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Abstract

We tackle the problem of data-structure rewriting including pointer
redirections. We propose two basic rewrite steps: (i) Local Redirection
and Replacement steps the aim of which is redirecting specific pointers
determined by means of a pattern, as well as adding new information to
an existing data ; and (ii) Global Redirection steps which are aimed to
redirect all pointers targeting a node towards another one. We define these
two rewriting steps following the double pushout approach. We define
first the category of graphs we consider and then define rewrite rules as
pairs of graph homomorphisms of the form L ← K → R. Unfortunately,
inverse pushouts (complement pushouts) are not unique in our setting and
pushouts do not always exist. Therefore, we define rewriting steps so that
a rewrite rule can always be performed once a matching is found.

1 Introduction

Rewriting techniques have been proven to be very useful to establish formal
bases for high level programming laguages as well as theorem provers. These
techniques have been widely investigated for strings [7], trees or terms [2] and
term graphs [19, 6].

In this paper we tackle the problem of rewriting classical data-structures such
as circular lists, double-chained lists, etc. Even if such data-structures can be
easily simulated by string or tree processing, they remain very useful in designing
algorithms with good complexity. The investigation of data-structure rewrite
systems will contribute to define a clean semantics and proof techniques for
“pointer” handling. It will also provide a basis for multiparadigm programming
languages integrating declarative (functional and logic) and imperative features.

General frameworks of graph transformation are now well established, see
e.g. [22, 11, 12]. Unfortunately, rewriting classical data-structures represented
as cyclic graphs did not benefit yet of the same effort as for terms or term
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graphs. Our aim in this paper is to investigate basic rewrite steps for data-
structure transformation. It turns out that pointer redirection is the key issue
we had to face, in addition to classical replacement and garbage collection. We
distinguish two kinds of redirections: (i)Global redirection which consists in
redirecting in a row all edges pointing to a given node, to another node ; and
(ii) Local redirection which consists in redirecting a particular pointer, specified
e.g. by a pattern, in order to point to a new target node. Global redirection
is very often used in the implementation of functional programming languages,
for instance when changing roots of term graphs. As for local redirection, it is
useful to express classical imperative algorithms.

We introduce two kind of rewrite steps. The first is one called local redirection
and replacement and the second kind is dedicated to global redirection. We
define these steps following the double pushout approach [8, 16]. We have chosen
this approach because it simplifies drastically the presentation of our results.
The algorithmic fashion, which we followed first, turns out to be arduous. Thus,
basic rewrite rules are given by a pair of graph homomorphisms L ← K → R.
We precise the rôle that plays K in order to perform local or global redirection
of pointers. The considered homomorphisms are not necessarily injective in
our setting, unlike classical assumptions as in the recent proposals dedicated
to graph programs [20, 17]. This means that inverse pushouts (complement
pushouts) are not unique.

The paper is organized as follows: The next section introduces the category
of graphs which we consider in the paper. Section 3 states some technical results
that help defining rewrite steps. Section 4 introduces data-structure rewriting
and defines mainly two rewrite steps, namely LRR-rewriting and GR-rewriting.
We compare our proposal to related work in section 5. Concluding remarks are
given in section 6. Proofs are found in the appendix. We assume the reader is
familiar with basic notions of category theory (see e.g. [1] for an introduction).

2 Graphs

In this section we introduce the category of graphs we consider in the paper.
These graphs are supposed to represent data-structures. We define below such
graphs in a mono-sorted setting. Lifting our results to the many-sorted case is
straightforward.

Definition 2.1 (Signature) A signature Ω is a set of operation symbols such
that each operation symbol in Ω, say f , is provided by a natural number, n,
representing its arity. We write ar(f) = n.

In the sequel, we use the following notations. Let A be a set. We note A∗

the set of strings made of elements in A. Let f : A→ B be a function. We note
f∗ : A∗ → B∗ the unique extension of f over strings defined by f∗(ǫ) = ǫ where
ǫ is the empty string and f∗(a1 . . . an) = f(a1) . . . f(an).

We assume that Ω is fixed throughout the rest of the paper.
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Definition 2.2 (Graph) A graph G is made of:

• a set of nodes NG,

• a subset of labeled nodes NΩ
G ⊆ NG,

• a labeling function LG : NΩ
G → Ω,

• and a successor function SG : NΩ
G → N

∗
G,

such that, for each labeled node n, the length of the string SG(n) is the arity of
the operation LG(n).

