Decorated proofs for computational effects:
States

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse,
Jean-Claude Reynaud

LJK, University of Grenoble

April 1., 2012 — ACCAT 2012 - Tallinn

Outline

From computer algebra to effects

About the history of the authors:

» Computer algebra: exact computations on large integers,
matrices, polynomials, field extensions,. ..

» Sophisticated programmation in several kinds of languages:
C, C++, Axiom,. ..

» Questions about the languages: semantics of computational
effects? (e.g., states, exceptions,...)

Effects and monads

Breaking a taboo:
effect # monad

Effects and monads

Breaking a taboo:
effect # monad

[Moggi'91]: When there is an effect:
1. aterm f : X = Y should not always be interpreted as
a function [[f]] : [[X]] — [[Y]]
2. it should often be interpreted as
a function [[f]] : [[X]] — TI[Y]] for some monad T

Effects and monads

Breaking a taboo:
effect # monad

[Moggi'91]: When there is an effect:
1. aterm f : X = Y should not always be interpreted as
a function [[f]] : [[X]] — [[Y]]
2. it should often be interpreted as
a function [[f]] : [[X]] — TI[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.

Effects and monads

Breaking a taboo:
effect # monad

[Moggi'91]: When there is an effect:
1. aterm f : X = Y should not always be interpreted as
a function [[f]] : [[X]] — [[Y]]
2. it should often be interpreted as
a function [[f]] : [[X]] — TI[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.
Example. In an imperative language

TIIYN = (S < [[YN)°

Effects and monads

Breaking a taboo:
effect # monad

[Moggi'91]: When there is an effect:
1. aterm f : X = Y should not always be interpreted as
a function [[f]] : [[X]] — [[Y]]
2. it should often be interpreted as
a function [[f]] : [[X]] — TI[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.
Example. In an imperative language

TIIYN = (S < [[YN)°

We agree with (1), not always with (2).
And we get operations and equations in a different way.

What is an effect?

Informally:

An effect is an apparent lack of soundness.

What is an effect?

Informally:
An effect is an apparent lack of soundness.
A lack of soundness:
syntax - — — — ¥ — — — — semantics
which can be “repaired”:

o

syntax semantics

What is an effect?

Informally:
An effect is an apparent lack of soundness.
A lack of soundness:
syntax - — — — ¥ — — — — semantics
which can be “repaired”:

o

syntax semantics

Formally: [Dominguez&Duval MSCS'10]

Outline

A property of imperative languages

The annihilation lookup-update (ALU) property:

X := X does not modify the state

A property of imperative languages

The annihilation lookup-update (ALU) property:

‘X := X does not modify the state

Proof.
Let n be the value of X in the current state.

» First “X" (on the right) is evaluated as n.

» Then “X :=" (on the left) puts the value of X to n,
without modifying the value of other locations.

Hence the state is not modified. O

Towards a formalization: a specification for states

Locations (or identifiers, or variables) X, Y,....
The unit (or void, or singleton) type 1, with ()4:A—1 for each A.

Towards a formalization: a specification for states

Locations (or identifiers, or variables) X, Y,....
The unit (or void, or singleton) type 1, with ()4:A—1 for each A.

For each X, a type Vx for values, two operations:

lx :1— Vx (lookup)
ux : Vx — 1 (update)

and equations:
Ix oux = id
lyoux=Llyo() whenY #X

formalizing the intended semantics:
» {x returns the value of X in the current state

» ux(n) modifies the current state: the value of X becomes n,
and the value of Y is not modified, for every Y # X

A property of imperative languages: proof # 1

Let ¥ be the specification made of £x : 1 — Vx and ux : Vx — 1
such that ¢x o ux = id and ly o ux = {y o () when Y # X.

Then X satisfies the annihilation lookup-update (ALU) property:

A property of imperative languages: proof # 1

Let ¥ be the specification made of £x : 1 — Vx and ux : Vx — 1
such that ¢x o ux = id and ly o ux = {y o () when Y # X.
Then X satisfies the annihilation lookup-update (ALU) property:

Proof. By observation: prove that £y o ux o fx = £y for each Y.
When Y = X:

EX oux = id
EX O ux o KX = EX

(subst)

A property of imperative languages: proof # 1

Let ¥ be the specification made of £x : 1 — Vx and ux : Vx — 1
such that ¢x o ux = id and ly o ux = {y o () when Y # X.

Then X satisfies the annihilation lookup-update (ALU) property:

Proof. By observation: prove that £y o ux o fx = £y for each Y.
When Y = X:
EX o ux = Id

(SubSt) fxouXongfx

When Y # X: .
by oux =Lyo() (unit) (Yolx =id

(subst) (repl)

lyouxolx =Lyo()olyx by o()olx =1Ly

Iyouxolx =1Ly

(trans)

A property of imperative languages: proof # 1

Let ¥ be the specification made of £x : 1 — Vx and ux : Vx — 1
such that ¢x o ux = id and ly o ux = {y o () when Y # X.

