Sequential products for effects

Dominique Duval
LJK, University of Grenoble, France
joint work with Jean-Guillaume Dumas and Jean-Claude Reynaud

4th ACCAT Workshop - York — March 22., 2009

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Motivation

In a categorical semantics for a programming language, the construction of terms is interpreted by composition and products.

When the language has side-effects, this has to be adapted.
One major issue is that the value of a term $f\left(t_{1}, \ldots, t_{n}\right)$ may depend on the order of evaluation of its arguments.

The aim of this talk is to present a new framework and to compare it to existing ones.

Categorical semantics

Language	Category
sort	object
operation:	morphism:
$f: X_{1}, \ldots, X_{n} \rightarrow Y$	$f: X_{1} \times \cdots \times X_{n} \rightarrow Y$
term construction:	composition and tuple:
$f\left(t_{1}, \ldots, t_{n}\right)$	$f \circ\left\langle t_{1}, \ldots, t_{n}\right\rangle$

The product functor

Binary products on C define a functor $\times: C^{2} \rightarrow C$:

- On objects: $X_{1} \times X_{2}$, with projections $p_{i}: X_{1} \times X_{2} \rightarrow X_{i}$.
- On morphims: $f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$, defined as $f_{1} \times f_{2}=\left\langle f_{1} \circ p_{1}, f_{2} \circ p_{2}\right\rangle$,
i.e., characterized by:

Computational effects

Without effects, an operation symbol $f: X \rightarrow Y$
stands for a (total) function $f: X \rightarrow Y$.
With effects, an operation symbol $f: X \rightarrow Y$
stands for "something else", e.g.:

- Partiality: a partial function $f: X \rightharpoonup Y$,
- State: a function $f: S \times X \rightarrow S \times Y$
- Non-determinism: a function $f: X \rightarrow \mathcal{L}(Y)$
- and so on. . .

What about term construction?
I.e., what about composition and products?

Frameworks for effects

Several frameworks, quite "similar" [Haskell]:

- Strong monads [Moggi'89]
- Premonoidal categories [Power\&Robinson'97]
- Arrows [Hughes'00]

Our framework is more "restricted" and more "homogeneous":

- Cartesian effect categories [Dumas\&Duval\&Reynaud'07,09].

Homogeneity

K is a category, C is a wide subcategory of K :

$$
C \subseteq K
$$

Freyd-category:

C	K
cartesian	
\Downarrow	premonoidal

Cartesian effect category:

Our result, in short

The universal property for the product $f \times v$:

has to be "decorated":

The aim of this talk is to explain what this means.

Example: partiality

f is partial, $v=$ id is total,
\leq is the usual order on partial functions.
Let $f \rtimes$ id be such that:

then $f \rtimes$ id is the partial function:

$$
\left\{\begin{array}{l}
\mathcal{D}(f \rtimes \mathrm{id})=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in \mathcal{D}(f)\right\} \text { and } \\
\forall\left(x_{1}, x_{2}\right) \in \mathcal{D}(f \rtimes \mathrm{id}),(f \rtimes \mathrm{id})\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), x_{2}\right)
\end{array}\right.
$$

Two questions

- What is an effect?
\rightarrow effect categories.
- What is a sequential product?
\rightarrow cartesian effect categories.

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Pure vs. general morphisms

K is a category, C is a wide subcategory of K :

$$
C \subseteq K
$$

- (General) morphisms $f: X \rightarrow Y$ in K,
- pure morphisms $v: X \rightsquigarrow Y$ in C.

Example. $\mathcal{S e t} \subseteq \mathcal{P}$ art
a morphism $f: X \rightarrow Y$ is a partial function, a pure morphism $v: X \rightsquigarrow Y$ is a total function.

