
Sequential products for effects

Dominique Duval
LJK, University of Grenoble, France

joint work with Jean-Guillaume Dumas and Jean-Claude Reynaud

4th ACCAT Workshop — York — March 22., 2009

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Motivation

In a categorical semantics for a programming language,
the construction of terms is interpreted
by composition and products.

When the language has side-effects, this has to be adapted.
One major issue is that the value of a term f (t1, . . . , tn)
may depend on the order of evaluation of its arguments.

The aim of this talk is to present a new framework
and to compare it to existing ones.

Categorical semantics

Language Category

sort object

operation: morphism:

f : X1, . . . , Xn → Y f : X1 × · · · × Xn → Y

term construction: composition and tuple:

f (t1, . . . , tn) f ◦ 〈t1, . . . , tn〉

Y1

X

t1

t2

〈t1,t2〉
Y1 × Y2

f
=

=

Z

Y2

The product functor

Binary products on C define a functor × : C2 → C :
◮ On objects: X1 × X2,

with projections pi : X1 × X2 → Xi .
◮ On morphims: f1 × f2 : X1 × X2 → Y1 × Y2,

defined as f1 × f2 = 〈f1 ◦ p1, f2 ◦ p2〉,
i.e., characterized by:

X1
f1 Y1

X1 × X2
f1×f2

=

=

Y1 × Y2

X2
f2 Y2

Computational effects

Without effects, an operation symbol f : X → Y
stands for a (total) function f : X → Y .

With effects, an operation symbol f : X → Y
stands for “something else”, e.g.:

◮ Partiality: a partial function f : X ⇀ Y ,
◮ State: a function f : S × X → S × Y
◮ Non-determinism: a function f : X → L(Y)

◮ and so on. . .

What about term construction?
I.e., what about composition and products?

Frameworks for effects

Several frameworks, quite “similar” [Haskell]:
◮ Strong monads [Moggi’89]
◮ Premonoidal categories [Power&Robinson’97]
◮ Arrows [Hughes’00]

Our framework is more “restricted” and more “homogeneous”:
◮ Cartesian effect categories

[Dumas&Duval&Reynaud’07,’09].

Homogeneity

K is a category, C is a wide subcategory of K :

C j K

Freyd-category:

C K
cartesian

⇓
monoidal premonoidal

Cartesian effect category:

C K
cartesian “sequential cartesian”

⇓ ⇓
monoidal premonoidal

Our result, in short

The universal property for the product f × v :
X1

f Y1

X1 × X2
f×v

=

=

Y1 × Y2

X2
v Y2

has to be “decorated”:
X1

f Y1

X1 × X2
f⋊v

=

≥

Y1 × X2

X2
v X2

The aim of this talk is to explain what this means.

Example: partiality

f is partial, v = id is total,
≤ is the usual order on partial functions.

Let f ⋊ id be such that:

X1
f Y1

X1 × X2
f⋊id

=

≥

Y1 × Y2

X2
id Y2

then f ⋊ id is the partial function:

{

D(f ⋊ id) = {(x1, x2) | x1 ∈ D(f)} and

∀(x1, x2) ∈ D(f ⋊ id) , (f ⋊ id)(x1, x2) = (f (x1), x2)

Two questions

◮ What is an effect?
→ effect categories.

◮ What is a sequential product?
→ cartesian effect categories.

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Pure vs. general morphisms

K is a category, C is a wide subcategory of K :

C j K

◮ (General) morphisms f : X → Y in K ,
◮ pure morphisms v : X Y in C.

Example. Set j Part

a morphism f : X → Y is a partial function,
a pure morphism v : X Y is a total function.

Effects

The effect of f : X → Y should provide a measure of
the “distance” from f to pure functions.

Let 1 be a terminal object in C:

for all X there is a unique 〈 〉X : X 1

The effect of f : X → Y is 〈 〉Y ◦ f : X → 1.

f : X → Y is effect-free if 〈 〉Y ◦ f = 〈 〉X .
Hence, every pure morphism is effect-free.