Then X satisfies the annihilation lookup-update (ALU) property:

Proof. By observation: prove that £y o ux o fx = £y for each Y.
When Y = X:
EX o ux = Id

(SubSt) fxouXongfx

When Y # X: .
by oux =Lyo() (unit) (Yolx =id

(subst) (repl)

lyouxolx =Lyo()olyx by o()olx =1Ly

(trans) Iyouxolx =1Ly

Hence the state is not modified. O

A property of imperative languages, proof # 2

The annihilation lookup-update (ALU) property:

A property of imperative languages, proof # 2

The annihilation lookup-update (ALU) property:

Another proof.

The (unit) rule states that id is the unique f : 1 — 1.

Uxofxi]l—>]l

(unit) Py —

A property of imperative languages, proof # 2

The annihilation lookup-update (ALU) property:

Another proof.

The (unit) rule states that id is the unique f : 1 — 1.

Uxofxi]l—>]l

(unit) Py —

BUT in the same way, we could prove for all Y:

Uxogy:]l—>]l
UxogyEl.d

(unit)

which obviously is FALSE!

Questions

Two proofs of (ALU). Proof #1 is right, proof #2 is wrong.

WHY?

Questions

Two proofs of (ALU). Proof #1 is right, proof #2 is wrong.
WHY?

The (unit) rule should state that id is the unique f : 1 — 1
under the assumption that f cannot modify the state,
and it should be impossible to apply this rule to ux o fy.

How can we formalize this fact?

Questions

Two proofs of (ALU). Proof #1 is right, proof #2 is wrong.
WHY?

The (unit) rule should state that id is the unique f : 1 — 1
under the assumption that f cannot modify the state,
and it should be impossible to apply this rule to ux o fy.

How can we formalize this fact?

By decorating terms and equations.

Decorations: terms and equations

Terms are classified:
» (0. fis pure if it cannot use nor modify the state.
» f(): fis an accessor if it can use the state, not modify it.

» 2. fis a modifier if it can use and modify the state.
£00) f£(1)

Hierarchy rules: D F@)

Decorations: terms and equations

Terms are classified:
» (0. fis pure if it cannot use nor modify the state.
» f(): fis an accessor if it can use the state, not modify it.
» 2. fis a modifier if it can use and modify the state.
£00) f£(1)
))
Equations are classified:

Hierarchy rules:

» f = g: strong equation: f and g return the same value
and they have the same effect on the state.

» f ~ g: weak equation: f and g return the same value
but they may have different effects on the state.
f=g

Hierarchy rule:
f~g

Decorated rules

The rules of the logic are also decorated, for instance:

f:1—1

it
(unit) =7

Decorated rules

The rules of the logic are also decorated, for instance:

(uniit) f:1—1
unit) —————
f~id
There are new rules (which become trivial without decorations):

£(1) g(l) f~g
f=g

(1-~-to-=)

Decorated rules

The rules of the logic are also decorated, for instance:

(uniit) f:1—1
unit) —————
f~id
There are new rules (which become trivial without decorations):

£(1) g(l) f~g
f=g

(1-~-to-=)

Hence there are new derived rules, like:

O |

1-unit
(1-unit) f=id

Proof #2 is wrong: it cannot be properly decorated

Proof #2 of (ALU) can be decorated as follows:

UXOfxi:ﬂ.—>:ﬂ.

it
(Unl) UXoEXNI'd

which does not entail ux o {x = id.

Proof #2 is wrong: it cannot be properly decorated

Proof #2 of (ALU) can be decorated as follows:

Uxogxi:ﬂ.—>:ﬂ.

it
(Unl) UXofXNI'd

which does not entail ux o {x = id.
In fact for each Y there is a proof:

uxofy:1—1

it
(Unl) Uxonyl'd

which is right but without any interest.

Decorated rules for substitution and replacement

Strong equations form a congruence:

81 =82 _
(

=-subs) ————
(S-su S)glong2of

Decorated rules for substitution and replacement

Strong equations form a congruence:

flEf2

81 =82 (
gofi=goh

=-subs) ————
(S-su S)glof5g2of

=-repl)

Weak equations do not form a congruence:

h~fh g0

gofi~rgoh: X—=Z

81~ 82
~ _el’”82 -~-repl
(~-subs) o f~gof (0-~-repl)

Indeed: f; and f, may modify the state in a different way, so that
g o fi and g o f» may return different values if g is not pure.