Effects

The effect of $f: X \rightarrow Y$ should provide a measure of the "distance" from f to pure functions.
Let 1 be a terminal object in C : for all X there is a unique $\left\rangle_{X}: X \rightsquigarrow 1\right.$

The effect of $f: X \rightarrow Y$ is $\left\rangle_{Y} \circ f: X \rightarrow 1\right.$.
$f: X \rightarrow Y$ is effect-free if $\left\rangle_{Y} \circ f=\langle \rangle_{X}\right.$.
Hence, every pure morphism is effect-free.

Example. Set \subseteq Part
$1=\{*\}$ (a singleton).
The effect of f is $\rangle \circ f: X \rightarrow\{*\}$, such that $\mathcal{D}(\rangle \circ f)=\mathcal{D}(f)$.

Same-effect equivalence

Let \approx be the relation between morphisms such that for all $f: X \rightarrow Y$ and $f^{\prime}: X \rightarrow Y^{\prime}$, $f \approx f^{\prime}$ if and only if f and f^{\prime} have the same effect, i.e.

$$
f \approx f^{\prime} \Longleftrightarrow\langle \rangle \circ f=\langle \rangle \circ f^{\prime}
$$

Example. $\mathcal{S e t} \subseteq \mathcal{P}$ art

$$
f \approx f^{\prime} \Longleftrightarrow \mathcal{D}(f)=\mathcal{D}\left(f^{\prime}\right)
$$

Symmetric up-to-effects consistency

Let \checkmark be a relation between parallel morphisms that satisfies:

- reflexivity, symmetry,
- substitution: $g \leq g^{\prime} \Longrightarrow g \circ f \leq g^{\prime} \circ f$
- pure replacement: $f \leq f^{\prime} \Longrightarrow w \circ f \leq w \circ f^{\prime}$ when w is pure.
- complementarity wrt \approx : for all $f, f^{\prime}: X \rightarrow Y$,

$$
f \approx f^{\prime} \text { and } f \smile f^{\prime} \Longrightarrow f=f^{\prime}
$$

Example. Set $\subseteq \mathcal{P}$ art

$$
f \smile f^{\prime} \Longleftrightarrow f=f^{\prime} \text { on } \mathcal{D}(f) \cap \mathcal{D}\left(f^{\prime}\right)
$$

Transitive up-to-effects consistency

Let \leq be a relation between parallel morphisms that satisfies:

- reflexivity, transitivity,
- substitution, pure replacement,
- complementarity wrt \approx for all $f, f^{\prime}, f^{\prime \prime}: X \rightarrow Y$,

$$
f \approx f^{\prime} \text { and } f \leq f^{\prime \prime} \text { and } f^{\prime} \leq f^{\prime \prime} \Longrightarrow f=f^{\prime}
$$

Let $f \smile f^{\prime} \Longleftrightarrow \exists f^{\prime \prime}, f \leq f^{\prime \prime}$ and $f^{\prime} \leq f^{\prime \prime}$.
Then \smile is a symmetric up-to-effects consistency.

Example. Set $\subseteq \mathcal{P}$ art

$$
f \leq f^{\prime} \Longleftrightarrow \mathcal{D}(f) \subseteq \mathcal{D}\left(f^{\prime}\right) \text { and } f=f^{\prime} \text { on } \mathcal{D}(f)
$$

Hence, three relations

- Same-effect equivalence $f \approx f^{\prime}$:

$$
f \approx f^{\prime} \Longleftrightarrow\langle \rangle \circ f=\langle \rangle \circ f^{\prime}
$$

- Symmetric up-to-effects consistency $f \smile f^{\prime}$:

$$
f \approx f^{\prime} \text { and } f \smile f^{\prime} \Longrightarrow f=f^{\prime}
$$

- Transitive up-to-effects consistency $f \leq f^{\prime}$:

$$
f \smile f^{\prime} \Longleftrightarrow \exists f^{\prime \prime} f \leq f^{\prime \prime} \text { and } f^{\prime} \leq f^{\prime \prime}
$$

