Decorated proofs for computational effects: States

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse, Jean-Claude Reynaud

LJK, University of Grenoble
April 1., 2012 - ACCAT 2012 - Tallinn

Outline

From computer algebra to effects

About the history of the authors:

- Computer algebra: exact computations on large integers, matrices, polynomials, field extensions,...
- Sophisticated programmation in several kinds of languages: C, C++, Axiom,...
- Questions about the languages: semantics of computational effects? (e.g., states, exceptions,...)

Effects and monads

Breaking a taboo:

$$
\text { effect } \neq \text { monad }
$$

Effects and monads

Breaking a taboo:

$$
\text { effect } \neq \text { monad }
$$

[Moggi'91]: When there is an effect:

1. a term $f: X \rightarrow Y$ should not always be interpreted as a function $[[f]]:[[X]] \rightarrow[[Y]]$
2. it should often be interpreted as
a function $[[f]]:[[X]] \rightarrow T[[Y]]$ for some monad T

Effects and monads

Breaking a taboo:

$$
\text { effect } \neq \text { monad }
$$

[Moggi'91]: When there is an effect:

1. a term $f: X \rightarrow Y$ should not always be interpreted as
a function $[[f]]:[[X]] \rightarrow[[Y]]$
2. it should often be interpreted as
a function $[[f]]:[[X]] \rightarrow T[[Y]]$ for some monad T
[Plotkin \& Power 2002]: The operations and equations associated with the effect are described by a Lawvere theory.

Effects and monads

Breaking a taboo:

$$
\text { effect } \neq \text { monad }
$$

[Moggi'91]: When there is an effect:

1. a term $f: X \rightarrow Y$ should not always be interpreted as
a function $[[f]]:[[X]] \rightarrow[[Y]]$
2. it should often be interpreted as
a function $[[f]]:[[X]] \rightarrow T[[Y]]$ for some monad T
[Plotkin \& Power 2002]: The operations and equations associated with the effect are described by a Lawvere theory.
Example. In an imperative language

$$
T[[Y]]=(S \times[[Y]])^{S}
$$

Effects and monads

Breaking a taboo:

$$
\text { effect } \neq \text { monad }
$$

[Moggi'91]: When there is an effect:

1. a term $f: X \rightarrow Y$ should not always be interpreted as
a function $[[f]]:[[X]] \rightarrow[[Y]]$
2. it should often be interpreted as
a function $[[f]]:[[X]] \rightarrow T[[Y]]$ for some monad T
[Plotkin \& Power 2002]: The operations and equations associated with the effect are described by a Lawvere theory.
Example. In an imperative language

$$
T[[Y]]=(S \times[[Y]])^{S}
$$

We agree with (1), not always with (2).
And we get operations and equations in a different way.

What is an effect?

Informally:
An effect is an apparent lack of soundness.

What is an effect?

Informally:
An effect is an apparent lack of soundness.
A lack of soundness:

$$
\text { syntax }---\forall---- \text { semantics }
$$

which can be "repaired":

What is an effect?

Informally:
An effect is an apparent lack of soundness.
A lack of soundness:

$$
\text { syntax }---\forall---- \text { semantics }
$$

which can be "repaired":

Formally: [Domínguez\&Duval MSCS'10]

Outline

A property of imperative languages

The annihilation lookup-update (ALU) property:
$X:=X$ does not modify the state

A property of imperative languages

The annihilation lookup-update (ALU) property:

$$
X:=X \text { does not modify the state }
$$

Proof.
Let n be the value of X in the current state.

- First " X " (on the right) is evaluated as n.
- Then " $X:=$ " (on the left) puts the value of X to n, without modifying the value of other locations.
Hence the state is not modified.

Towards a formalization: a specification for states

Locations (or identifiers, or variables) X, Y, \ldots
The unit (or void, or singleton) type $\mathbb{1}$, with $\left\rangle_{A}: A \rightarrow \mathbb{1}\right.$ for each A.

