Sequential products for effects

Dominique Duval

LJK, University of Grenoble, France
joint work with Jean-Guillaume Dumas and Jean-Claude Reynaud

4th ACCAT Workshop — York — March 22., 2009

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Motivation

In a categorical semantics for a programming language, the construction of terms is interpreted by composition and products.

When the language has side-effects, this has to be adapted. One major issue is that the value of a term $f(t_1, ..., t_n)$ may depend on the order of evaluation of its arguments.

The aim of this talk is to present a new framework and to compare it to existing ones.

Categorical semantics

Language	Category
sort	object
operation:	morphism:
$f: X_1, \ldots, X_n \to Y$	$f: X_1 \times \cdots \times X_n \to Y$
term construction:	composition and tuple:
$f(t_1,\ldots,t_n)$	$f\circ\langle t_1,\ldots,t_n\rangle$

The product functor

Binary products on C define a functor $\times : \mathbb{C}^2 \to \mathbb{C}$:

- ▶ On objects: $X_1 \times X_2$, with projections $p_i : X_1 \times X_2 \rightarrow X_i$.
- ▶ On morphims: $f_1 \times f_2 : X_1 \times X_2 \rightarrow Y_1 \times Y_2$, defined as $f_1 \times f_2 = \langle f_1 \circ p_1, f_2 \circ p_2 \rangle$, i.e., characterized by:

Computational effects

Without effects, an operation symbol $f: X \to Y$ stands for a (total) function $f: X \to Y$.

With effects, an operation symbol $f: X \to Y$ stands for "something else", e.g.:

- Partiality: a partial function f : X → Y,
- State: a function f : S × X → S × Y
- ▶ Non-determinism: a function $f: X \to \mathcal{L}(Y)$
- and so on...

What about term construction?
I.e., what about composition and products?

Frameworks for effects

Several frameworks, quite "similar" [Haskell]:

- Strong monads [Moggi'89]
- Premonoidal categories [Power&Robinson'97]
- Arrows [Hughes'00]

Our framework is more "restricted" and more "homogeneous":

Cartesian effect categories [Dumas&Duval&Reynaud'07,'09].

Homogeneity

K is a category, *C* is a wide subcategory of *K*:

$$C \subseteq K$$

Freyd-category:

С	К
cartesian	
₩	
monoidal	premonoidal

Cartesian effect category:

С	K
cartesian	"sequential cartesian"
₩	₩
monoidal	premonoidal

Our result, in short

The universal property for the product $f \times v$:

$$X_{1} \xrightarrow{f} Y_{1}$$

$$\uparrow \qquad = \qquad \uparrow$$

$$X_{1} \times X_{2} \xrightarrow{f \times v} Y_{1} \times Y_{2}$$

$$\downarrow \qquad = \qquad \downarrow$$

$$X_{2} \xrightarrow{v} Y_{2}$$

has to be "decorated":

The aim of this talk is to explain what this means.

Example: partiality

f is partial, v = id is total, \leq is the usual order on partial functions.

Let $f \times id$ be such that:

then $f \times id$ is the partial function:

$$\left\{ \begin{array}{l} \mathcal{D}(f \rtimes \mathrm{id}) = \{(x_1, x_2) \mid x_1 \in \mathcal{D}(f)\} \text{ and} \\ \forall (x_1, x_2) \in \mathcal{D}(f \rtimes \mathrm{id}), \ (f \rtimes \mathrm{id})(x_1, x_2) = (f(x_1), x_2) \end{array} \right.$$

Two questions

- What is an effect?
 - $\rightarrow \text{effect categories}.$
- What is a sequential product?
 - \rightarrow cartesian effect categories.

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Pure vs. general morphisms

K is a category, *C* is a wide subcategory of *K*:

$$C \subseteq K$$

- ▶ (General) morphisms $f: X \to Y$ in K,
- pure morphisms v : X → Y in C.

Example. $Set \subseteq Part$

a morphism $f: X \to Y$ is a partial function, a pure morphism $v: X \leadsto Y$ is a total function.

Effects

The effect of $f: X \to Y$ should provide a measure of the "distance" from f to pure functions.

Let 1 be a terminal object in C:

for all X there is a unique $\langle \ \rangle_X : X \rightsquigarrow 1$

The effect of $f: X \to Y$ is $\langle \rangle_Y \circ f: X \to 1$.

 $f: X \to Y$ is effect-free if $\langle \rangle_Y \circ f = \langle \rangle_X$. Hence, every pure morphism is effect-free.

Example. $Set \subseteq Part$

 $1 = \{*\}$ (a singleton).

