States and exceptions considered as dual effects

Dominique Duval
with J.-G. Dumas, L. Fousse, J.-C. Reynaud
LJK, University of Grenoble
March 27, 2011 - ACCAT 2011
dedicated to the memory of Prof. Jochen Pfalzgraf

Outline

Introduction

1. The duality, explicitly
2. About effects
3. The duality, "effect"-ively

Conclusion

Outline

1. Analyzing the semantics of exceptions yields a symmetry between states and exceptions at the semantics level.
2. States and exceptions are computational effects, but what is an effect?
3. Analyzing the syntax of exceptions as effects yields a symmetry between states and exceptions as computational effects.

Outline

Introduction

1. The duality, explicitly
2. About effects
3. The duality, "effect"-ively

Conclusion

Exceptions

When dealing with exceptions, there are two kinds of values:

- non-exceptional values
- exceptions

A function:

- throws an exception if it may map a non-exceptional value to an exception
- catches an exception if it may map an exception to a non-exceptional value

Exceptions: key operations

$E x c=$ set of exceptions
ExCstr $=$ set of exception constructors
For each $i \in$ ExCstr:

- Par $_{i}=$ set of parameters
- $t_{i}:$ Par $_{i} \rightarrow E x c=\mathrm{KEY}$ throw function
- $c_{i}: E x c \rightarrow P_{i}+E x c=K E Y$ catch function
$\forall p \in \operatorname{Par}_{i}\left\{\begin{array}{l}c_{i}\left(t_{i}(p)\right)=p \in \operatorname{Par}_{i} \subseteq \operatorname{Par}_{i}+E_{x c} \\ c_{i}\left(t_{j}(p)\right)=t_{j}(p) \in E_{x c} \subseteq \operatorname{Par}_{i}+E x c \quad(\forall j \neq i)\end{array}\right.$
- c_{i} catches exceptions of constructor i
- c_{i} propagates exceptions of constructor $j \neq i$

When Exc $=\sum_{i}$ Par $_{i}$ with the key-throws as projections this is an inductive definition of the key-catches

Exceptions: raise

- From key throwing $\left(t_{i}\right)$ to raising (raise $_{i, Y}$):

$$
\operatorname{raise}_{i, Y}(a)=t_{i}(a) \in Y+E x c
$$

Exceptions: handle

- From key catching $\left(c_{i}\right)$ to catching (catch $\left.i\{g\}\right)$:

- From catching (catch $i\{g\}$) to handling (f handle $i \Rightarrow g$):

States

St $=$ set of states
Loc = set of locations
For each $i \in L o c$:

- $V a l_{i}=$ set of values
- $I_{i}: S t \rightarrow V a I_{i}=$ lookup function
- $u_{i}: V a I_{i} \times S t \rightarrow S t=$ update function

$$
\forall v_{i} \in V_{a} l_{i} \forall s \in S t\left\{\begin{array}{l}
l_{i}\left(u_{i}\left(v_{i}, s\right)\right)=v_{i} \\
l_{j}\left(u_{i}\left(v_{i}, s\right)\right)=l_{j}(s) \quad(\forall j \neq i)
\end{array}\right.
$$

When $S t=\prod_{i} V a l_{i}$ with the lookups as projections this is a coinductive definition of the updates

Duality of semantics

States	Exceptions
$\begin{aligned} i & \in L o c, V a l_{i} \\ S t & \left.=\prod_{i \in L o c} V a l_{i}\right) \end{aligned}$	$\begin{gathered} i \in \text { ExCstr, } \text { Par }_{i} \\ E x c\left(=\sum_{i \in E x C s t r} \text { Par }_{i}\right) \end{gathered}$
$\begin{gathered} I_{i}: S t \rightarrow \text { Val }_{i} \\ u_{i}: \text { Val }_{i} \times S t \rightarrow S t \end{gathered}$	$\begin{gathered} E x c \leftarrow \operatorname{Par}_{i}: t_{i} \\ \text { Par }_{i}+E x c \leftarrow E x c: c_{i} \end{gathered}$

So, there IS a duality between states and exceptions.
But states and exceptions are computational effects: the "type of states" and the "type of exceptions" are hidden, they do not appear explicitly in the syntax

We will see that the duality of their semantics comes from a duality of states and exceptions seen as computational effects.

But. . .
what is a computational effect?

Outline

Introduction

1. The duality, explicitly
2. About effects
3. The duality, "effect"-ively

Conclusion

Monads for effects

[Moggi 1991]
The basic idea behind the categorical semantics of effects is that we distinguish the object A of values from the object TA of computations.

Programs of type B with a parameter of type A ought to be interpreted by morphisms with codomain TB, but for their domain there are two alternatives, either A or TA.

We choose the first alternative, because it entails the second. Indeed computations of type A are the same as values of type TA.
a program: $A \rightarrow B$
is interpreted by a morphism: $A \rightarrow T B$

Monads for effects: exceptions

The monad of exceptions is $T A=A+$ Exc.
A program of type B with a parameter of type A :

- throws an exception if it may map $x \in A$ to $e \in E x c$
- catches an exception if it may map $e \in E x c$ to $y \in B$

Monads for effects. A program of type B with a parameter of type A is interpreted by a morphism $A \rightarrow B+E x c$.
\Longrightarrow it may throw an exception
\Longrightarrow it cannot catch an exception
Second alternative. A program of type B with a parameter of type A is interpreted by a morphism $A+E x c \rightarrow B+$ Exc.
\Longrightarrow it may throw an exception
\Longrightarrow it may catch an exception

What is an effect?

Claim. A computational effect is

an apparent lack of soundness.