Example. Set j Part

1 = {∗} (a singleton).
The effect of f is 〈 〉 ◦ f : X → {∗}, such that D(〈 〉 ◦ f) = D(f).

Same-effect equivalence

Let ≈ be the relation between morphisms such that
for all f : X → Y and f ′ : X → Y ′,
f ≈ f ′ if and only if f and f ′ have the same effect, i.e.

f ≈ f ′ ⇐⇒ 〈〉 ◦ f = 〈 〉 ◦ f ′

Example. Set j Part

f ≈ f ′ ⇐⇒ D(f) = D(f ′) .

Symmetric up-to-effects consistency

Let ⌣ be a relation between parallel morphisms that satisfies:
◮ reflexivity, symmetry,
◮ substitution: g ≤ g′ =⇒ g ◦ f ≤ g′ ◦ f
◮ pure replacement: f ≤ f ′ =⇒ w ◦ f ≤ w ◦ f ′

when w is pure.
◮ complementarity wrt ≈: for all f , f ′ : X → Y ,

f ≈ f ′ and f ⌣ f ′ =⇒ f = f ′

Example. Set j Part

f ⌣ f ′ ⇐⇒ f = f ′ on D(f) ∩D(f ′) .

Transitive up-to-effects consistency

Let ≤ be a relation between parallel morphisms that satisfies:
◮ reflexivity, transitivity,
◮ substitution, pure replacement,
◮ complementarity wrt ≈: for all f , f ′, f ′′ : X → Y ,

f ≈ f ′ and f ≤ f ′′ and f ′ ≤ f ′′ =⇒ f = f ′

Let f ⌣ f ′ ⇐⇒ ∃f ′′ , f ≤ f ′′ and f ′ ≤ f ′′.
Then ⌣ is a symmetric up-to-effects consistency.

Example. Set j Part

f ≤ f ′ ⇐⇒ D(f) ⊆ D(f ′) and f = f ′ on D(f)

Hence, three relations

◮ Same-effect equivalence f ≈ f ′ :

f ≈ f ′ ⇐⇒ 〈〉 ◦ f = 〈 〉 ◦ f ′

◮ Symmetric up-to-effects consistency f ⌣ f ′ :

f ≈ f ′ and f ⌣ f ′ =⇒ f = f ′

◮ Transitive up-to-effects consistency f ≤ f ′ :

f ⌣ f ′ ⇐⇒ ∃f ′′ f ≤ f ′′ and f ′ ≤ f ′′

Example. Set j Part

f ≈ f ′ ⇐⇒ D(f) = D(f ′)
f ⌣ f ′ ⇐⇒ f = f ′ on D(f) ∩ D(f ′)
f ≤ f ′ ⇐⇒ D(f) ⊆ D(f ′) and f = f ′ on D(f)

Effect categories

Definition.
An effect category is C j K with
a transitive up-to-effects consistency ≤ ,
i.e., a relation between parallel morphisms that satisfies:

◮ reflexivity, transitivity,
◮ substitution, pure replacement,
◮ equality on pure morphisms.

Example. Set j Part

f ≤ f ′ ⇐⇒ D(f) ⊆ D(f ′) and f = f ′ on D(f)

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Semi-pure products

Let C j K with ≤ be an effect category,
with a binary product × on C.

Definition.
The left semi-pure product v1 ⋉ f2
and the right semi-pure product f1 ⋊ v2

are characterized by:

X1
v1

≥

Y1

X1 × X2
v1⋉f2 Y1 × Y2

X2
f2 Y2

=

X1

=

f1 Y1

X1 × X2
f1⋊v2 Y1 × Y2

X2
v2 Y2

≥

Sequential products

Definition.
The left sequential product f1 ⋉ f2 is defined as:

f1 ⋉ f2 = (idY1 ⋉ f2) ◦ (f1 ⋊ idX2) “first f1, then f2”

X1

=

f1 Y1
id

≥

Y1

X1 × X2
f1⋊id

Y1 × X2
id⋉f2 Y1 × Y2

X2
id X2

≥

f2 Y2

=

and symmetrically for the right sequential product f1 ⋊ f2:

f1 ⋊ f2 = (f1 ⋊ idY2
) ◦ (idX1

⋉ f2) “first f2, then f1”

Example: partiality

Then f1 ⋉ f2 = f1 ⋊ f2: every function is central.

