
Decorated proofs for computational effects:
States

Jean-Guillaume Dumas, Dominique Duval, Laurent Fousse,
Jean-Claude Reynaud

LJK, University of Grenoble

April 1., 2012 – ACCAT 2012 – Tallinn

Outline

From computer algebra to effects

About the history of the authors:

I Computer algebra: exact computations on large integers,
matrices, polynomials, field extensions,. . .

I Sophisticated programmation in several kinds of languages:
C, C++, Axiom,. . .

I Questions about the languages: semantics of computational
effects? (e.g., states, exceptions,. . .)

Effects and monads

Breaking a taboo:

effect 6= monad

[Moggi’91]: When there is an effect:

1. a term f : X → Y should not always be interpreted as
a function [[f]] : [[X]]→ [[Y]]

2. it should often be interpreted as
a function [[f]] : [[X]]→ T [[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.
Example. In an imperative language

T [[Y]] = (S × [[Y]])S

We agree with (1), not always with (2).
And we get operations and equations in a different way.

Effects and monads

Breaking a taboo:

effect 6= monad

[Moggi’91]: When there is an effect:

1. a term f : X → Y should not always be interpreted as
a function [[f]] : [[X]]→ [[Y]]

2. it should often be interpreted as
a function [[f]] : [[X]]→ T [[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.
Example. In an imperative language

T [[Y]] = (S × [[Y]])S

We agree with (1), not always with (2).
And we get operations and equations in a different way.

Effects and monads

Breaking a taboo:

effect 6= monad

[Moggi’91]: When there is an effect:

1. a term f : X → Y should not always be interpreted as
a function [[f]] : [[X]]→ [[Y]]

2. it should often be interpreted as
a function [[f]] : [[X]]→ T [[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.

Example. In an imperative language

T [[Y]] = (S × [[Y]])S

We agree with (1), not always with (2).
And we get operations and equations in a different way.

Effects and monads

Breaking a taboo:

effect 6= monad

[Moggi’91]: When there is an effect:

1. a term f : X → Y should not always be interpreted as
a function [[f]] : [[X]]→ [[Y]]

2. it should often be interpreted as
a function [[f]] : [[X]]→ T [[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.
Example. In an imperative language

T [[Y]] = (S × [[Y]])S

We agree with (1), not always with (2).
And we get operations and equations in a different way.

Effects and monads

Breaking a taboo:

effect 6= monad

[Moggi’91]: When there is an effect:

1. a term f : X → Y should not always be interpreted as
a function [[f]] : [[X]]→ [[Y]]

2. it should often be interpreted as
a function [[f]] : [[X]]→ T [[Y]] for some monad T

[Plotkin & Power 2002]: The operations and equations associated
with the effect are described by a Lawvere theory.
Example. In an imperative language

T [[Y]] = (S × [[Y]])S

We agree with (1), not always with (2).
And we get operations and equations in a different way.

What is an effect?

Informally:

An effect is an apparent lack of soundness.

A lack of soundness:

syntax _________ /\ semantics

which can be “repaired”:

•

xxrrrrrrrrrrr

''NNNNNNNNNNNN

syntax semantics

Formally: [Doḿınguez&Duval MSCS’10]

What is an effect?

Informally:

An effect is an apparent lack of soundness.

A lack of soundness:

syntax _________ /\ semantics

which can be “repaired”:

•

xxrrrrrrrrrrr

''NNNNNNNNNNNN

syntax semantics

Formally: [Doḿınguez&Duval MSCS’10]

What is an effect?

Informally:

An effect is an apparent lack of soundness.

A lack of soundness:

syntax _________ /\ semantics

which can be “repaired”:

•

xxrrrrrrrrrrr

''NNNNNNNNNNNN

syntax semantics

Formally: [Doḿınguez&Duval MSCS’10]

Outline

A property of imperative languages

The annihilation lookup-update (ALU) property:

X := X does not modify the state

Proof.
Let n be the value of X in the current state.

I First “X ” (on the right) is evaluated as n.

I Then “X :=” (on the left) puts the value of X to n,
without modifying the value of other locations.