Towards a formalization: a specification for states

Locations (or identifiers, or variables) X, Y, \ldots
The unit (or void, or singleton) type $\mathbb{1}$, with $\left\rangle_{A}: A \rightarrow \mathbb{1}\right.$ for each A.
For each X, a type V_{X} for values, two operations:

$$
\begin{array}{ll}
\ell_{X}: \mathbb{1} \rightarrow V_{X} & \text { (lookup) } \\
u_{X}: V_{X} \rightarrow \mathbb{1} & \text { (update) }
\end{array}
$$

and equations:

$$
\begin{aligned}
& \ell_{X} \circ u_{X} \equiv \text { id } \\
& \ell_{Y} \circ u_{X} \equiv \ell_{Y} \circ\langle \rangle \quad \text { when } Y \neq X
\end{aligned}
$$

formalizing the intended semantics:

- ℓ_{X} returns the value of X in the current state
- $u_{X}(n)$ modifies the current state: the value of X becomes n, and the value of Y is not modified, for every $Y \neq X$

A property of imperative languages: proof \# 1

Let Σ be the specification made of $\ell_{X}: \mathbb{1} \rightarrow V_{X}$ and $u_{X}: V_{X} \rightarrow \mathbb{1}$ such that $\ell_{X} \circ u_{X} \equiv i d$ and $\ell_{Y} \circ u_{X} \equiv \ell_{Y} \circ\langle \rangle$ when $Y \neq X$.
Then Σ satisfies the annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

A property of imperative languages: proof \# 1

Let Σ be the specification made of $\ell_{X}: \mathbb{1} \rightarrow V_{X}$ and $u_{X}: V_{X} \rightarrow \mathbb{1}$ such that $\ell_{X} \circ u_{X} \equiv i d$ and $\ell_{Y} \circ u_{X} \equiv \ell_{Y} \circ\langle \rangle$ when $Y \neq X$.
Then Σ satisfies the annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

Proof. By observation: prove that $\ell_{Y} \circ u_{X} \circ \ell_{X} \equiv \ell_{Y}$ for each Y. When $Y=X$:

$$
\text { (subst) } \frac{\ell_{X} \circ u_{X} \equiv i d}{\ell_{X} \circ u_{X} \circ \ell_{X} \equiv \ell_{X}}
$$

A property of imperative languages: proof \# 1

Let Σ be the specification made of $\ell_{X}: \mathbb{1} \rightarrow V_{X}$ and $u_{X}: V_{X} \rightarrow \mathbb{1}$ such that $\ell_{X} \circ u_{X} \equiv i d$ and $\ell_{Y} \circ u_{X} \equiv \ell_{Y} \circ\langle \rangle$ when $Y \neq X$.
Then Σ satisfies the annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

Proof. By observation: prove that $\ell_{Y} \circ u_{X} \circ \ell_{X} \equiv \ell_{Y}$ for each Y. When $Y=X$:

$$
\text { (subst) } \frac{\ell_{X} \circ u_{X} \equiv i d}{\ell_{X} \circ u_{X} \circ \ell_{X} \equiv \ell_{X}}
$$

When $Y \neq X$:

$$
\begin{aligned}
(\text { subst }) & \frac{\ell_{Y} \circ u_{X} \equiv \ell_{Y} \circ\langle \rangle}{(\text { trans })} \frac{(\text { (unit }) \overline{\left\rangle \circ \ell_{X} \equiv i d\right.}}{\ell_{Y} \circ u_{X} \circ \ell_{X} \equiv \ell_{Y} \circ\langle \rangle \circ \ell_{X}} \quad(\text { repl }) \frac{\ell_{Y} \circ\langle \rangle \circ \ell_{X} \equiv \ell_{Y}}{\ell_{Y} \circ u_{X} \circ \ell_{X} \equiv \ell_{Y}}
\end{aligned}
$$

A property of imperative languages: proof \# 1

Let Σ be the specification made of $\ell_{X}: \mathbb{1} \rightarrow V_{X}$ and $u_{X}: V_{X} \rightarrow \mathbb{1}$ such that $\ell_{X} \circ u_{X} \equiv i d$ and $\ell_{Y} \circ u_{X} \equiv \ell_{Y} \circ\langle \rangle$ when $Y \neq X$.
Then Σ satisfies the annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

Proof. By observation: prove that $\ell_{Y} \circ u_{X} \circ \ell_{X} \equiv \ell_{Y}$ for each Y. When $Y=X$:

$$
\text { (subst) } \frac{\ell_{X} \circ u_{X} \equiv i d}{\ell_{X} \circ u_{X} \circ \ell_{X} \equiv \ell_{X}}
$$

When $Y \neq X$:

$$
\begin{aligned}
& \text { (subst) } \frac{\ell_{Y} \circ u_{X} \equiv \ell_{Y} \circ\langle \rangle}{\ell_{Y} \circ u_{X} \circ \ell_{X} \equiv \ell_{Y} \circ\langle \rangle \circ \ell_{X}} \quad(\text { repl }) \frac{(\text { unit })}{} \frac{\left\rangle \circ \ell_{X} \equiv i d\right.}{\ell_{Y} \circ\langle \rangle \circ \ell_{X} \equiv \ell_{Y}} \\
&(\text { trans }) \ell_{Y} \circ u_{X} \circ \ell_{X} \equiv \ell_{Y}
\end{aligned}
$$

Hence the state is not modified.

