
States and exceptions considered as dual effects

Dominique Duval
with J.-G. Dumas, L. Fousse, J.-C. Reynaud

LJK, University of Grenoble

March 27, 2011 – ACCAT 2011
dedicated to the memory of Prof. Jochen Pfalzgraf

Outline

Introduction

1. The duality, explicitly

2. About effects

3. The duality, “effect”-ively

Conclusion

Outline

1. Analyzing the semantics of exceptions yields
a symmetry between states and exceptions

at the semantics level.

2. States and exceptions are computational effects, but
what is an effect?

3. Analyzing the syntax of exceptions as effects yields
a symmetry between states and exceptions

as computational effects.

Outline

Introduction

1. The duality, explicitly

2. About effects

3. The duality, “effect”-ively

Conclusion

Exceptions

When dealing with exceptions, there are two kinds of values:

I non-exceptional values

I exceptions

A function:

I throws an exception if it may
map a non-exceptional value to an exception

I catches an exception if it may
map an exception to a non-exceptional value

Exceptions: key operations

Exc = set of exceptions
ExCstr = set of exception constructors

For each i ∈ ExCstr :

I Par i = set of parameters

I t i : Par i → Exc = KEY throw function

I c i : Exc → Par i + Exc = KEY catch function

∀ p ∈ Par i

{
c i (t i (p)) = p ∈ Par i ⊆ Par i + Exc

c i (t j(p)) = t j(p) ∈ Exc ⊆ Par i + Exc (∀ j 6= i)

– c i catches exceptions of constructor i

– c i propagates exceptions of constructor j 6= i

When Exc =
∑

i Par i with the key-throws as projections
this is an inductive definition of the key-catches

Exceptions: raise

– From key throwing (t i) to raising (raise i ,Y):

raise i ,Y (a) = t i (a) ∈ Y + Exc

Par i
raise i,Y

//

t i
++WWWWWWWWWWWWWWWWWWWWWWWW Y + Exc

=

Exc

⊆
OO

Exceptions: handle

– From key catching (c i) to catching (catch i {g}):

Par i
⊆

��

g

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Exc
c i // Par i + Exc //

=

=
Y + Exc

Exc

⊆
OO

⊆

11ddddddddddddddddddddddddddddd

– From catching (catch i {g}) to handling (f handle i ⇒ g):

Y
⊆

��

⊆

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

X
f // Y + Exc //

=

=
Y + Exc

Exc

⊆
OO

catch i {g}

11dddddddddddddddddddddddddddd

States

St = set of states
Loc = set of locations

For each i ∈ Loc:

I Val i = set of values

I l i : St → Val i = lookup function

I ui : Val i × St → St = update function

∀ vi ∈ Val i ∀ s ∈ St

{
l i (ui (vi , s)) = vi

l j(ui (vi , s)) = l j(s) (∀ j 6= i)

When St =
∏

i Val i with the lookups as projections

this is a coinductive definition of the updates

Duality of semantics

States Exceptions

i ∈ Loc, Val i i ∈ ExCstr , Par i

St (=
∏

i∈Loc Val i) Exc (=
∑

i∈ExCstr Par i)

l i : St → Val i Exc ← Par i : t i

ui : Val i × St → St Par i + Exc ← Exc : c i

Val i × St
pr

//

ui
��

Val i
id��

St
l i // Val i

=

Par i + Exc Par i
inoo

Exc

c i
OO

Par i
t ioo

id
OO

=

Val i × St
pr

//

ui
��

St
l j

// Val j
id��

St
l j

// Val j

=

Par i + Exc Exc
inoo Par j

t j
oo

Exc

c i
OO

Par j
t j

oo

id
OO

=

So, there IS a duality between states and exceptions.

But states and exceptions are computational effects:

the “type of states” and the “type of exceptions” are hidden,
they do not appear explicitly in the syntax

We will see that the duality of their semantics
comes from a duality of states and exceptions
seen as computational effects.

But. . .
what is a computational effect?

Outline

Introduction

1. The duality, explicitly

2. About effects

3. The duality, “effect”-ively

Conclusion

Monads for effects

[Moggi 1991]

The basic idea behind the categorical semantics of effects is that
we distinguish the object A of values
from the object TA of computations.

Programs of type B with a parameter of type A
ought to be interpreted by morphisms with codomain TB,

but for their domain there are two alternatives, either A or TA.

We choose the first alternative, because it entails the second.
Indeed computations of type A are the same as values of type TA.

a program: A→ B

is interpreted by a morphism: A→ TB

Monads for effects: exceptions

The monad of exceptions is TA = A + Exc .

A program of type B with a parameter of type A:

I throws an exception if it may map x ∈ A to e ∈ Exc

I catches an exception if it may map e ∈ Exc to y ∈ B

Monads for effects. A program of type B with a parameter of type
A is interpreted by a morphism A→ B + Exc .
=⇒ it may throw an exception
=⇒ it cannot catch an exception

Second alternative. A program of type B with a parameter of type
A is interpreted by a morphism A + Exc → B + Exc .
=⇒ it may throw an exception
=⇒ it may catch an exception

What is an effect?

Claim. A computational effect is

an apparent lack of soundness.

There is a computational effect when:

I at first sight, the intended denotational semantics
is not a model of the syntax,

I but the syntax may be “decorated”
so as to recover soundness.