Hence the state is not modified. �

A property of imperative languages

The annihilation lookup-update (ALU) property:

X := X does not modify the state

Proof.
Let n be the value of X in the current state.

I First “X ” (on the right) is evaluated as n.

I Then “X :=” (on the left) puts the value of X to n,
without modifying the value of other locations.

Hence the state is not modified. �

Towards a formalization: a specification for states

Locations (or identifiers, or variables) X ,Y ,
The unit (or void, or singleton) type 1, with 〈 〉A :A→1 for each A.

For each X , a type VX for values, two operations:

`X : 1→ VX (lookup)

uX : VX → 1 (update)

and equations:

`X ◦ uX ≡ id

`Y ◦ uX ≡ `Y ◦ 〈 〉 when Y 6= X

formalizing the intended semantics:

I `X returns the value of X in the current state

I uX (n) modifies the current state: the value of X becomes n,
and the value of Y is not modified, for every Y 6= X

Towards a formalization: a specification for states

Locations (or identifiers, or variables) X ,Y ,
The unit (or void, or singleton) type 1, with 〈 〉A :A→1 for each A.

For each X , a type VX for values, two operations:

`X : 1→ VX (lookup)

uX : VX → 1 (update)

and equations:

`X ◦ uX ≡ id

`Y ◦ uX ≡ `Y ◦ 〈 〉 when Y 6= X

formalizing the intended semantics:

I `X returns the value of X in the current state

I uX (n) modifies the current state: the value of X becomes n,
and the value of Y is not modified, for every Y 6= X

A property of imperative languages: proof # 1

Let Σ be the specification made of `X : 1→ VX and uX : VX → 1

such that `X ◦ uX ≡ id and `Y ◦ uX ≡ `Y ◦ 〈 〉 when Y 6= X .

Then Σ satisfies the annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Proof. By observation: prove that `Y ◦ uX ◦ `X ≡ `Y for each Y .
When Y = X :

`X ◦ uX ≡ id
(subst)

`X ◦ uX ◦ `X ≡ `X
When Y 6= X :

`Y ◦ uX ≡ `Y ◦ 〈 〉
(subst)

`Y ◦ uX ◦ `X ≡ `Y ◦ 〈 〉 ◦ `X

(unit)
〈 〉 ◦ `X ≡ id

(repl)
`Y ◦ 〈 〉 ◦ `X ≡ `Y

(trans)
`Y ◦ uX ◦ `X ≡ `Y

Hence the state is not modified. �

A property of imperative languages: proof # 1

Let Σ be the specification made of `X : 1→ VX and uX : VX → 1

such that `X ◦ uX ≡ id and `Y ◦ uX ≡ `Y ◦ 〈 〉 when Y 6= X .

Then Σ satisfies the annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Proof. By observation: prove that `Y ◦ uX ◦ `X ≡ `Y for each Y .
When Y = X :

`X ◦ uX ≡ id
(subst)

`X ◦ uX ◦ `X ≡ `X

When Y 6= X :

`Y ◦ uX ≡ `Y ◦ 〈 〉
(subst)

`Y ◦ uX ◦ `X ≡ `Y ◦ 〈 〉 ◦ `X

(unit)
〈 〉 ◦ `X ≡ id

(repl)
`Y ◦ 〈 〉 ◦ `X ≡ `Y

(trans)
`Y ◦ uX ◦ `X ≡ `Y

Hence the state is not modified. �

A property of imperative languages: proof # 1

Let Σ be the specification made of `X : 1→ VX and uX : VX → 1

such that `X ◦ uX ≡ id and `Y ◦ uX ≡ `Y ◦ 〈 〉 when Y 6= X .