A property of imperative languages, proof \# 2

The annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

A property of imperative languages, proof \# 2

The annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

Another proof.
The (unit) rule states that id is the unique $f: \mathbb{1} \rightarrow \mathbb{1}$.

$$
\text { (unit) } \frac{u_{X} \circ \ell_{X}: \mathbb{1} \rightarrow \mathbb{1}}{u_{X} \circ \ell_{X} \equiv i d}
$$

A property of imperative languages, proof \# 2

The annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

Another proof.
The (unit) rule states that id is the unique $f: \mathbb{1} \rightarrow \mathbb{1}$.

$$
\text { (unit) } \frac{u_{X} \circ \ell_{X}: \mathbb{1} \rightarrow \mathbb{1}}{u_{X} \circ \ell_{X} \equiv i d}
$$

BUT in the same way, we could prove for all Y :

$$
\text { (unit) } \frac{u_{X} \circ \ell_{Y}: \mathbb{1} \rightarrow \mathbb{1}}{u_{X} \circ \ell_{Y} \equiv i d}
$$

which obviously is FALSE!

Questions

Two proofs of (ALU). Proof \#1 is right, proof \#2 is wrong.

WHY?

Questions

Two proofs of (ALU). Proof \#1 is right, proof \#2 is wrong.

WHY?

The (unit) rule should state that id is the unique $f: \mathbb{1} \rightarrow \mathbb{1}$ under the assumption that f cannot modify the state, and it should be impossible to apply this rule to $u_{X} \circ \ell_{Y}$.

How can we formalize this fact?

Questions

Two proofs of (ALU). Proof \#1 is right, proof \#2 is wrong.

WHY?

The (unit) rule should state that id is the unique $f: \mathbb{1} \rightarrow \mathbb{1}$ under the assumption that f cannot modify the state, and it should be impossible to apply this rule to $u_{X} \circ \ell_{Y}$.

How can we formalize this fact?

By decorating terms and equations.

Decorations: terms and equations

Terms are classified:

- $f^{(0)}: f$ is pure if it cannot use nor modify the state.
- $f^{(1)}: f$ is an accessor if it can use the state, not modify it.
- $f^{(2)}: f$ is a modifier if it can use and modify the state.

Hierarchy rules: $\frac{f^{(0)}}{f^{(1)}}, \frac{f^{(1)}}{f^{(2)}}$.

Decorations: terms and equations

Terms are classified:

- $f^{(0)}: f$ is pure if it cannot use nor modify the state.
- $f^{(1)}: f$ is an accessor if it can use the state, not modify it.
- $f^{(2)}: f$ is a modifier if it can use and modify the state.

Hierarchy rules: $\frac{f^{(0)}}{f^{(1)}}, \frac{f^{(1)}}{f^{(2)}}$.
Equations are classified:

- $f \equiv g$: strong equation: f and g return the same value and they have the same effect on the state.
- $f \sim g$: weak equation: f and g return the same value but they may have different effects on the state.
Hierarchy rule: $\frac{f \equiv g}{f \sim g}$.

Decorated rules

The rules of the logic are also decorated, for instance:

$$
\text { (unit) } \frac{f: \mathbb{1} \rightarrow \mathbb{1}}{f \sim i d}
$$

Decorated rules

The rules of the logic are also decorated, for instance:

$$
\text { (unit) } \frac{f: \mathbb{1} \rightarrow \mathbb{1}}{f \sim i d}
$$

There are new rules (which become trivial without decorations):

$$
\text { (1-~-to-三) } \frac{f^{(1)} g^{(1)} f \sim g}{f \equiv g}
$$

Decorated rules

The rules of the logic are also decorated, for instance:

$$
\text { (unit) } \frac{f: \mathbb{1} \rightarrow \mathbb{1}}{f \sim i d}
$$

There are new rules (which become trivial without decorations):

$$
(1-\sim-\text { to- } \equiv) \quad \frac{f^{(1)} g^{(1)} f \sim g}{f \equiv g}
$$

Hence there are new derived rules, like:

$$
\text { (1-unit) } \frac{f^{(1)}: \mathbb{1} \rightarrow \mathbb{1}}{f \equiv i d}
$$

Proof \#2 is wrong: it cannot be properly decorated

Proof \#2 of (ALU) can be decorated as follows:

$$
\text { (unit) } \frac{u_{X} \circ \ell_{X}: \mathbb{1} \rightarrow \mathbb{1}}{u_{X} \circ \ell_{X} \sim i d}
$$

which does not entail $u_{X} \circ \ell_{X} \equiv i d$.