This definition can be illustrated by the following diagram, where lg(u) is
the length of the string u. :

NG NΩ
G

⊇oo

LG

��

SG //

=

N ∗
G

lg

��
Ω ar

// N

Moreover:

• the arity of a node n is defined as the arity of its label,

• the i-th successor of a node n is denoted succG(n, i),

• the edges of a graph G are the pairs (n, i) where n ∈ NΩ
G and i ∈

{1, . . . , ar(n)}, the source of an edge (n, i) is the node n, and its target is
the node succG(n, i),

• the fact that f = LG(n) can be written as n :f ,

• the set of unlabeled nodes of G is denoted NX
G , so that: NG = NΩ

G+1NX
G .

Example 2.3 Let G be the graph defined by

• NG = {m;n; o; p; q; r}

• NΩ
G = {m; o; p}

• NX
G = {n; q; r}

• LG is defined by: [m 7→ f ; o 7→ g; p 7→ h]

• SG is defined by: [m 7→ no; o 7→ np; p 7→ qrm]

1+ stands for disjoint union.
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Graphically we represent this graph as: m : f

zzuuu
uuu

��
n : • o : goo // p : h

��yyttt
tt

tt

q : • r : •
We use • to denote lack of label. Informally, one may think of • as anonymous

variables.

Definition 2.4 (Graph homomorphism) A graph homomorphism ϕ : G→
H is a map ϕ : NG → NH such that ϕ(NΩ

G ) is included in NΩ
H and, for each

node n ∈ NΩ
G : LH(ϕ(n)) = LG(n) and SH(ϕ(n)) = ϕ∗(SG(n)) .

Let ϕΩ : NΩ
G → N

Ω
H denote the restriction of ϕ to the subset NΩ

G . Then,
the properties in the definition above mean that the following diagrams are
commutative:

NΩ
G

ϕΩ

��

LG

''OOOOOO

= Ω

NΩ
H

LH

77oooooo

NΩ
G

ϕΩ

��

SG //

=

N ∗
G

ϕ∗

��
NΩ
H SH

// N ∗
H

The image ϕ(n, i) of an edge (n, i) of G is defined as the edge (ϕ(n), i) of H .

Example 2.5 Consider the following graph H : a : f

��

// c : g //

��

e : •

b : • d : •
Let ϕ : NH → NG, where G is the graph defined in Example 2.3, be defined

as: [a 7→ m; b 7→ n; c 7→ o; d 7→ n; e 7→ p]. Map ϕ is a graph homomorphism
from H to G. Notice that the nodes without labels act as placeholders for any
graph.

It is easy to check that the graphs (as objects) together with the graph
homomorphisms (as arrows) form a category, which is called the category of
graphs and noted Gr .

3 Disconnected graphs and homomorphisms

This section is dedicated to some technical definitions the aim of which is the
simplification of the definition of rewrite rules given in the following section.

Definition 3.1 (Disconnected edge) An edge (n, i) of a graph G is discon-
nected if its target succG(n, i) is unlabeled.

The next definition introduces the notion of what we call disconnected graph.
Roughly speaking, the disconnected graph associated to a graph G and a set of
edgesE is obtained by redirecting every edge in E (whether it is yet disconnected
or not) towards a new, unlabeled, target.
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Definition 3.2 (Disconnected graph) The disconnected graph associated to
a graph G and a set of edges E of G is the following graph D(G,E):

• ND(G,E) = NG + NE , where NE is made of one new node n[i] for each
edge (n, i) ∈ E,

• NΩ
D(G,E) = NΩ

G ,

• for each n ∈ NΩ
G : LD(G,E)(n) = LG(n),

• for each n ∈ NΩ
G and i ∈ {1, . . . , ar(n)}:

– if (n, i) 6∈ E then succD(G,E)(n, i) = succG(n, i),

– if (n, i) ∈ E then succD(G,E)(n, i) = n[i].

Definition 3.3 (Connection homomorphism) The connection homomorphism
associated to a graph G and a set of edges E of G is the homomorphism
δG,E : D(G,E)→ G such that:

• if n ∈ NG then δG,E(n) = n,

• if n[i] ∈ NE then δG,E(n[i]) = succG(n, i).

It is easy to check that δG,E is a graph homomorphism.