Then Σ satisfies the annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Proof. By observation: prove that `Y ◦ uX ◦ `X ≡ `Y for each Y .
When Y = X :

`X ◦ uX ≡ id
(subst)

`X ◦ uX ◦ `X ≡ `X
When Y 6= X :

`Y ◦ uX ≡ `Y ◦ 〈 〉
(subst)

`Y ◦ uX ◦ `X ≡ `Y ◦ 〈 〉 ◦ `X

(unit)
〈 〉 ◦ `X ≡ id

(repl)
`Y ◦ 〈 〉 ◦ `X ≡ `Y

(trans)
`Y ◦ uX ◦ `X ≡ `Y

Hence the state is not modified. �

A property of imperative languages: proof # 1

Let Σ be the specification made of `X : 1→ VX and uX : VX → 1

such that `X ◦ uX ≡ id and `Y ◦ uX ≡ `Y ◦ 〈 〉 when Y 6= X .

Then Σ satisfies the annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Proof. By observation: prove that `Y ◦ uX ◦ `X ≡ `Y for each Y .
When Y = X :

`X ◦ uX ≡ id
(subst)

`X ◦ uX ◦ `X ≡ `X
When Y 6= X :

`Y ◦ uX ≡ `Y ◦ 〈 〉
(subst)

`Y ◦ uX ◦ `X ≡ `Y ◦ 〈 〉 ◦ `X

(unit)
〈 〉 ◦ `X ≡ id

(repl)
`Y ◦ 〈 〉 ◦ `X ≡ `Y

(trans)
`Y ◦ uX ◦ `X ≡ `Y

Hence the state is not modified. �

A property of imperative languages, proof # 2

The annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Another proof.
The (unit) rule states that id is the unique f : 1→ 1.

uX ◦ `X : 1→ 1
(unit)

uX ◦ `X ≡ id
�

BUT in the same way, we could prove for all Y :

uX ◦ `Y : 1→ 1
(unit)

uX ◦ `Y ≡ id

which obviously is FALSE!

A property of imperative languages, proof # 2

The annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Another proof.
The (unit) rule states that id is the unique f : 1→ 1.

uX ◦ `X : 1→ 1
(unit)

uX ◦ `X ≡ id
�

BUT in the same way, we could prove for all Y :

uX ◦ `Y : 1→ 1
(unit)

uX ◦ `Y ≡ id

which obviously is FALSE!

A property of imperative languages, proof # 2

The annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Another proof.
The (unit) rule states that id is the unique f : 1→ 1.

uX ◦ `X : 1→ 1
(unit)

uX ◦ `X ≡ id
�

BUT in the same way, we could prove for all Y :

uX ◦ `Y : 1→ 1
(unit)

uX ◦ `Y ≡ id

which obviously is FALSE!

Questions

Two proofs of (ALU). Proof #1 is right, proof #2 is wrong.

WHY?

The (unit) rule should state that id is the unique f : 1→ 1

under the assumption that f cannot modify the state,
and it should be impossible to apply this rule to uX ◦ `Y .

How can we formalize this fact?

By decorating terms and equations.

Questions

Two proofs of (ALU). Proof #1 is right, proof #2 is wrong.

WHY?

The (unit) rule should state that id is the unique f : 1→ 1

under the assumption that f cannot modify the state,
and it should be impossible to apply this rule to uX ◦ `Y .

How can we formalize this fact?

By decorating terms and equations.

Questions

Two proofs of (ALU). Proof #1 is right, proof #2 is wrong.

WHY?

The (unit) rule should state that id is the unique f : 1→ 1

under the assumption that f cannot modify the state,
and it should be impossible to apply this rule to uX ◦ `Y .

How can we formalize this fact?

By decorating terms and equations.

Decorations: terms and equations

Terms are classified:

I f (0): f is pure if it cannot use nor modify the state.

I f (1): f is an accessor if it can use the state, not modify it.

I f (2): f is a modifier if it can use and modify the state.

Hierarchy rules:
f (0)

f (1)
,

f (1)

f (2)
.

Equations are classified:

I f ≡ g : strong equation: f and g return the same value
and they have the same effect on the state.

I f ∼ g : weak equation: f and g return the same value
but they may have different effects on the state.

Hierarchy rule:
f ≡ g

f ∼ g
.

Decorations: terms and equations

Terms are classified:

I f (0): f is pure if it cannot use nor modify the state.

I f (1): f is an accessor if it can use the state, not modify it.