The effect of f is $\langle \rangle \circ f : X \to \{*\}$, such that $\mathcal{D}(\langle \rangle \circ f) = \mathcal{D}(f)$.

Same-effect equivalence

Let otin be the relation between morphisms such that for all $f: X \to Y$ and $f': X \to Y'$, $f \approx f'$ if and only if f and f' have the same effect, i.e.

$$f \approx f' \iff \langle \rangle \circ f = \langle \rangle \circ f'$$

$$f \approx f' \iff \mathcal{D}(f) = \mathcal{D}(f')$$
.

Symmetric up-to-effects consistency

Let be a relation between parallel morphisms that satisfies:

- reflexivity, symmetry,
- ▶ substitution: $g \le g' \implies g \circ f \le g' \circ f$
- ▶ pure replacement: $f \le f' \implies w \circ f \le w \circ f'$ when w is pure.
- ▶ complementarity wrt \approx : for all $f, f' : X \rightarrow Y$,

$$f \approx f'$$
 and $f \smile f' \implies f = f'$

$$f \smile f' \iff f = f' \text{ on } \mathcal{D}(f) \cap \mathcal{D}(f')$$
.

Transitive up-to-effects consistency

Let \leq be a relation between parallel morphisms that satisfies:

- reflexivity, transitivity,
- substitution, pure replacement,
- ▶ complementarity wrt \approx : for all $f, f', f'' : X \rightarrow Y$,

$$f \approx f'$$
 and $f \leq f''$ and $f' \leq f'' \implies f = f'$

Let $f \smile f' \iff \exists f''$, $f \le f''$ and $f' \le f''$.

Then \smile is a symmetric up-to-effects consistency.

$$f \leq f' \iff \mathcal{D}(f) \subseteq \mathcal{D}(f') \text{ and } f = f' \text{ on } \mathcal{D}(f)$$

Hence, three relations

▶ Same-effect equivalence $f \approx f'$:

$$f \approx f' \iff \langle \, \rangle \circ f = \langle \, \rangle \circ f'$$

Symmetric up-to-effects consistency $f \smile f'$:

$$f \approx f'$$
 and $f \smile f' \implies f = f'$

▶ Transitive up-to-effects consistency $f \le f'$:

$$f \smile f' \iff \exists f'' \ f \le f'' \ \text{and} \ f' \le f''$$

$$\begin{cases} f \approx f' & \iff \mathcal{D}(f) = \mathcal{D}(f') \\ f \smile f' & \iff f = f' \text{ on } \mathcal{D}(f) \cap \mathcal{D}(f') \\ f \le f' & \iff \mathcal{D}(f) \subseteq \mathcal{D}(f') \text{ and } f = f' \text{ on } \mathcal{D}(f) \end{cases}$$

Effect categories

Definition.

An effect category is $C \subseteq K$ with a transitive up-to-effects consistency \subseteq ,

i.e., a relation between parallel morphisms that satisfies:

- reflexivity, transitivity,
- substitution, pure replacement,
- equality on pure morphisms.

$$f \leq f' \iff \mathcal{D}(f) \subseteq \mathcal{D}(f') \text{ and } f = f' \text{ on } \mathcal{D}(f)$$

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Semi-pure products

Let $C \subseteq K$ with \leq be an effect category, with a binary product \times on C.

Definition.

The left semi-pure product $v_1 \ltimes f_2$ and the right semi-pure product $f_1 \rtimes v_2$ are characterized by:

$$X_{1} \xrightarrow{v_{1}} Y_{1}$$

$$\begin{cases} & \geq & \\ \\ & \downarrow \\ X_{1} \times X_{2} \xrightarrow{v_{1} \times f_{2}} Y_{1} \times Y_{2} \end{cases}$$

$$\begin{cases} & = & \\ \\ & \downarrow \\ X_{2} \xrightarrow{f_{2}} Y_{2} \end{cases}$$

$$X_{1} \xrightarrow{f_{1}} Y_{1}$$

$$\begin{cases}
 = \\
 X_{1} \times X_{2} \xrightarrow{f_{1} \times V_{2}} Y_{1} \times Y_{2}
\end{cases}$$

$$\begin{cases}
 \geq \\
 X_{2} \times X_{2} \xrightarrow{V_{2}} Y_{2}
\end{cases}$$

Sequential products

Definition.