Definition 3.4 (Disconnected homomorphism) The disconnected graph ho-
momorphism associated to a graph homomorphism ϕ : G→ H and a set of edges
E of G is the homomorphism Dϕ,E : D(G,E)→ D(H,ϕ(E)) defined as follows:

• if n ∈ NG then Dϕ,E(n) = ϕ(n),

• if n[i] ∈ NE then Dϕ,E(n[i]) = ϕ(n)[i].

It is easy to check that Dϕ,E is a graph homomorphism.

Example 3.5 Consider the graph H of Example 2.5. Then the disconnected
graph associated to H and the set of edges {(a, 2); (c, 1)} is the following graph:

a : f

zzttttt
��

c : g

$$J
JJJJJ

��

d : •

b : • a[2] : • c[1] : • e : •

Note that even if edge (c, 1) is already disconnected in H it is redirected
towards a new unlabeled node,c[1], in D(H, {(a, 2); (c, 1)}).

Now if we consider the graph homomorphism ϕ : H → G defined in Exam-
ple 2.5, the disconnected graph homomorphismDϕ,{(a,2);(c,1)} : D(H, {(a, 2); (c, 1)})→
D(G, {(m, 2); (o, 1)}) is the mapping [a 7→ m; b 7→ n; c 7→ o; d 7→ n; e 7→ p; a[2] 7→
m[2]; c[1] 7→ o[1]]
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4 Data-structure rewriting

In this section we define data structure rewriting as a succession of rewrite steps.
A rewrite step is defined from a rewrite rule and a matching. A rewrite rule is
a span of graphs, i.e., a pair of graph homomorphisms with a common source:

L K
δoo ρ // R

A matching is a morphism of graphs: L
µ // G . There are two kinds of

rewrite steps.

• The first kind is called Local Redirection and Replacement Rewriting (LRR-
rewriting, for short). Its rôle is twofold: adding to G a copy of the instance
of the right-hand side R, and performing some local redirections of edges
specified by means of the rewrite rule.

• The second kind of rewrite steps is called Global Redirection Rewriting
(GR-Rewriting, for short). Its rôle consists in performing redirections: all
incoming edges of some node a in G are redirected to a node b.

We define LRR-rewriting and GR-rewriting in the two following subsections.
We use in both cases the double-pushout approach to define rewrite steps.

4.1 LRR-rewriting

Before defining LRR-rewrite rules and steps, we state first a technical result
about the existence of inverse pushouts in our setting.

Theorem 4.1 (An inverse pushout) Let µ : L → U be a graph homomor-
phism, E a set of edges of L, and let Dµ,E : D(L,E) → D(U, µ(E)) be the
disconnected graph homomorphism associated to µ and E. Then the following
square is a pushout in the category of graphs (Gr):

L

µ

��

D(L,E)

Dµ,E

��

δL,Eoo

U D(U, µ(E))
δU,µ(E)

oo

Proof. This result is an easy corollary of Theorem A.2. �

Definition 4.2 (Disconnecting pushout) Let µ : L→ U be a graph homo-
morphism and E a set of edges of L. The disconnecting pushout associated to
µ and E is the pushout from Theorem 4.1.
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It can be noted that the disconnecting pushout is not unique, in the sense
that there are generally several inverse pushouts of:

L

µ

��

D(L,E)
δL,Eoo

U

Before stating the next definition, it should be reminded that ND(L,E) =
NL +NE = NΩ

L +NX
L +NE .

Definition 4.3 (LRR-rewrite rule) A Local Redirection and Replacement Rewrite
rule (or a LRR-rewrite rule, for short) is a span of graph homomorphisms of
the form:

L D(L,E)
δL,Eoo ρ // R

where E is a set of edges of L, and where ρ(NX
L ) ⊆ NX

R and the restriction of
ρ to NX

L is injective.