I f (2): f is a modifier if it can use and modify the state.

Hierarchy rules:
f (0)

f (1)
,

f (1)

f (2)
.

Equations are classified:

I f ≡ g : strong equation: f and g return the same value
and they have the same effect on the state.

I f ∼ g : weak equation: f and g return the same value
but they may have different effects on the state.

Hierarchy rule:
f ≡ g

f ∼ g
.

Decorated rules

The rules of the logic are also decorated, for instance:

(unit)
f : 1→ 1

f ∼ id

There are new rules (which become trivial without decorations):

(1-∼-to-≡) f (1) g (1) f ∼ g

f ≡ g

Hence there are new derived rules, like:

(1-unit)
f (1) : 1→ 1

f ≡ id

Decorated rules

The rules of the logic are also decorated, for instance:

(unit)
f : 1→ 1

f ∼ id

There are new rules (which become trivial without decorations):

(1-∼-to-≡) f (1) g (1) f ∼ g

f ≡ g

Hence there are new derived rules, like:

(1-unit)
f (1) : 1→ 1

f ≡ id

Decorated rules

The rules of the logic are also decorated, for instance:

(unit)
f : 1→ 1

f ∼ id

There are new rules (which become trivial without decorations):

(1-∼-to-≡) f (1) g (1) f ∼ g

f ≡ g

Hence there are new derived rules, like:

(1-unit)
f (1) : 1→ 1

f ≡ id

Proof #2 is wrong: it cannot be properly decorated

Proof #2 of (ALU) can be decorated as follows:

(unit)
uX ◦ `X : 1→ 1

uX ◦ `X ∼ id

which does not entail uX ◦ `X ≡ id .

In fact for each Y there is a proof:

(unit)
uX ◦ `Y : 1→ 1

uX ◦ `Y ∼ id

which is right but without any interest.

Proof #2 is wrong: it cannot be properly decorated

Proof #2 of (ALU) can be decorated as follows:

(unit)
uX ◦ `X : 1→ 1

uX ◦ `X ∼ id

which does not entail uX ◦ `X ≡ id .

In fact for each Y there is a proof:

(unit)
uX ◦ `Y : 1→ 1

uX ◦ `Y ∼ id

which is right but without any interest.

Decorated rules for substitution and replacement

Strong equations form a congruence:

(≡-subs) g1 ≡ g2
g1 ◦ f ≡ g2 ◦ f

(≡-repl) f1 ≡ f2
g ◦ f1 ≡ g ◦ f2

Weak equations do not form a congruence:

(∼-subs) g1 ∼ g2
g1 ◦ f ∼ g2 ◦ f

(0-∼-repl) f1 ∼ f2 g (0)

g ◦ f1 ∼ g ◦ f2 : X → Z

Indeed: f1 and f2 may modify the state in a different way, so that
g ◦ f1 and g ◦ f2 may return different values if g is not pure.

Decorated rules for substitution and replacement

Strong equations form a congruence:

(≡-subs) g1 ≡ g2
g1 ◦ f ≡ g2 ◦ f

(≡-repl) f1 ≡ f2
g ◦ f1 ≡ g ◦ f2

Weak equations do not form a congruence:

(∼-subs) g1 ∼ g2
g1 ◦ f ∼ g2 ◦ f

(0-∼-repl) f1 ∼ f2 g (0)

g ◦ f1 ∼ g ◦ f2 : X → Z

Indeed: f1 and f2 may modify the state in a different way, so that
g ◦ f1 and g ◦ f2 may return different values if g is not pure.

