States and exceptions considered as dual effects
Dominique Duval
with J.-G. Dumas, L. Fousse, J.-C. Reynaud
LJK, University of Grenoble

March 27, 2011 — ACCAT 2011
dedicated to the memory of Prof. Jochen Pfalzgraf



Outline

Introduction



Outline

1. Analyzing the semantics of exceptions yields
a symmetry between states and exceptions
at the semantics level.

2. States and exceptions are computational effects, but
what is an effect?

3. Analyzing the syntax of exceptions as effects yields
a symmetry between states and exceptions
as computational effects.



Outline

1. The duality, explicitly



Exceptions

When dealing with exceptions, there are two kinds of values:
> non-exceptional values

> exceptions

A function:
> throws an exception if it may
map a non-exceptional value to an exception
» catches an exception if it may
map an exception to a non-exceptional value



Exceptions: key operations

Exc = set of exceptions
ExCstr = set of exception constructors
For each i € ExCstr:
» Par; = set of parameters
» t;: Parj — Exc = KEY throw function
» c;: Exc — Par; + Exc = KEY catch function
ci(ti(p)) = p € Par; C Parj+ Exc

Vp € Par; - .
ci(tj(p)) = tj(p) € Exc C Parj + Exc (Vj # i)

— cj catches exceptions of constructor /
— ¢, propagates exceptions of constructor j # i

When Exc = ), Par;j with the key-throws as projections
this is an inductive definition of the key-catches



Exceptions: raise

— From key throwing (t;) to raising (raise; y):
raisej y(a) = ti(a) € Y + Exc

raise; y

Par; Y + Exc

\ E
Exc




Exceptions: handle

— From key catching (c¢;) to catching (catchi{g}):

Par;
c| \
Exc _° Par; + Exc Y 4+ Exc
) =
c
Exc

— From catching (catchi{g}) to handling (f handle i = g):

Y
cl — S
X— ¥ 4 Exe Y + Exc
QT — catchi{g}

Exc



States

St = set of states
Loc = set of locations
For each i € Loc:
» Val; = set of values
» [; : St — Val; = lookup function
» u;: Val; x St — St = update function
li(ui(vi,s)) = v;
lj(ui(vi, s)) = 1j(s) (Vj# i)
When St = []; Val; with the lookups as projections

Vv, € Val; Vs e St {

this is a coinductive definition of the updates



Duality of semantics

States Exceptions
i € Loc, Val; i € ExCstr, Par;
St (= [Ticroc Vali) Exc (= 3 ;e pxcstr Pari)
l; - St — Val; Exc < Par; : t;
u; : Val; x St — St Par; + Exc < Exc : c;
pr

Val; x St —— Val;
Uil /: lid
St ———— Val;
r l;
Val; x St =25 5¢ —25 Val
U,i I: lid

St——— Val;

Par; + Exc —n Par;

CIT = Tid

t.
Exc — Par,-

. t
n J
Par; + Exc «— Exc «— Par;

C,T ; Tid

Exc Par




So, there IS a duality between states and exceptions.

But states and exceptions are computational effects:

the “type of states” and the “type of exceptions” are hidden,
they do not appear explicitly in the syntax

We will see that the duality of their semantics
comes from a duality of states and exceptions
seen as computational effects.

But. ..
what is a computational effect?



Outline

2. About effects



Monads for effects

[Moggi 1991]

The basic idea behind the categorical semantics of effects is that
we distinguish the object A of values
from the object TA of computations.

Programs of type B with a parameter of type A
ought to be interpreted by morphisms with codomain TB,

but for their domain there are two alternatives, either A or TA.

We choose the first alternative, because it entails the second.
Indeed computations of type A are the same as values of type TA.

a program: A— B

is interpreted by a morphism: A — TB



Monads for effects: exceptions

The monad of exceptions is TA = A+ Exc.
A program of type B with a parameter of type A:

» throws an exception if it may map x € Ato e € Exc

» catches an exception if it may map e € Exctoy € B

Monads for effects. A program of type B with a parameter of type
A is interpreted by a morphism A — B + Exc.

— it may throw an exception

= it cannot catch an exception

Second alternative. A program of type B with a parameter of type
A is interpreted by a morphism A 4 Exc — B + Exc.

— it may throw an exception

— it may catch an exception



What is an effect?

Claim. A computational effect is

an apparent lack of soundness.