Example 4.4 Consider the function add which adds an element to a circular
list. The span below defines a rewrite rule defining the function add in the case
where the circular list consists of one element (the case of lists of length greater
than one is given in Example 4.10).�

�

�

�
n : add

��

// m : cons

��

��

o : • p : •

L

�

�

�

�

m[2] : •

n : add

��

// m : cons

��

OO

o : • p : •

D(L,{(m,2)})

�

�

�

�

n : add

��

$$

q : cons

��

// m : cons

��

||

o : • p : •

R

�
δL,{(m,2)}

-
ρ

In this example we show how (local) edge redirection can be achieved through
edge disconnection. Since an element is added to the head of a circular list (of
length 1), one has to make the curve pointer (m, 2) to point to the new added
cell. For this we disconnect the edge (m, 2) in D(L, {(m, 2)}) in order to be able
to redirect it, thanks to an appropriate homomorphism ρ, to the new cell in R,
namely q. Here, ρ = [n 7→ n;m[2] 7→ q; · · ·]

One may also remark that graph R still has a node labelled by add. In this
paper we do not tackle the problem of garbage collection which has been treated
in a categorical way in e.g. [4].

Definition 4.5 (LRR-matching) A LRR-matching with respect to a LRR-

rewrite rule L D(L,E)
δL,Eoo ρ // R is a graph homomorphism µ : L → U

that is Ω-injective, which means that the restriction of the map µ to NΩ
G is

injective.
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Definition 4.6 (LRR-Rewrite step) Let r = ( L D(L,E)
δL,Eoo ρ // R )

be a rewrite rule, and µ : L → U a matching with respect to r. Then U
rewrites into V using rule r if there are graph homomorphisms ν : R→ V and
ρ′ : D(U, µ(E))→ V such that the following square is a pushout in the category
of graphs (Gr):

D(L,E)

Dµ,E

��

ρ // R

ν

��
D(U, µ(E))

ρ′
// V

Thus, a rewrite step corresponds to a double pushout in the category of
graphs:

L

µ

��

D(L,E)

Dµ,E

��

δL,Eoo ρ // R

ν

��
U D(U, µ(E))

δU,µ(E)

oo
ρ′

// V

Theorem 4.7 (Rewrite step is feasible) Let r be a rewrite rule, and µ :
L → U a matching with respect to r. Then U can be rewritten using rule r.
More precisely, the required pushout can be built as follows (the notations are
simplified by dropping E and µ(E)):

• the set of nodes of V is NV = (NR+ND(U))/ ∼, where ∼ is the equivalence
relation generated by Dµ(n) ∼ ρ(n) for each node n of D(L),

• the maps ν and ρ′, on the sets of nodes, are the inclusions of NR and
ND(U) in NR + ND(U), respectively, followed by the quotient map with
respect to ∼,

• NΩ
V is made of the classes modulo ∼ which contain at least one labeled

node, and a section π : NΩ
V → N

Ω
R +NΩ

D(U) of the quotient map is chosen,

which means that the class of π(n) is n, for each n ∈ NΩ
V ,

• for each n ∈ NΩ
V , the label of n is the label of π(n),

• for each n ∈ NΩ
V , the successors of n are the classes of the successors of

π(n).

Moreover, the resulting pushout does not depend on the choice of the section π.

Corollary 4.8 (A description of the labeled nodes) With the notations and
assumptions of Theorem 4.7, the representatives of the equivalence classes of
nodes of NR +ND(U) can be chosen in such a way that:

NΩ
V = (NΩ

U − µ(NΩ
L )) +NΩ

R .
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Proof. Both Theorem 4.7 and Corollary 4.8 are derived from Theorem A.4,
their proofs are given at the end of the appendix. �

Example 4.9 Here we consider the case of a non Ω-injective matching in order
to show that there may be no double pushout in such cases. Thus justifying our
restriction over acceptable matchings (see Definition 4.5).

In this example we identify two nodes of L labelled by g via the homomor-
phism µ, namely n1 and n2, to a single one, m. In the span we disconnect the
two edges coming from g’s and redirect them to two different nodes labeled by
different constants : b and c.This is done by the homomorphism ρ = id. Now, as
both edges have been merged by the matching in U , the second (right) pushout
cannot exist since a single edge cannot point to both b and c in the same time.
Note that this impossibility does not denote a limitation of our formalism.

L R

U

ρ

µ

�
�

�
�

n1 : g // n2 : g

��
n3 : •

?

�
�

�
�

n1 : g

��

n2 : g

��

n3 : •

n1[1] : • n2[1] : •

?

?

?�
�

�
�

n1 : g

��

n2 : g

��

n3 : •

n1[1] : b n2[1] : c

?�� ��m : g // o : a � -

�
�

�
�m : g // m[1] : • o : a

�
�
�
�X

Example 4.10 In this example we complete the definition of the addition of
an element to a circular list started in Example 4.4 where we gave a span for
the case of list of size 1. In Figure 1 we give the span for lists of size greater
than 1, as well as the application of the rule to a list of size 3.