A decorated specification for states

For each X , a type VX for values, two operations:

`
(1)
X : 1→ VX (lookup) : an accessor

u
(2)
X : VX → 1 (update) : a modifier

and weak equations:

`X ◦ uX ∼ id

`Y ◦ uX ∼ `Y ◦ 〈 〉 when Y 6= X

Proof #1 is right: it can be properly decorated

The annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Proof. By observation: prove that `Y ◦ uX ◦ `X ∼ `Y for each Y .
When Y = X :

`X ◦ uX ∼ id
(∼-subs)

`X ◦ uX ◦ `X ∼ `X

When Y 6= X :

`Y ◦ uX ∼ `Y ◦ 〈 〉
(∼-subs)

`Y ◦ uX ◦ `X ∼ `Y ◦ 〈 〉 ◦ `X

`
(1)
X(1-unit)

〈 〉 ◦ `X ≡ id
(≡-repl)

`Y ◦ 〈 〉 ◦ `X ≡ `Y
(≡-to-∼)

`Y ◦ 〈 〉 ◦ `X ∼ `Y
(∼-trans)

`Y ◦ uX ◦ `X ∼ `Y

Proof #1 is right: it can be properly decorated

The annihilation lookup-update (ALU) property:

uX ◦ `X ≡ id

Proof. By observation: prove that `Y ◦ uX ◦ `X ∼ `Y for each Y .
When Y = X :

`X ◦ uX ∼ id
(∼-subs)

`X ◦ uX ◦ `X ∼ `X
When Y 6= X :

`Y ◦ uX ∼ `Y ◦ 〈 〉
(∼-subs)

`Y ◦ uX ◦ `X ∼ `Y ◦ 〈 〉 ◦ `X

`
(1)
X(1-unit)

〈 〉 ◦ `X ≡ id
(≡-repl)

`Y ◦ 〈 〉 ◦ `X ≡ `Y
(≡-to-∼)

`Y ◦ 〈 〉 ◦ `X ∼ `Y
(∼-trans)

`Y ◦ uX ◦ `X ∼ `Y

Other properties of imperative languages
The 7 properties in [Plotkin&Power 02] can be proved similarly.
For instance the commutation update-update (CUU) property,
is proved in the paper.

When X 6= Y :

The order of storing values in X and Y does not matter

which is formalized as:

uY ◦ (uX × id) ≡ uX ◦ (id × uY) : VX × VY → 1

where × is the semi-pure product from [Dumas&Duval&Reynaud]

Cartesian effect categories are Freyd-categories JSC 2011. ACCAT’09.

VX

u
(2)
X // 1

VX × VY
(uX×id)(2)

//_____

OO

��

1× VY

OO

��

≡

∼

VY
id (0)

// VY

Other properties of imperative languages
The 7 properties in [Plotkin&Power 02] can be proved similarly.
For instance the commutation update-update (CUU) property,
is proved in the paper. When X 6= Y :

The order of storing values in X and Y does not matter

which is formalized as:

uY ◦ (uX × id) ≡ uX ◦ (id × uY) : VX × VY → 1

where × is the semi-pure product from [Dumas&Duval&Reynaud]

Cartesian effect categories are Freyd-categories JSC 2011. ACCAT’09.

VX

u
(2)
X // 1

VX × VY
(uX×id)(2)

//_____

OO

��

1× VY

OO

��

≡

∼

VY
id (0)

// VY

Other properties of imperative languages
The 7 properties in [Plotkin&Power 02] can be proved similarly.
For instance the commutation update-update (CUU) property,
is proved in the paper. When X 6= Y :

The order of storing values in X and Y does not matter

which is formalized as:

uY ◦ (uX × id) ≡ uX ◦ (id × uY) : VX × VY → 1

where × is the semi-pure product from [Dumas&Duval&Reynaud]

Cartesian effect categories are Freyd-categories JSC 2011. ACCAT’09.

VX

u
(2)
X // 1

VX × VY
(uX×id)(2)

//_____

OO

��

1× VY

OO

��

≡

∼

VY
id (0)

// VY

Outline

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S

2. expand (translate) the decorations

f (0) : X → Y f : X → Y

f (1) : X → Y f : X × S → Y

f (2) : X → Y f : X × S → Y × S

f ≡ g : X → Y f ≡ g : X × S → Y × S

f ∼ g : X → Y π ◦ f ≡ π ◦ g : X × S → Y

3. prove in the “usual” (not decorated) logic

But the notion of effect is lost.