Example. $\mathcal{S e t} \subseteq \mathcal{P}$ art

$$
\left\{\begin{aligned}
f \approx f^{\prime} & \Longleftrightarrow \mathcal{D}(f)=\mathcal{D}\left(f^{\prime}\right) \\
f \smile f^{\prime} & \Longleftrightarrow f=f^{\prime} \text { on } \mathcal{D}(f) \cap \mathcal{D}\left(f^{\prime}\right) \\
f \leq f^{\prime} & \Longleftrightarrow \mathcal{D}(f) \subseteq \mathcal{D}\left(f^{\prime}\right) \text { and } f=f^{\prime} \text { on } \mathcal{D}(f)
\end{aligned}\right.
$$

Effect categories

Definition.
An effect category is $C \subseteq K$ with
a transitive up-to-effects consistency \leq,
i.e., a relation between parallel morphisms that satisfies:

- reflexivity, transitivity,
- substitution, pure replacement,
- equality on pure morphisms.

Example. $\mathcal{S e t} \subseteq \mathcal{P}$ art

$$
f \leq f^{\prime} \Longleftrightarrow \mathcal{D}(f) \subseteq \mathcal{D}\left(f^{\prime}\right) \text { and } f=f^{\prime} \text { on } \mathcal{D}(f)
$$

Outline

Introduction

What is an effect? Effect categories

What is a sequential product? Cartesian effect categories

Semi-pure products

Let $C \subseteq K$ with \leq be an effect category, with a binary product \times on C.
Definition.
The left semi-pure product $v_{1} \ltimes f_{2}$ and the right semi-pure product $f_{1} \rtimes v_{2}$ are characterized by:

Sequential products

Definition.
The left sequential product $f_{1} \ltimes f_{2}$ is defined as:

$$
\begin{aligned}
& f_{1} \ltimes f_{2}=\left(\operatorname{id}_{Y_{1}} \ltimes f_{2}\right) \circ\left(f_{1} \rtimes \operatorname{id}_{X_{2}}\right) \quad \text { "first } f_{1} \text {, then } f_{2} "
\end{aligned}
$$

and symmetrically for the right sequential product $f_{1} \rtimes f_{2}$:

$$
f_{1} \rtimes f_{2}=\left(f_{1} \rtimes \operatorname{id}_{Y_{2}}\right) \circ\left(\operatorname{id}_{X_{1}} \ltimes f_{2}\right) \quad \text { "first } f_{2} \text {, then } f_{1} \text { " }
$$

Example: partiality

Then $f_{1} \ltimes f_{2}=f_{1} \rtimes f_{2}$: every function is central.

$$
\left\{\begin{array}{l}
\mathcal{D}\left(f_{1} \ltimes f_{2}\right)=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in \mathcal{D}\left(f_{1}\right) \wedge x_{2} \in \mathcal{D}\left(f_{2}\right)\right\} \\
\text { and } \forall\left(x_{1}, x_{2}\right) \in \mathcal{D}\left(f_{1} \ltimes f_{2}\right), \\
\left(f_{1} \ltimes f_{2}\right)\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)
\end{array}\right.
$$

Sequential products, directly

Theorem. The left and right sequential products can be defined directly, in a mutually recursive way, by another "decorated" version of the product property:

and symmetrically...

Cartesian effect categories

Definition.
A cartesian effect category is

- an effect category $C \subseteq K$ with \leq
- with a binary product \times on C
- and with sequential products \ltimes, \rtimes.

Theorem.
A cartesian effect category is a Freyd-category

Example: state

S : a fixed set of states (or stores).