Notice how the disconnection is actually used in order to redirect the pointer
(n6, 2). The homomorphisms of the bottom layer show that the disconnected
edge, pointing to the unlabeled node c4[2] is mapped to c1 to the left and to n8 to
the right. The mechanism of disconnection allows the categorical manipulation
of an edge.

The Ω-injectivity hypothesis is also useful in this rule since edges (n6, 2) and
(n3, 2) must be different, thus a list of size less than or equal to one cannot be
matched by this rule.
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U

L R

[n6[2] 7→ n8][n6[2] 7→ n3]

�

�

�

�

n2 : • n1 : add
2oo

1��

n6 : cons

1��
2

vvmmmmmmm

n4 : • n3 : consoo

��

n7 : •

n5 : •

�

#

"

 

!

n2 : • n1 : add
1oo

2 ��

n6 : cons

1��
2

��

n4 : • n3 : consoo

��

n7 : •

n5 : • n6[2] : •

-

�

�

�

�

n2 : • n8 : consoo

��

n1 : add
rr

vvmmmmmm

n4 : • n3 : consoo

��

n6 : cons

hhQQQQQQQ

1��
n5 : • n7 : •

?

[n1 7→ o n3 7→ c1

n6 7→ c4]

?

[n1 7→ o n3 7→ c1

n6 7→ c4]

?

[n1 7→ o n3 7→ c1

n6 7→ c4]

'

&

$

%
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1��

c1 : cons

OO

// c2 : cons

OO

zz
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1��
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��
p4 : 4 p3 : 3

�
[c4[2] 7→ c1]

'

&

$

%

p1 : 1 p2 : 2

o : add
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//

1��

c1 : cons

OO

// c2 : cons

OO

zz
m : 11 c4 : cons

2

oo

1��

c3 : consoo

��
c4[2] : • p4 : 4 p3 : 3

-
[c4[2] 7→ n8]

'

&

$

%
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c1 : cons

OO
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OO
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4.2 GR-Rewriting

Let U be graph and let a, b ∈ NU . we say that U rewrites into V using the

global redirection from a to b and write U
a→b
−→ V iff V is obtained from U by

redirecting all edges targeting node a to point towards node b. This kind of
rewriting is very useful when dealing with rooted term graphs (see, e.g. [4]).
We define below one GR-rewriting step following the double pushout approach.

Definition 4.11 (GR-rewrite rule) A Global Redirection rewrite rule (or a
GR-rewrite rule, for short) is a span of graph homomorphisms of the form:

P SW
λoo ρ // P

where

• P is made of two unlabeled nodes ar and pr,

• SW (switch graph) is made of three unlabeled nodes ar, pr and mr,

• λ(ar) = λ(mr) = ar and λ(pr) = pr,

• ρ(ar) = ar and ρ(pr) = ρ(mr) = pr.

Definition 4.12 (GR-matching) A GR-matching with respect to a GR-rewrite

rule P SW
λoo ρ // P is a graph homomorphism µ : P → U .

In order to define one GR-rewrite step, U
a→b
−→ V , we need first somme

technical definitions and properties we give below.

Definition 4.13 (Disconnected graph w.r.t. a node) Let G be a graph
and o a node of G. Let mr denote a node which is not in NG. The disconnected
graph associated to G and o is the following graph D̄(G, o):

• ND̄(G,o) = NG + {mr},

• NΩ
D̄(G,o)

= NΩ
G ,

• ∀n ∈ NΩ
G , LD̄(G,o)(n) = LG(n),

• ∀n ∈ NΩ
G , ∀i ∈ {1, . . . , ar(n)}, succG(n, i) = o⇒ succD̄(G,o)(n, i) = mr

• ∀n ∈ NΩ
G , ∀i ∈ {1, . . . , ar(n)}, succG(n, i) 6= o ⇒ succD̄(G,o)(n, i) =

succG(n, i)