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S

2. expand (translate) the decorations

f (0) : X → Y f : X → Y

f (1) : X → Y f : X × S → Y

f (2) : X → Y f : X × S → Y × S

f ≡ g : X → Y f ≡ g : X × S → Y × S

f ∼ g : X → Y π ◦ f ≡ π ◦ g : X × S → Y

3. prove in the “usual” (not decorated) logic

But the notion of effect is lost.

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S

2. expand (translate) the decorations

f (0) : X → Y f : X → Y

f (1) : X → Y f : X × S → Y

f (2) : X → Y f : X × S → Y × S

f ≡ g : X → Y f ≡ g : X × S → Y × S

f ∼ g : X → Y π ◦ f ≡ π ◦ g : X × S → Y

3. prove in the “usual” (not decorated) logic

But the notion of effect is lost.

Explicit proofs

Another way to prove results about states:

1. introduce explicitly a type of states S

2. expand (translate) the decorations

f (0) : X → Y f : X → Y

f (1) : X → Y f : X × S → Y

f (2) : X → Y f : X × S → Y × S

f ≡ g : X → Y f ≡ g : X × S → Y × S

f ∼ g : X → Y π ◦ f ≡ π ◦ g : X × S → Y

3. prove in the “usual” (not decorated) logic

But the notion of effect is lost.

A span of “logics”

decorations

vvlllllllllllll

))SSSSSSSSSSSSSSS

syntax semantics

I decorations → syntax :
forget the decorations

I decorations → semantics :
expansion, with an explicit S for states

From proofs to models

The expansion:

I maps decorated proofs to “usual” explicit proofs

I and provides a notion of decorated model

because it can be seen as a functor F with a right adjoint:

decorations
F //
⊥ semantics
G

oo

Moddeco(Σ,G Θ) ∼= Modexpl(F Σ,Θ)

For instance:

Σ is the decorated specification for states

Θ is Set with the distinguished set S =
∏

X VX

From proofs to models

The expansion:

I maps decorated proofs to “usual” explicit proofs

I and provides a notion of decorated model

because it can be seen as a functor F with a right adjoint:

decorations
F //
⊥ semantics
G

oo

Moddeco(Σ,G Θ) ∼= Modexpl(F Σ,Θ)

For instance:

Σ is the decorated specification for states

Θ is Set with the distinguished set S =
∏

X VX

From states to exceptions

I We can prove properties of imperative languages in a logic
which respects the syntax of the language.

I THUS, we can prove properties of exceptions in a logic which
respects the syntax of exceptions.
[Dumas&Duval&Fousse&Reynaud] Decorated proofs for computational

effects: exceptions. Submitted for publication.

I This is due to the duality between states and the core part of
exceptions.
[Dumas&Duval&Fousse&Reynaud] A duality between exceptions and

states. To appear in MSCS. ACCAT’11.

From states to exceptions

I We can prove properties of imperative languages in a logic
which respects the syntax of the language.

I THUS, we can prove properties of exceptions in a logic which
respects the syntax of exceptions.
[Dumas&Duval&Fousse&Reynaud] Decorated proofs for computational

effects: exceptions. Submitted for publication.

I This is due to the duality between states and the core part of
exceptions.
[Dumas&Duval&Fousse&Reynaud] A duality between exceptions and

states. To appear in MSCS. ACCAT’11.

From states to exceptions

I We can prove properties of imperative languages in a logic
which respects the syntax of the language.

I THUS, we can prove properties of exceptions in a logic which
respects the syntax of exceptions.
[Dumas&Duval&Fousse&Reynaud] Decorated proofs for computational

effects: exceptions. Submitted for publication.

I This is due to the duality between states and the core part of
exceptions.
[Dumas&Duval&Fousse&Reynaud] A duality between exceptions and

states. To appear in MSCS. ACCAT’11.

Conclusion and future work

We have designed a framework for effects which provides
a denotational semantics and a proof system.

Our projects include:

I Using a proof assistant for proving decorated properties.

I Extending our framework for combining effects by composing
spans.

Conclusion and future work

We have designed a framework for effects which provides
a denotational semantics and a proof system.

Our projects include:

I Using a proof assistant for proving decorated properties.

I Extending our framework for combining effects by composing
spans.

Thank you!