$$
S \longleftarrow \quad \sigma \quad S \times X \xrightarrow{\sigma} X
$$

Objects of C and K : sets
Morphism $f: X \rightarrow Y$ in K : function $[f]: S \times X \rightarrow S \times Y$
Pure morphism $v: X \rightsquigarrow Y$ in $C:[v]=\operatorname{id}_{S} \times v_{0}$

$$
\left\{\begin{array}{rll}
f \approx f^{\prime} & \Longleftrightarrow & \sigma \circ[f]=\sigma \circ\left[f^{\prime}\right] \\
f \smile f^{\prime} & \Longleftrightarrow & \pi \circ[f]=\pi \circ\left[f^{\prime}\right] \\
f \leq f^{\prime} & \Longleftrightarrow & \pi \circ[f]=\pi \circ\left[f^{\prime}\right]
\end{array}\right.
$$

$$
\forall x_{1}, x_{2}, s,\left[f_{1} \ltimes f_{2}\right]\left(s, x_{1}, x_{2}\right)=\left(s_{2}, y_{1}, y_{2}\right)
$$

where $\left[f_{1}\right]\left(s, x_{1}\right)=\left(s_{1}, y_{1}\right)$ and $\left[f_{2}\right]\left(s_{1}, x_{2}\right)=\left(s_{2}, y_{2}\right)$.

Example: non-determinism

Cf. the monad of lists $\mathcal{L}(-)$.
Objects of C and K : sets
Morphism $f: X \rightarrow Y$ in K : function $[f]: X \rightarrow \mathcal{L}(Y)$
Pure morphism $v: X \rightsquigarrow Y$ in $C:[v]$ of length 1.
For all $f: X \rightarrow Y$ in K and $k \in \mathbb{N}$, let $f^{\langle k\rangle}: X \rightarrow Y$ in K be the k-th "stutter":

$$
\left[f^{(k)}\right](x)=\left(y_{1}^{k}, \ldots, y_{n}^{k}\right) \text { where }[f](x)=\left(y_{1}, \ldots, y_{n}\right)
$$

$$
\begin{aligned}
& \int f \approx f^{\prime} \quad \Longleftrightarrow \quad \ell(f)=\ell\left(f^{\prime}\right) \\
& \left\{f \smile f^{\prime} \Longleftrightarrow f=() \text { or } f^{\prime}=() \text { or } \exists n, n^{\prime} \in \mathbb{N}, f^{\langle n\rangle}=f^{\prime\left(n^{\prime}\right\rangle}\right. \\
& f \leq f^{\prime} \Longleftrightarrow \exists k \in \mathbb{N}, f=f^{\prime}(k\rangle \\
& \forall x_{1}, x_{2},\left[f_{1} \ltimes f_{2}\right]\left(x_{1}, x_{2}\right)= \\
& \left(\left\langle y_{1,1}, y_{2,1}\right\rangle, \ldots,\left\langle y_{1,1}, y_{2, n_{2}}\right\rangle, \ldots,\left\langle y_{1, n_{1}}, y_{2,1}\right\rangle, \ldots,\left\langle y_{1, n_{1}}, y_{2, n_{2}}\right\rangle\right) \\
& \text { where }\left[f_{1}\right]\left(x_{1}\right)=\left(y_{1,1}, \ldots, y_{1, n_{1}}\right) \text { and }\left[f_{2}\right]\left(x_{2}\right)=\left(y_{2,1}, \ldots, y_{2, n_{2}}\right)
\end{aligned}
$$

Conclusion

In this talk:
a new approach is provided for the major issue of dealing with multivariate operations when there are effects.

Future work: more examples, look at the issue of combining effects.

Some references

- J.-G. Dumas, D. Duval, J.-C. Reynaud. Sequential products in effect categories. arXiv, 2007.
- J.-G. Dumas, D. Duval, J.-C. Reynaud. Cartesian effect categories are Freyd-categories. arXiv, 2009.
- Haskell. All About Monads. A comprehensive guide to the theory and practice of monadic programming in Haskell.

```
www.haskell.org/all_about_monads/
```

- J. Hughes. Generalising monads to arrows. Science of Computer Programming 37 (1-3), p. 67-111, 2000.
- E. Moggi. Computational lambda-calculus and monads. Logic In Computer Science (LICS), IEEE Press, p. 14-23, 1989.
- J. Power, E. Robinson. Premonoidal Categories and Notions of Computation. Mathematical Structures in Computer Science 7 (5), p. 453-468, 1997.