The left sequential product $f_1 \ltimes f_2$ is defined as:

$$f_1 \ltimes f_2 = (\operatorname{id}_{Y_1} \ltimes f_2) \circ (f_1 \rtimes \operatorname{id}_{X_2})$$
 "first f_1 , then f_2 "

and symmetrically for the right sequential product $f_1 \times f_2$:

$$f_1 \times f_2 = (f_1 \times id_{Y_2}) \circ (id_{X_1} \times f_2)$$
 "first f_2 , then f_1 "

Example: partiality

Then $f_1 \ltimes f_2 = f_1 \rtimes f_2$: every function is central.

$$\begin{cases} \mathcal{D}(f_1 \ltimes f_2) = \{(x_1, x_2) \mid x_1 \in \mathcal{D}(f_1) \land x_2 \in \mathcal{D}(f_2)\} \\ \text{and } \forall (x_1, x_2) \in \mathcal{D}(f_1 \ltimes f_2), \\ (f_1 \ltimes f_2)(x_1, x_2) = (f(x_1), f_2(x_2)) \end{cases}$$

Sequential products, directly

Theorem. The left and right sequential products can be defined directly, in a mutually recursive way, by another "decorated" version of the product property:

and symmetrically...

Cartesian effect categories

Definition.

A cartesian effect category is

- an effect category C ⊆ K with ≤
- ▶ with a binary product × on C
- ▶ and with sequential products ⋉, ⋈.

Theorem.

A cartesian effect category is a Freyd-category

Example: state

S: a fixed set of states (or stores).

$$S \stackrel{\sigma}{\longleftarrow} S \times X \stackrel{\pi}{\longrightarrow} X$$

Objects of C and K: sets

Morphism $f: X \to Y$ in K: function $[f]: S \times X \to S \times Y$

Pure morphism $v: X \rightsquigarrow Y$ in $C: [v] = id_S \times v_0$

$$\begin{cases} f \approx f' & \iff \sigma \circ [f] = \sigma \circ [f'] \\ f \smile f' & \iff \pi \circ [f] = \pi \circ [f'] \\ f \le f' & \iff \pi \circ [f] = \pi \circ [f'] \end{cases}$$

$$\forall x_1, x_2, s, [f_1 \ltimes f_2](s, x_1, x_2) = (s_2, y_1, y_2)$$

where $[f_1](s, x_1) = (s_1, y_1)$ and $[f_2](s_1, x_2) = (s_2, y_2)$.

Example: non-determinism

```
Cf. the monad of lists \mathcal{L}(-).
```

Objects of C and K: sets

Morphism $f: X \to Y$ in K: function $[f]: X \to \mathcal{L}(Y)$

Pure morphism $v: X \rightsquigarrow Y$ in C: [v] of length 1.

For all $f: X \to Y$ in K and $k \in \mathbb{N}$,

let $f^{\langle k \rangle}: X \to Y$ in K be the k-th "stutter":

$$[f^{\langle k \rangle}](x) = (y_1^k, \dots, y_n^k)$$
 where $[f](x) = (y_1, \dots, y_n)$

$$\begin{cases} f \approx f' & \iff \ell(f) = \ell(f') \\ f \smile f' & \iff f = () \text{ or } f' = () \text{ or } \exists n, n' \in \mathbb{N}, \ f^{\langle n \rangle} = f'^{\langle n' \rangle} \\ f \le f' & \iff \exists k \in \mathbb{N}, \ f = f'^{\langle k \rangle} \end{cases}$$

$$\forall x_1, x_2 , [f_1 \ltimes f_2](x_1, x_2) = \\ (\langle y_{1,1}, y_{2,1} \rangle, \dots, \langle y_{1,1}, y_{2,n_2} \rangle, \dots, \langle y_{1,n_1}, y_{2,1} \rangle, \dots, \langle y_{1,n_1}, y_{2,n_2} \rangle) \\ \text{where } [f_1](x_1) = (y_{1,1}, \dots, y_{1,n_1}) \text{ and } [f_2](x_2) = (y_{2,1}, \dots, y_{2,n_2})$$

Conclusion

In this talk:

a new approach is provided for the major issue of dealing with multivariate operations when there are effects.

Future work:

more examples, look at the issue of combining effects.

Some references

- J.-G. Dumas, D. Duval, J.-C. Reynaud. Sequential products in effect categories. arXiv, 2007.
- J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. arXiv, 2009.
- Haskell. All About Monads. A comprehensive guide to the theory and practice of monadic programming in Haskell. www.haskell.org/all_about_monads/
- J. Hughes. Generalising monads to arrows. Science of Computer Programming 37 (1–3), p. 67–111, 2000.
- E. Moggi. Computational lambda-calculus and monads. Logic In Computer Science (LICS), IEEE Press, p. 14-23, 1989.
- ▶ J. Power, E. Robinson. Premonoidal Categories and Notions of Computation. Mathematical Structures in Computer Science 7 (5), p. 453–468, 1997.