequentialization

I without effects, the function:
(1) (a1, a2) 7→ (f1(a1), f2(a2))

can be decomposed as:
(2) (a1, a2) 7→ (f1(a1), a2) 7→ (f1(a1), f2(a2))

I with effects, (1) is ambiguous, but (2) is not:
“compute first f1(a1), then f2(a2)”

So, the issue is about:

(a1, a2) 7→ (f (a1), a2)

“compute f (a1) and keep the information about a2”

I strength for Monads
I premonoidal category for Freyd categories
I first operator for Arrows

Our solution

Like the other frameworks,
we distinguish two kinds of functions:

I (general) functions → : maybe with effect
I pure functions : effect-free

pure functions are functions
cf. [Moggi 91]: values are computations

Unlike the other frameworks,
we distinguish two kinds of equations:

I (strong) equations ≡ : for equalities

I semi-equations . : some kind of “local comparability”

strong equations are semi-equations

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

Two examples

I Partiality
– can be handled with the monad X 7→ X + 1
– our semi-equations form an partial order relation

I State
– can be handled with the monad X 7→ (S × X)S

– our semi-equations form an equivalence relation

Partiality
Two kinds of functions:

I general functions may be partial
I pure functions are total functions

Two kinds of equations:
I an equation f ≡ g is an equality (of domains and values)
I a semi-equation f . g is a (usual) inequality:
D(f) ⊆ D(g) and f (x) = g(x) for all x ∈ D(f).

Key property:

x1
� f // f (x1) or ⊥

(x1, x2)
_

OO
O�
O�
O�

_

��
�O
�O
�O

� //

&

≡

(f (x1), x2) or ⊥
_

OO
O�
O�
O�

_

�� �O
�O
�O

x2
� id ///o/o/o/o/o/o/o/o/o/o/o/o x2 or ⊥

State
Two kinds of functions:

I general functions may use and modify the state
I pure functions neither use nor modify the state

Two kinds of equations:
I an equation f ≡ g is an equality
I a semi-equation f . g (or f ∼= g)

only means that the resulting values are equal:
f (s, x) = (s′, y), g(s, x) = (s′′, y) with the same y .

Key property:

(s, x1)
� f // f (s, x1) = (s′, y1)

(s, x1, x2)
_

OO
O�
O�
O�

_

�� �O
�O
�O

� //

&

≡

(s′, y1, x2)
_

OO
O�
O�
O�

_

�� �O
�O
�O

(s, x2)
� id ///o/o/o/o/o/o/o/o/o (s, x2)(6=)(s′, x2)

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

Multivariate functions: f (x1, . . . , xn)

I “Logical” view:
several arguments: x1, . . . , xn

I “Categorical” view:
one argument: 〈x1, . . . , xn〉

f (x1, . . . , xn) = f (〈x1, . . . , xn〉)

Substitution is split in two parts:
1. formation of the tuple t = 〈t1, . . . , tn〉
2. substitution of one argument f (t)

Categories

Categories =
the framework for substituting one argument

f (t) = f .t

Definition
A category is a graph with composition:

X
f // Y

g // Z L99−→ X
f //

g.f

55Y
g // Z

X L99−→ X idXff

generalizing monoids: h.(g.f) ≡ (h.g).f , f .id ≡ f , id.f ≡ f .

Words

drawings graphs categories computer sc.
point vertex object type
arrow edge morphism function

All functions are univariate!

(Categorical) Products

An abstraction of the cartesian product of sets (here, n = 2)

Y1

X

f1
99rrrrrrrrrrrr

f2 %%LLLLLLLLLLLL

Y2

L99−→

Y1

X

f1
77oooooooooooooo

f2 ''OOOOOOOOOOOOOO
〈f1,f2〉 // Y1 × Y2

q1

OO

q2
��

≡

≡

Y2

Multivariate functions

1. formation of the tuple t = 〈t1, . . . , tn〉
2. substitution of one argument f (t)

Y1

X

t1
77ppppppppp

t2 ''NNNNNNNNN Y1 × Y2

OO

��

f // Z

Y2

L99−→

Y1

X

t1
77ppppppppp

t2 ''NNNNNNNNN //

f .〈t1,t2〉

FFY1 × Y2

OO

��
≡

≡ f // Z

Y2

f (t1, . . . , tn) = f .〈t1, . . . , tn〉

Cartesian categories

Cartesian categories =
the framework for substituting several arguments

f (t1, . . . , tn) = f .〈t1, . . . , tn〉

Definition
A cartesian category is a category with products.

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

Effect categories (1/2)

Definition
An effect category is a decorated category:

I two kinds of functions:
– (general) functions →
– pure functions
every pure function is a function
identities are pure, composition of pures is pure

I two kinds of equations:
– (strong) equations ≡
– semi-equations .
every equation is a semi-equation
on pure functions, . and ≡ coincide

and. . .