States as effect

The intended denotational semantics (one location):
l : St → Val

u : Val × St → St

∀ v ∈ Val ∀ s ∈ St l(u(v , s)) = v

is not a model of the apparent syntax
but it is a model of the explicit syntax

Apparent Explicit
l : 1→ V l : S → V
u : V → 1 u : V × S → S
l ◦ u = id : V → V l ◦ u = pr : V × S → V

Decorations for states

The apparent syntax may be decorated

f : X → Y is decorated as

f (0) : X → Y if f is pure
f (1) : X → Y if f is an accessor
f (2) : X → Y if f is a modifier

f = g is decorated as

f =(sg) g (strong) if f and g coincide on results and on states
f =(wk) g (weak) if f and g coincide on results (only)

Apparent Decorated

l : 1→ V l (1) : 1→ V

u : V → 1 u(2) : V → 1

l ◦ u = idV : V → V l ◦ u =(wk) idV : V → V

Meaning of the decorations for states

The decorated syntax may be explicited

f (0) : X → Y as f : X → Y

f (1) : X → Y as f : X × S → Y

f (2) : X → Y as f : X × S → Y × S

f =(sg) g : X → Y as f = g : X × S → Y × S

f =(wk) g : X → Y as prY ◦ f = prY ◦ g : X × S → Y

Decorated Explicit

l (1) : 1→ V l : 1× S → V

u(2) : V → 1 u : V × S → S

l ◦ u =(wk) idV : V × S → V l ◦ u = prV : V × S → V

States as effect: decorations

Decorated

l (1) : 1→ V

u(2) : V → 1

l ◦ u =(wk) idV
2

yyrrrrrr �
%%LLLLLL

Apparent

l : 1→ V
u : V → 1

l ◦ u = idV

Explicit

l : S → V
u : V × S → S
l ◦ u = prV

Three syntaxes for one effect

Decorated
2

yyrrrrrr �
%%LLLLLL

Apparent Explicit

The intended semantics

I is NOT a model of the apparent syntax (effect)

I is a model of the explicit syntax (obviously)

I it is also a model of the decorated syntax (by adjunction)

A framewok for effects

A language without effects is defined wrt one logic

L

A language with effects is defined wrt a span of logics

Ldeco

xxqqqqqq
&&NNNNNN

Lapp Lexpl

Defined in the category of diagrammatic logics [Duval&Lair 2002]
which is based on categorical notions:

I adjunctions

I categories of fractions

I limit sketches

Operations and equations

Our approach generalizes algebraic specifications

=⇒ it involves (decorated) operations and equations

handling exceptions is “symmetric” to updating states

The monads approach leads to Lawvere theories
for getting operations and equations [Plotkin&Power 2001] but

I lookup, update, raise are algebraic operations

I handle is not an algebraic operation

The approach of monads and Lawvere theories can be extended
for handling exceptions

I with exception monads [Schroeder&Mossakowski 2004]

I with coalgebras [Levy 2006]

I with handlers [Plotkin&Pretnar 2009]

Outline

Introduction

1. The duality, explicitly

2. About effects

3. The duality, “effect”-ively

Conclusion

States

Decorated

l (1) : 1→ V

u(2) : V → 1

l ◦ u =(wk) idV
2

yyrrrrrr �
%%LLLLLL

Apparent

l : 1→ V
u : V → 1

l ◦ u = idV

Explicit

l : S → V
u : V × S → S
l ◦ u = prV

Exceptions: decorations

f (0) : X → Y pure f : X → Y

f (1) : X → Y thrower f : X → Y + E

f (2) : X → Y catcher f : X + E → Y + E

f =(sg) g : X → Y strong f = g : X + E → Y + E

f =(wk) g : X → Y weak f ◦ inX = g ◦ inX : X → Y + E

Exceptions: key operations

Decorated

t(1) : P → 0

c(2) : 0→ P

c ◦ t =(wk) idP
2

yyrrrrrr �
%%LLLLLL

Apparent

t : P → 0

c : 0→ P
c ◦ t = idP

Explicit

t : P → E
c : E → P + E
c ◦ t = inP

Duality of effects

States Exceptions

i ∈ Loc, Val i i ∈ ExCstr , Par i

1 0

l
(1)
i : 1→ Vi 0← Pi : t

(1)
i

u
(2)
i : Vi → 1 Pi ← 0 : c

(2)
i

Vi
id //

ui
��

Vi

id��

1
li // Vi

=(wk)

Pi Pi
idoo

0

ci
OO

Pi
tioo

id
OO

=(wk)

Vi
〈 〉

//

ui
��

1
lj

// Vj

id��

1
lj

// Vj

=(wk)

Pi 0
[]

oo Pj
tj

oo

0

ci
OO

Pj
tj

oo

id
OO

=(wk)

Outline

Introduction

1. The duality, explicitly

2. About effects

3. The duality, “effect”-ively

Conclusion

Conclusion

I An effect is an apparent lack of soundness

I a span of diagrammatic logics for each effect

I a new point of view on states

I a completely new point of view on exceptions

I a duality between states and exceptions

Future work

I combining effects

I operational semantics

	Introduction
	1. The duality, explicitly
	2. About effects
	3. The duality, ``effect''-ively
	Conclusion