Informally, D̄(G, o) is obtained from the graph G after redirecting all incom-
ing edges of node o to point to the new unlabeled node mr.
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Proposition 4.14 (Inverse pushout) Let U be a graph, P SW
λoo ρ // P

be a GR-rewrite rule, and µ : P → U a GR-matching. Let D̄µ : SW →
D̄(U, µ(ar)) be the homomorphism defined by D̄µ(ar) = µ(ar), D̄µ(pr) = µ(pr)
and D̄µ(mr) = mr. Let δµ : D̄(U, µ(ar)) → U be the homomorphism defined
by δµ(n) = n if n 6= mr and δµ(mr) = µ(ar). Then the following square is a
pushout in the category of graphs (Gr):

P

µ

��

SW

D̄µ

��

λoo

U D̄(U, µ(ar))
δµ

oo

Proof. This result is a direct consequence of Theorem A.2. �

Definition 4.15 (GR-rewrite step) Let U be a graph, r = P SW
λoo ρ // P

be a GR-rewrite rule, and µ : P → U be a GR-matching. Let D̄µ : SW →
D̄(U, µ(ar)) be the homomorphism defined by D̄µ(ar) = µ(ar), D̄µ(pr) = µ(pr)
and D̄µ(mr) = mr. Then U rewrites into V using rule r if there are graph
homomorphisms ν : P → V and ρ′ : D̄(U, µ(ar)) → V such that the following
square is a pushout in the category of graphs (Gr):

SW

D̄µ

��

ρ // P

ν

��
D̄(U, µ(ar))

ρ′
// V

Thus, a GR-rewrite step, U
µ(ar)→µ(pr)
−→ V , corresponds to a double pushout

in the category of graphs:

P

µ

��

SW

D̄µ

��

δµoo ρ // P

ν

��
U D(U, µ(ar))

δµ

oo
ρ′

// V

The construction of graph V is straightforward. It may be deduced from
Theorem A.4 given in the appendix.

Example 4.16 In this example we show how global redirection works. In the
graph G, given in Example 2.3, we want redirect all edges with target n towards
q. For this pupose, we define the homomorphism µ from P to G by mapping
appropriately the nodes ar (ante-rewriting), and pr (post-rewriting). I.e. in our
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case µ = [ar 7→ n; pr 7→ q]. Applying this on G, we get the following double
push-out:

�

�

�

�

m : f

{{xxx
xx

��
n : • o : goo // p : h

��{{www
ww

qq

q : • r : •

�

�

�

�

�

mr : • m : foo

��
n : • o : g

ddIIIIII
// p : h

��{{www
ww

qq

q : • r : •

-

�

�

�

�

m : f

��

  

n : • o : g

��

// p : h

��{{www
ww

qq

q : • r : •

? ? ?

�� ��ar : • pr : • �

�
�
�
�

mr : •

ar : • pr : •
-

�� ��ar : • pr : •

Notice how node mr (midrewriting) is used. It is mapped to n on the left
and to q on the right. Thus in the middle graph, mr allows to disconnect edges
targeting n in order to redirect them towards q.

Example 4.17 In this additional example, we give rewriting rules defining the
function length (written ♯) which computes the size of non-empty circular lists.
In this example every LRR-rewriting is followed by a GR-rewriting. That is why
we precise the global rewriting that should be performed after each LRR-rewrite
step.

The first rule simply introduces an auxiliary function, ♯b, which has two
arguments. The first one indicates the head of the list while the second one will
move along the list in order to measure it. We have the following span for ♯:�
�
�
�

n : cons

%%KKKKK // o : •

m : ♯

OO

p : •

oo

�
�
�
�

n : cons

%%KKKKK // o : •

m : ♯

OO

p : •

//

�

�

�

�

q : ♯b //

��

n : cons

��

��

m : ♯

99rrrrrr
p : •

o : •

together with the pair (m, q) for the global redirection.
Now we have two rules for ♯b. The first one considers the case where the

two arguments of ♯b are the same ; and thus the length of the list equals one
(succ(0)). Thus we have the following span:

�

�

�

�
m : ♯b

  // n : cons

yyrrr
rrr

��
p : • o : •

oo

�

�

�

�
m : ♯b

  // n : cons

yyrrr
rrr

��
p : • o : •

//

�

�

�

�

i : succ // j : 0

m : ♯b
  // n : cons

xxqqqqqq
��

p : • o : •

together with the pair (m, i) for the global redirection. Notice that in this
particular case we simply drop the input and replace it by a new graph as in

13



classical term rewrite systems, before performing the global redirection induced
by the pair (m, i).

The next rule defines ♯b when its arguments are different. Once again we
use the hypothesis of Ω-injectivity to ensure that both cons nodes cannot be
identified via matching.'