There is a computational effect when:

- at first sight, the intended denotational semantics is not a model of the syntax,
- but the syntax may be "decorated" so as to recover soundness.

States as effect

The intended denotational semantics (one location):

$$
\left\{\begin{array}{l}
I: S t \rightarrow \text { Val } \\
u: V a l \times S t \rightarrow S t \\
\forall v \in \operatorname{Val} \forall s \in S t \quad I(u(v, s))=v
\end{array}\right.
$$

is not a model of the apparent syntax but it is a model of the explicit syntax

Apparent
$l: 1 \rightarrow V$
$u: V \rightarrow 1$
$I \circ u=i d: V \rightarrow V$

Explicit
$I: S \rightarrow V$
$u: V \times S \rightarrow S$
$I \circ u=p r: V \times S \rightarrow V$

Decorations for states

The apparent syntax may be decorated
$f: X \rightarrow Y$ is decorated as
$f^{(0)}: X \rightarrow Y$ if f is pure
$f^{(1)}: X \rightarrow Y$ if f is an accessor
$f^{(2)}: X \rightarrow Y$ if f is a modifier
$f=g$ is decorated as
$f={ }^{(s g)} g$ (strong) if f and g coincide on results and on states
$f={ }^{(w k)} g$ (weak) if f and g coincide on results (only)

Apparent
$I: 1 \rightarrow V$
$u: V \rightarrow 1$
$I \circ u=i d_{V}: V \rightarrow V$

Decorated
$I^{(1)}: 1 \rightarrow V$
$u^{(2)}: V \rightarrow 1$
$I \circ u={ }^{(w k)} i d_{V}: V \rightarrow V$

Meaning of the decorations for states

The decorated syntax may be explicited

$$
\begin{array}{ll}
f^{(0)}: X \rightarrow Y & \text { as } \\
f^{(1)}: X \rightarrow Y & \text { as } \quad f: X \times S \rightarrow Y \\
f^{(2)}: X \rightarrow Y & \text { as } \quad f: X \times S \rightarrow Y \times S \\
f={ }^{(s g)} g: X \rightarrow Y & \text { as } \\
f=g: X \times S \rightarrow Y \times S \\
f={ }^{(w k)} g: X \rightarrow Y & \text { as } \\
p r_{Y} \circ f=p_{Y} \circ g: X \times S \rightarrow Y
\end{array}
$$

Decorated
$I^{(1)}: 1 \rightarrow V$
$u^{(2)}: V \rightarrow 1$
$I \circ u={ }^{(w k)} i d_{V}: V \times S \rightarrow V$

Explicit
$I: 1 \times S \rightarrow V$
$u: V \times S \rightarrow S$
$I \circ u=p r_{V}: V \times S \rightarrow V$

States as effect: decorations

Three syntaxes for one effect

The intended semantics

- is NOT a model of the apparent syntax (effect)
- is a model of the explicit syntax (obviously)
- it is also a model of the decorated syntax (by adjunction)

A framewok for effects

A language without effects is defined wrt one logic

L

A language with effects is defined wrt a span of logics

Defined in the category of diagrammatic logics [Duval\&Lair 2002] which is based on categorical notions:

- adjunctions
- categories of fractions
- limit sketches

Operations and equations

Our approach generalizes algebraic specifications
\Longrightarrow it involves (decorated) operations and equations handling exceptions is "symmetric" to updating states

The monads approach leads to Lawvere theories for getting operations and equations [Plotkin\&Power 2001] but

- lookup, update, raise are algebraic operations
- handle is not an algebraic operation

The approach of monads and Lawvere theories can be extended for handling exceptions

- with exception monads [Schroeder\&Mossakowski 2004]
- with coalgebras [Levy 2006]
- with handlers [Plotkin\&Pretnar 2009]

Outline

```
Introduction
1. The duality, explicitly
2. About effects
```

3. The duality, "effect"-ively

Conclusion

States

Exceptions: decorations

$$
\begin{array}{lll}
f^{(0)}: X \rightarrow Y & \text { pure } & f: X \rightarrow Y \\
f^{(1)}: X \rightarrow Y & \text { thrower } & f: X \rightarrow Y+E \\
f^{(2)}: X \rightarrow Y & \text { catcher } & f: X+E \rightarrow Y+E \\
& & \\
f==^{(s g)} g: X \rightarrow Y & \text { strong } & f=g: X+E \rightarrow Y+E \\
f={ }^{(w k)} g: X \rightarrow Y & \text { weak } & f \circ i n_{X}=g \circ i n_{X}: X \rightarrow Y+E
\end{array}
$$

Exceptions: key operations

Duality of effects

States	Exceptions
$\begin{gathered} i \in \operatorname{Loc}, \text { Val }_{i} \\ 1 \end{gathered}$	$\begin{gathered} i \in E x C s t r, \text { Par }_{i} \\ 0 \end{gathered}$
$\begin{aligned} & l_{i}^{(1)}: 1 \rightarrow V_{i} \\ & u_{i}^{(2)}: V_{i} \rightarrow 1 \end{aligned}$	$\begin{aligned} & 0 \leftarrow P_{i}: t_{i}^{(1)} \\ & P_{i} \leftarrow 0: c_{i}^{(2)} \end{aligned}$

Outline

Introduction

1. The duality, explicitly
2. About effects
3. The duality, "effect"-ively

Conclusion

Conclusion

- An effect is an apparent lack of soundness
- a span of diagrammatic logics for each effect
- a new point of view on states
- a completely new point of view on exceptions
- a duality between states and exceptions

Future work

- combining effects
- operational semantics