Proof \#2 is wrong: it cannot be properly decorated

Proof \#2 of (ALU) can be decorated as follows:

$$
\text { (unit) } \frac{u_{X} \circ \ell_{X}: \mathbb{1} \rightarrow \mathbb{1}}{u_{X} \circ \ell_{X} \sim i d}
$$

which does not entail $u_{X} \circ \ell_{X} \equiv i d$.
In fact for each Y there is a proof:

$$
\text { (unit) } \frac{u_{X} \circ \ell_{Y}: \mathbb{1} \rightarrow \mathbb{1}}{u_{X} \circ \ell_{Y} \sim i d}
$$

which is right but without any interest.

Decorated rules for substitution and replacement

Strong equations form a congruence:

$$
(\equiv-\text { subs }) \frac{g_{1} \equiv g_{2}}{g_{1} \circ f \equiv g_{2} \circ f} \quad(\equiv-\text { repl }) \frac{f_{1} \equiv f_{2}}{g \circ f_{1} \equiv g \circ f_{2}}
$$

Decorated rules for substitution and replacement

Strong equations form a congruence:

$$
(\equiv-\text { subs }) \frac{g_{1} \equiv g_{2}}{g_{1} \circ f \equiv g_{2} \circ f} \quad(\equiv-\mathrm{repl}) \frac{f_{1} \equiv f_{2}}{g \circ f_{1} \equiv g \circ f_{2}}
$$

Weak equations do not form a congruence:

$$
(\sim-\text { subs }) \frac{g_{1} \sim g_{2}}{g_{1} \circ f \sim g_{2} \circ f} \quad(0-\sim-\text { repl }) \frac{f_{1} \sim f_{2} g^{(0)}}{g \circ f_{1} \sim g \circ f_{2}: X \rightarrow Z}
$$

Indeed: f_{1} and f_{2} may modify the state in a different way, so that $g \circ f_{1}$ and $g \circ f_{2}$ may return different values if g is not pure.

A decorated specification for states

For each X, a type V_{X} for values, two operations:

$$
\begin{array}{ll}
\ell_{X}^{(1)}: \mathbb{1} \rightarrow V_{X} & \text { (lookup) : an accessor } \\
u_{X}^{(2)}: V_{X} \rightarrow \mathbb{1} & \text { (update) : a modifier }
\end{array}
$$

and weak equations:

$$
\begin{aligned}
& \ell_{X} \circ u_{X} \sim \text { id } \\
& \ell_{Y} \circ u_{X} \sim \ell_{Y} \circ\langle \rangle \quad \text { when } Y \neq X
\end{aligned}
$$

Proof $\# 1$ is right: it can be properly decorated

The annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

Proof. By observation: prove that $\ell_{Y} \circ u_{X} \circ \ell_{X} \sim \ell_{Y}$ for each Y. When $Y=X$:

$$
(\sim-\text { subs }) \frac{\ell_{X} \circ u_{X} \sim i d}{\ell_{X} \circ u_{X} \circ \ell_{X} \sim \ell_{X}}
$$

Proof \#1 is right: it can be properly decorated

The annihilation lookup-update (ALU) property:

$$
u_{X} \circ \ell_{X} \equiv i d
$$

Proof. By observation: prove that $\ell_{Y} \circ u_{X} \circ \ell_{X} \sim \ell_{Y}$ for each Y. When $Y=X$:

$$
(\sim-\text { subs }) \frac{\ell_{X} \circ u_{X} \sim i d}{\ell_{X} \circ u_{X} \circ \ell_{X} \sim \ell_{X}}
$$

When $Y \neq X$:

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { (1-unit) } \frac{\ell_{X}^{(1)}}{\rangle \text {-repl })} \frac{\left\rangle \circ \ell_{X} \equiv i d\right.}{(\equiv \text { to-~) }} \frac{\ell_{Y} \circ\langle \rangle \circ \ell_{X} \equiv \ell_{Y}}{\ell_{Y} \circ\langle \rangle \circ \ell_{X} \sim \ell_{Y}} \\
\left(\ell_{X} \sim \ell_{Y}\right.
\end{array}
\end{aligned}
$$

Other properties of imperative languages

The 7 properties in [Plotkin\&Power 02] can be proved similarly. For instance the commutation update-update (CUU) property, is proved in the paper.