A decorated specification for states

For each X, a type Vx for values, two operations:

ES) 1 — Vx (lookup) : an accessor

ugf) : Vx — 1 (update) : a modifier

and weak equations:

EXOUXNI'd
lyoux ~flyo() whenY #X

Proof #1 is right: it can be properly decorated

The annihilation lookup-update (ALU) property:

Proof. By observation: prove that £y o ux o fx ~ £y for each Y.
When Y = X:

fXOUXNI.d
Lx ouxolx ~Lx

(~-subs)

Proof #1 is right: it can be properly decorated

The annihilation lookup-update (ALU) property:

Proof. By observation: prove that £y o ux o fx ~ £y for each Y.
When Y = X:

fXOUXNI.d

(~-subs) Ix ouxolyx ~Ux
When Y # X:
&)
l-unit) ——— X
(1-unit) (Yolx =id
¢ y o) (Erepl) < ot =
o ~ O o 0] =
(~-subs) YoIX oy (=to~) — T

by ouxolyx ~Llyo()olx by o()olx ~ Ly

~-trans
(EYOUXOK)(NZY

Other properties of imperative languages
The 7 properties in [Plotkin&Power 02] can be proved similarly.
For instance the commutation update-update (CUU) property,
is proved in the paper.

Other properties of imperative languages
The 7 properties in [Plotkin&Power 02] can be proved similarly.
For instance the commutation update-update (CUU) property,
is proved in the paper. When X #£ Y:

The order of storing values in X and Y does not matter ‘

Other properties of imperative languages
The 7 properties in [Plotkin&Power 02] can be proved similarly.
For instance the commutation update-update (CUU) property,
is proved in the paper. When X #£ Y:

‘The order of storing values in X and Y does not matter ‘

which is formalized as:

‘UyO(uXXI'd)EuXO(I'dXUy)ZVXxVy—>]l ‘

where X is the semi-pure product from [Dumas&Duval&Reynaud]
Cartesian effect categories are Freyd-categories JSC 2011. ACCAT'09.

VX X 1
T (uX><Eid)(2) T
Vxx y****%iﬂ_XVy

Outline

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S

Explicit proofs

Another way to prove results about states:
1. introduce explicitly a type of states S

2. expand (translate) the decorations

FO . X 5 Y Ff:X—Y
FA). x sy F:XxS—>Y
F@ . x sy F:XxS—>YxS

f=g: X=>Y| f=g: Xx5—=>YxS
feg: X—>Y | |mof=mog: X x5—>Y

Explicit proofs

Another way to prove results about states:
1. introduce explicitly a type of states S

2. expand (translate) the decorations

FO . X 5 Y Ff:X—Y
FA). x sy F:XxS—>Y
F@ . x sy F:XxS—>YxS

f=g: X=>Y| f=g: Xx5—=>YxS
feg: X—>Y | |mof=mog: X x5—>Y

3. prove in the “usual” (not decorated) logic

Explicit proofs

Another way to prove results about states:
1. introduce explicitly a type of states S

2. expand (translate) the decorations

FO . X 5 Y Ff:X—Y
FA). x sy F:XxS—>Y
F@ . x sy F:XxS—>YxS

f=g: X=>Y| f=g: Xx5—=>YxS
feg: X—>Y | |mof=mog: X x5—>Y

3. prove in the “usual” (not decorated) logic

But the notion of effect is lost.

A span of “logics”

decorations

— T

syntax semantics

» decorations — syntax:
forget the decorations

» decorations — semantics :
expansion, with an explicit S for states

From proofs to models

The expansion:

» maps decorated proofs to “usual”’ explicit proofs

From proofs to models

The expansion:
» maps decorated proofs to “usual”’ explicit proofs
» and provides a notion of decorated model
because it can be seen as a functor F with a right adjoint:
F

decorations 1L semantics
G

Moddeco(Z, Ge) = MOdexpl(FZ, e)

For instance:

2 is the decorated specification for states
© is Set with the distinguished set S =[]y Vx

From states to exceptions

» We can prove properties of imperative languages in a logic
which respects the syntax of the language.

From states to exceptions

» We can prove properties of imperative languages in a logic
which respects the syntax of the language.

» THUS, we can prove properties of exceptions in a logic which
respects the syntax of exceptions.
[Dumas&Duval&Fousse&Reynaud] Decorated proofs for computational
effects: exceptions. Submitted for publication.

From states to exceptions

» We can prove properties of imperative languages in a logic
which respects the syntax of the language.

» THUS, we can prove properties of exceptions in a logic which
respects the syntax of exceptions.
[Dumas&Duval&Fousse&Reynaud] Decorated proofs for computational
effects: exceptions. Submitted for publication.

» This is due to the duality between states and the core part of
exceptions.
[Dumas&Duval&Fousse&Reynaud] A duality between exceptions and
states. To appear in MSCS. ACCAT'11.

Conclusion and future work

We have designed a framework for effects which provides
a denotational semantics and a proof system.

Conclusion and future work

We have designed a framework for effects which provides
a denotational semantics and a proof system.

Our projects include:
» Using a proof assistant for proving decorated properties.

» Extending our framework for combining effects by composing
spans.

Thank you!