There is a computational effect when:

> at first sight, the intended denotational semantics
is not a model of the syntax,

> but the syntax may be “decorated”
so as to recover soundness.



States as effect

The intended denotational semantics (one location):

[: St — Val
u: Val x St — St
Vve Val Vse St I(u(v,s))=v

is not a model of the apparent syntax
but it is a model of the explicit syntax

Apparent Explicit
[:1—=V [:S—=V
u:V—1 u:Vx5s5—-5
lou=id:V —>V lou=pr:VxS—V




Decorations for states

The apparent syntax may be decorated
f: X — Y is decorated as
fO X = Yif fis pure
f\W o X — Y if fis an accessor
f) . X — Y if f is a modifier
f = g is decorated as

f =(8) g (strong) if f and g coincide on results and on states
f =(wk) g (weak) if f and g coincide on results (only)

Apparent Decorated
/1 =V 1=V
u:V—-1 u?@ v o1
lou=idy:V =V lou=")idy,:V =V




Meaning of the decorations for states

The decorated syntax may be explicited

fO. X =Y as f:X—=Y
. X=Y as f: XxS5—>Y
fFR X =Y as f:XxS—=YxS
f=()g:X=>Y a f=g:XxS—=YxS
f=Wk g: XY as pryof=pryog:XxS5—=Y
Decorated Explicit
1=V l:1x5—=V
u? v 51 u:Vx§5—-S5
lou=Kidy,:V xSV lou=pry:VxS—V




States as effect: decorations

-~

Decorated

Y1 —- VvV
u?@ v 1
lou=")jd,

l:1—V
u:V—>1
lou=idy

Apparent

.

Explicit

[:S—=V
u:Vx§s§—=S5
lou=pry




Three syntaxes for one effect

/ \

’ Apparent ‘ ’ Explicit ‘

The intended semantics
» is NOT a model of the apparent syntax (effect)
» is a model of the explicit syntax (obviously)

> it is also a model of the decorated syntax (by adjunction)



A framewok for effects

A language without effects is defined wrt one logic
L

A language with effects is defined wrt a span of logics

Ldeco

N

Lapp Lexpl

Defined in the category of diagrammatic logics [Duval&Lair 2002]
which is based on categorical notions:

» adjunctions
» categories of fractions

> limit sketches



Operations and equations

Our approach generalizes algebraic specifications
= it involves (decorated) operations and equations

handling exceptions is “symmetric”’ to updating states

The monads approach leads to Lawvere theories
for getting operations and equations [Plotkin&Power 2001] but

» lookup, update, raise are algebraic operations

» handle is not an algebraic operation
The approach of monads and Lawvere theories can be extended
for handling exceptions

» with exception monads [Schroeder&Mossakowski 2004]
» with coalgebras [Levy 2006]
» with handlers [Plotkin&Pretnar 2009]



Outline

3. The duality, “effect”-ively



States

-~

Decorated

1=V
u® VvV =1
lou="K id,

l:1—V
u:V—>1
/Ou:id\/

_Apparent

.

Explicit

[:S—V
u:Vx§s§—=S5
/Ou:prv




Exceptions: decorations

FO . X 5y
F X 5 Y
fA. XY

f=(8g: XY
f:(Wk)g:X—>Y

pure
thrower
catcher

strong
weak

f: X—=Y
f:X—=Y+E
f:X+E—=SY+E

f=g: X+E—-Y+E
foink =goinx : X —=>Y+E



Exceptions: key operations

-~

Decorated

tt P —0
@0 P
cot ="K jdp

t:P—0
c:0—> P
cot=idp

Apparent

.

Explicit

t:P— E
c.:E—-P+E
cot=np




Duality of effects

States Exceptions
i € Loc, Val; i € ExCstr, Par;
1 0
1=V 0« Pi:t;
ufz):\/,-—>1 P;(—O:c,-(2)
d id

Vi— v,
”’l =) |id
I
11—V

N
\/,-41%\4

U’i = Lid

1—V

P9 p;

& =0 Tid
ti
04— P;
P, [l 0 P,
C’T —w) Tid
t.

0+ P




Outline

Conclusion



Conclusion

v

An effect is an apparent lack of soundness

v

a span of diagrammatic logics for each effect

> a new point of view on states

v

a completely new point of view on exceptions

v

a duality between states and exceptions

Future work
» combining effects

> operational semantics



	Introduction
	1. The duality, explicitly
	2. About effects
	3. The duality, ``effect''-ively
	Conclusion