&

$

%

o2 : •

m : ♯b //

��

n2 : cons

��

OO

n1 : cons

''OOOOOO

��

p2 : •

p1 : • o1 : •

oo

'

&

$

%

m[2] : • o2 : •

m : ♯b

OO

��

n2 : cons

��

OO

n1 : cons

''OOOOOO

��

p2 : •

p1 : • o1 : •

//

'

&

$

%

i : succ

��

o2 : •

m : ♯b

77oooooo

��

n2 : cons

��

OO

n1 : cons

''OOOOOO

��

p2 : •

p1 : • o1 : •

together with the pair (m, i) for the global redirection. We let the reader

check that circular lists of size n actually reduce to

n
︷ ︸︸ ︷
succ(succ . . . (0)) by succes-

sive application of rewriting rules (LRR and GR rewrite steps).

5 Related Work

Term graph rewriting [5, 19, 6] have been mainly motivated by implementation
issues of functional programming languages. These motivations impact clearly
their definition.

In [15, 9] jungles, a representation of acyclic term graphs by means of hy-
pergraphs, have been investigated. We share with these proposals the use of
the double-pushout approach of rewriting. However, we are rather interested in
cyclic graphs.

In [5, 18, 10] cyclic term graph rewriting is considered using the algorithmic
way. Pointer redirection is limited to global redirection of all edges pointing to
the root of a redex by redirecting them to point to the root of the instance of the
right-hand side. In [4], Banach, inspired by features found in implementations
of declarative languages, proposed rewrite systems close to ours. We share the
same graphs and global redirection of pointers. However, Banach did not discuss
local redirections of pointers. We differ also in the way to express rewriting.
Rewriting steps in [4] are defined by using the notion of opfibration of a category
while our approach is based on double-pushouts.

The difference between our proposal to generalize term graph rewriting and
previous works comes from the motivation. Our aim is not the implementation
of declarative programming languages. It is rather the investigation of the ele-
mentary transformation rules of data-structures as occur in classical algorithms.
In such structures pointers play a key rôle that we tried to take into account by
proposing for instance redirections of specific edges within rewrite rules.

In [17], Habel and Plump proposed a kernel language for graph transfor-
mation. This language has been improved recently in [20]. Basic rules in this

14



framework are of the form L← K → R satisfying some conditions such as the
inclusion K ⊆ L. Unfortunately, our rewrite rules do not fulfill such condition
; particularly when performing local edge redirections. Furthermore, inverse
pushouts (or pushout complements) are not unique in our setting which is not
the case in [17, 20].

Recently, in [3] the authors are also interested in classical data-structures
built by using pointers. Their work is complementary to ours in the sense that
they are rather concerned by recognizing data-structure shapes by means of so
called Graph reduction specifications.

Last, but not least, there are yet some programming languages which provide
graph transformation features (see, e.g. [23, 13, 14, 21]). Our purpose in this
paper is to focus on formal definition of basic data-structure transformation
steps rather than building an entire programming language with suitable visual
syntax and appropriate evaluation strategies.

6 Conclusion

We defined two basic rewrite steps dedicated to data-structure rewriting. The
rewrite relationships induced by LRR-rewrite rules as well as GR-rewrite rules
over graphs are trickier than the classical ones over terms (trees). There was
no room in the present paper to discuss classical properties of the rewrite re-
lationship induced by the above definitions such as confluence and termination
or its extension to narrowing. However, our preliminary investigation shows
that confluence is not guaranted even for nonoverlapping rewrite systems, and
thus user-definable strategies are necessary when using all the power of data-
structure rewriting. In addition, integration of LRR and GR rewriting in one
step is also possible and can be helpful in describing some algorithms.

On the other hand, data-structures are better represented by means of graph-
ics (e.g. [21]). Our purpose in this paper was rather the definition of the basic
rewrite steps for data-structures. We intend to consider syntactical issue in a
future work.
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A Pushouts of graphs

Let Gr denote the category of graphs and Set the category of sets. The node
functor N : Gr → Set maps each graph G to its set of nodes NG, and each
graph homomorphism ϕ : G→ H to its underlying map on nodes ϕ : NG → NH .
As in the rest of the paper, this map is simply denoted ϕ, and this is not
ambiguous: indeed, if two graph homomorphisms ϕ, ψ : G → H are such that
their underlying maps are equal ϕ = ψ : NG → NH , then it follows directly from
the definition of graph homomorphisms that ϕ = ψ : G → H . In categorical
terms [1], this is expressed by the following result.