D(f1 ⋉ f2) = {(x1, x2) | x1 ∈ D(f1) ∧ x2 ∈ D(f2)}

and ∀(x1, x2) ∈ D(f1 ⋉ f2) ,

(f1 ⋉ f2)(x1, x2) = (f (x1), f2(x2))

Sequential products, directly

Theorem. The left and right sequential products
can be defined directly, in a mutually recursive way,
by another “decorated” version of the product property:

X1
f1

≥

Y1

X1 × X2
f1⋉f2

f1⋊id

Y1 × Y2

Y1 × X2

X2
f2 Y2

=

and symmetrically. . .

Cartesian effect categories

Definition.
A cartesian effect category is

◮ an effect category C j K with ≤

◮ with a binary product × on C
◮ and with sequential products ⋉, ⋊.

Theorem.
A cartesian effect category is a Freyd-category

Example: state

S: a fixed set of states (or stores).

S S × X
σ π

X
Objects of C and K : sets
Morphism f : X → Y in K : function [f] : S × X → S × Y
Pure morphism v : X Y in C: [v] = idS × v0

f ≈ f ′ ⇐⇒ σ ◦ [f] = σ ◦ [f ′]
f ⌣ f ′ ⇐⇒ π ◦ [f] = π ◦ [f ′]
f ≤ f ′ ⇐⇒ π ◦ [f] = π ◦ [f ′]

∀x1, x2, s , [f1 ⋉ f2](s, x1, x2) = (s2, y1, y2)

where [f1](s, x1) = (s1, y1) and [f2](s1, x2) = (s2, y2).

Example: non-determinism

Cf. the monad of lists L(−).

Objects of C and K : sets
Morphism f : X → Y in K : function [f] : X → L(Y)
Pure morphism v : X Y in C: [v] of length 1.

For all f : X → Y in K and k ∈ N,
let f 〈k〉 : X → Y in K be the k-th “stutter”:

[f 〈k〉](x) = (yk
1 , . . . , yk

n) where [f](x) = (y1, . . . , yn)

f ≈ f ′ ⇐⇒ ℓ(f) = ℓ(f ′)
f ⌣ f ′ ⇐⇒ f = () or f ′ = () or ∃n, n′ ∈ N, f 〈n〉 = f ′〈n

′〉

f ≤ f ′ ⇐⇒ ∃k ∈ N, f = f ′〈k〉

∀x1, x2 , [f1 ⋉ f2](x1, x2) =
(〈y1,1, y2,1〉, . . . , 〈y1,1, y2,n2〉, . . . , 〈y1,n1 , y2,1〉, . . . , 〈y1,n1 , y2,n2〉)

where [f1](x1) = (y1,1, . . . , y1,n1) and [f2](x2) = (y2,1, . . . , y2,n2)

Conclusion

In this talk:

a new approach is provided for the major issue of dealing with
multivariate operations when there are effects.

Future work:

more examples, look at the issue of combining effects.

Some references

◮ J.-G. Dumas, D. Duval, J.-C. Reynaud. Sequential products in effect
categories. arXiv, 2007.

◮ J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are
Freyd-categories. arXiv, 2009.

◮ Haskell. All About Monads. A comprehensive guide to the theory and
practice of monadic programming in Haskell.
www.haskell.org/all about monads/

◮ J. Hughes. Generalising monads to arrows. Science of Computer
Programming 37 (1–3), p. 67–111, 2000.

◮ E. Moggi. Computational lambda-calculus and monads. Logic In
Computer Science (LICS), IEEE Press, p. 14-23, 1989.

◮ J. Power, E. Robinson. Premonoidal Categories and Notions of
Computation. Mathematical Structures in Computer Science 7 (5),
p. 453–468, 1997.

www.haskell.org/all_about_monads/

	Introduction
	What is an effect? Effect categories
	What is a sequential product? Cartesian effect categories