Effect categories (2/2)

. . . and in addition:

I . satisfies substitution:
if g1 . g2 : Y → Z then g1.f . g2.f

I . satisfies replacement only for pure functions:
if g1 . g2 : Y → Z and v pure then v .g1 . v .g2

Examples

I partiality
C is the category of partial functions
pure functions are total functions
f ≡ g means f = g (equality of domains and values)
f . g means D(f) ⊆ D(g) and f (x) = g(x) for all x ∈ D(f).

I state
S is the set of states
C is the category with points S × X
and with all functions
pure functions are idS × v : (s, x) 7→ (s, v(x))
f ≡ g means f = g
f . g means f and g return the same value y ∈ Y ,
maybe not the same state!

Semi-products

A semi-product is a decorated product
it defines 〈f1, f2〉 only when f2 is pure

Y1

X

f1
99rrrrrrrrrrrr

f2 %%%e%e%e%e%e%e%e

Y2

L99−→

Y1

X

f1
77oooooooooooooo

f2 '''g'g'g'g'g'g'g'g'g

〈f1,f2〉 // Y1 × Y2

q1

OO
O�
O�
O�

q2
�� �O
�O
�O&

≡

Y2

Identities are pure! Hence, we get:

〈f , id〉 : (a1, a2) 7→ (f (a1), a2)

“compute f (a1) and keep the information about a2”

Examples

I partiality
〈f1, f2〉(x1, x2) = (f (x1), x2) when x1 ∈ D(f)

= ⊥ when x1 6∈ D(f)

I state
〈f1, f2〉(s, x1, x2) = (s′, y1, y2)

where f1(s, x1) = (s′, y1) and f2(s, x2) = (s, x2)

Sequential product

“compute first f1(a1), then f2(a2)”

Definition

f1 n f2 = (idY1 × f2).(f1 × idX2)

X1
f1 // Y1

id ///o/o/o/o/o/o/o/o/o/o/o Y1

X1 × X2

p1

OO
O�
O�
O�

p2
�� �O
�O
�O

f1×id //

&

≡

Y1 × X2

s1

OO
O�
O�
O�

s2
�� �O
�O
�O

id×f2 //

≡

&

Y1 × Y2

q1

OO
O�
O�
O�

q2
�� �O
�O
�O

X2
id ///o/o/o/o/o/o/o/o/o/o/o X2

f2 // Y2

A sequential product is a “weak product”

Theorem
For each f1 : X1 → Y1, f2 : X2 → Y2
and pure values x1 : U X1 and x2 : U X2:

q1.(f1 n f2).〈x1, x2〉 . f1.x1

q2.(f1 n f2).〈x1, x2〉 ≡ f2.x2.〈 〉.f1.x1

U
x1 ///o/o/o/o/o/o/o/o/o/o/o/o/o/o X1

f1 // Y1

U
〈x1,x2〉 ///o/o/o/o/o/o/o/o/o/o/o/o X1 × X2

f1nf2 //
&

≡

Y1 × Y2

q1
OO
O�

q2

��
�O
�O
�O
�O
�O

U
x1 ///o/o/o/o X1

f1 // Y1
〈 〉 ��

�O

U
x2 ///o/o/o/o/o/o X2

f2 // Y2

Decorated results and proofs

By forgetting the decorations:
I every decorated result remains a result
I every decorated proof remains a proof

By adding decorations:
I some results can be decorated, maybe in several ways,
I and for these results, some proofs can be decorated

Cartesian effect categories vs. Arrows

Arrows generalize Monads: [Hugues 00] for Haskell

Theorem
Every cartesian effect category determines an Arrow

Arrows Effect category
A X Y C(X , Y)

arr :: (X → Y) → A X Y P(X , Y) ⊆ C(X , Y)
(>>>) :: A X Y → A Y Z → A X Z g.f
first :: A X Y → A (X , Z) (Y , Z) f × id

Outline

Introduction

Examples

Cartesian categories

Cartesian effect categories

Conclusion

Conclusion

I a new categorical framework
for imposing an order of evaluation

I another application of decorated categories
cf. exceptions [Duval-Reynaud 05]
(decorated doctrines? [Lawvere])

I with one more level of abstraction:
decorations are obtained from morphisms between logics,
in the context of diagrammatic logics [Duval-Lair 02]

Références

I around Haskell
– [Moggi 91] Notions of Computation and Monads, Information and
Computation 93, p.55–92.
– [Wadler 93] Monads for functional programming, Program Design
Calculi Springer-Verlag.
– [Power Robinson 97] Premonoidal Categories and Notions of
Computation, Mathematical Structures in Computer Science 7,
p.453–468.
– [Hughes 00] Generalising monads to arrows, Science of Computer
Programming 37, p.67–111.
– [Heunen Jacobs 06] Arrows, like Monads, are Monoids, Electronic
Notes in Theoretical Computer Science p.219–236.

I decorated logic
– [Duval Lair 03] Diagrammatic Specifications, Mathematical Structures
in Computer Science 13, p.857–890.
– [Duval Reynaud 05] Dynamic logic and exceptions: an introduction,
MAP’05, Dagstuhl Seminars

	Introduction
	Examples
	Cartesian categories
	Cartesian effect categories
	Conclusion