Other properties of imperative languages

The 7 properties in [Plotkin\&Power 02] can be proved similarly. For instance the commutation update-update (CUU) property, is proved in the paper. When $X \neq Y$:

The order of storing values in X and Y does not matter

Other properties of imperative languages

The 7 properties in [Plotkin\&Power 02] can be proved similarly. For instance the commutation update-update (CUU) property, is proved in the paper. When $X \neq Y$:

The order of storing values in X and Y does not matter
which is formalized as:

$$
u_{Y} \circ\left(u_{X} \times i d\right) \equiv u_{X} \circ\left(i d \times u_{Y}\right): V_{X} \times V_{Y} \rightarrow \mathbb{1}
$$

where x is the semi-pure product from [Dumas\&Duval\&Reynaud] Cartesian effect categories are Freyd-categories JSC 2011. ACCAT'09.

Outline

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S
2. expand (translate) the decorations

$$
\begin{array}{|c|c|}
\hline f^{(0)}: X \rightarrow Y & f: X \rightarrow Y \\
f^{(1)}: X \rightarrow Y & f: X \times S \rightarrow Y \\
f^{(2)}: X \rightarrow Y & f: X \times S \rightarrow Y \times S \\
\hline f \equiv g: X \rightarrow Y & f \equiv g: X \times S \rightarrow Y \times S \\
f \sim g: X \rightarrow Y & \pi \circ f \equiv \pi \circ g: X \times S \rightarrow Y \\
\hline
\end{array}
$$

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S
2. expand (translate) the decorations

$$
\begin{array}{|c|c|}
\hline f^{(0)}: X \rightarrow Y & f: X \rightarrow Y \\
f^{(1)}: X \rightarrow Y & f: X \times S \rightarrow Y \\
f^{(2)}: X \rightarrow Y & f: X \times S \rightarrow Y \times S \\
\hline f \equiv g: X \rightarrow Y & f \equiv g: X \times S \rightarrow Y \times S \\
f \sim g: X \rightarrow Y & \pi \circ f \equiv \pi \circ g: X \times S \rightarrow Y \\
\hline
\end{array}
$$

3. prove in the "usual" (not decorated) logic

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S
2. expand (translate) the decorations

$$
\begin{array}{|c|c|}
\hline f^{(0)}: X \rightarrow Y & f: X \rightarrow Y \\
f^{(1)}: X \rightarrow Y & f: X \times S \rightarrow Y \\
f^{(2)}: X \rightarrow Y & f: X \times S \rightarrow Y \times S \\
\hline f \equiv g: X \rightarrow Y & f \equiv g: X \times S \rightarrow Y \times S \\
f \sim g: X \rightarrow Y & \pi \circ f \equiv \pi \circ g: X \times S \rightarrow Y \\
\hline
\end{array}
$$

3. prove in the "usual" (not decorated) logic

But the notion of effect is lost.

A span of "logics"

- decorations \rightarrow syntax : forget the decorations
- decorations \rightarrow semantics:
expansion, with an explicit S for states

From proofs to models

The expansion:

- maps decorated proofs to "usual" explicit proofs

From proofs to models

The expansion:

- maps decorated proofs to "usual" explicit proofs
- and provides a notion of decorated model
because it can be seen as a functor F with a right adjoint:

$$
\operatorname{Mod}_{\mathrm{deco}}(\Sigma, G \Theta) \cong \operatorname{Mod}_{\mathrm{expl}}(F \Sigma, \Theta)
$$

For instance:
Σ is the decorated specification for states
Θ is Set with the distinguished set $S=\prod_{X} V_{X}$

From states to exceptions

- We can prove properties of imperative languages in a logic which respects the syntax of the language.

From states to exceptions

- We can prove properties of imperative languages in a logic which respects the syntax of the language.
- THUS, we can prove properties of exceptions in a logic which respects the syntax of exceptions.
[Dumas\&Duval\&Fousse\&Reynaud] Decorated proofs for computational effects: exceptions. Submitted for publication.

From states to exceptions

- We can prove properties of imperative languages in a logic which respects the syntax of the language.
- THUS, we can prove properties of exceptions in a logic which respects the syntax of exceptions.
[Dumas\&Duval\&Fousse\&Reynaud] Decorated proofs for computational effects: exceptions. Submitted for publication.
- This is due to the duality between states and the core part of exceptions.
[Dumas\&Duval\&Fousse\&Reynaud] A duality between exceptions and states. To appear in MSCS. ACCAT'11.

Conclusion and future work

We have designed a framework for effects which provides a denotational semantics and a proof system.

Conclusion and future work

We have designed a framework for effects which provides a denotational semantics and a proof system.

Our projects include:

- Using a proof assistant for proving decorated properties.
- Extending our framework for combining effects by composing spans.

Thank you!