Proposition A.1 (Faithfulness) The functor N : Gr→ Set is faithful.

It is worth noting that this property does not hold for the “usual” directed
multigraphs, where the set of successors of a node is unordered.

It is well-known that the category Set has pushouts. On the contrary, the
category Gr does not have pushouts. For instance, let us consider a span of
graphs:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1 G2

17



where G0, G1 and G2 are made of only one node: n0 in G0 is unlabeled, n1 :a1

in G1 and n2 :a2 in G2, where a1 and a2 are distinct constants. This span has
no pushout, because there cannot be any commutative square of graphs based
on it.

Theorem A.2 below states a sufficient condition for a commutative square
of graphs to be a pushout, and Theorem A.4 states a sufficient condition for a
span of graphs to have a pushout, together with a construction of this pushout.

In the following, when Gi occurs as an index, it is replaced by i.

Theorem A.2 (Pushout of graphs from pushout of sets) If a square Γ
of the following form in the category of graphs:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1

ψ1
!!C

CC
C G2

ψ2
}}{{

{{

G3

is such that:

1. Γ is a commutative square in Gr,

2. N (Γ) is a pushout in Set,

3. and each n ∈ NΩ
3 is in ψi(NΩ

i ) for i = 1 or i = 2,

then Γ is a pushout in Gr.

Point (2) implies that each n ∈ N3 is the image of at least a node in G1 or
in G2, and point (3) adds that, if n is labeled, then it is the image of at least a
labeled node in G1 or in G2.
Proof. Let us consider a commutative square Γ′ in Gr of the form:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1

θ1 !!C
CC

C G2

θ2}}{{
{{

G4

Then N (Γ′) is a commutative square in Set, and since N (Γ) is a pushout in
Set, there is a unique map θ : N3 → N4 such that θ ◦ ψi = θi, for i = 1, 2.

N0
ϕ1

vvmmmmmmmmmm ϕ2

((QQQQQQQQQQ

N1

ψ1
!!D

DD
D θ1

**VVVVVVVVVVVVVVVV N2ψ2

tthhhhhhhhhhhhhhhh

θ2}}zz
zz

N3
θ

// N4

18



Let us now prove that θ actually is a graph homomorphism. According to
Definition 2.4, we have to prove that, for each labeled node n of G3, its image
n′ = θ(n) is a labeled node of G4, and that L4(n

′) = L3(n) and S4(n
′) =

θ∗(S3(n)).
So, let n ∈ NΩ

3 , and let n′ = θ(n) ∈ N4. ¿From our third assumption,
without loss of generality, n = ψ1(n1) for some n1 ∈ NΩ

1 . It follows that
θ1(n1) = θ(ψ1(n1)) = θ(n) = n′:

n = ψ1(n1) and n′ = θ1(n1) .

Since n1 is labeled and θ1 is a graph homomorphism, the node n′ is labeled.
Since ψ1 and θ1 are graph homomorphisms, L3(n) = L1(n1) and L4(n

′) =
L1(n1), thus L3(n) = L4(n

′), as required for labels.
Since ψ1 and θ1 are graph homomorphisms, S3(n) = ψ∗

1(S1(n1)) and S4(n
′) =

θ1
∗(S1(n1)). So, θ∗(S3(n)) = θ∗(ψ∗

1(S1(n1))) = θ1
∗(S1(n1) = S4(n

′), as re-
quired for successors.

This proves that θ : G3 → G4 is a graph homomorphism. Then, from the
faithfulness of the functor N (Proposition A.1), for i ∈ {1, 2}, the equality of the
underlying maps θ ◦ψi = θi : Ni → N4 is an equality of graph homomorphisms:
θ ◦ ψi = θi : Gi → G4.

Now, let θ′ : G3 → G4 be a graph homomorphism such that θ′ ◦ ψi = θi
for i ∈ {1, 2}. Since N (Γ) is a pushout in Set, the underlying maps are equal:
θ = θ′ : N3 → N4. Then, it follows from the faithfulness of the functor N that
the graph homomorphisms are equal: θ = θ′ : G3 → G4. �

For each span of graphs Σ:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1 G2

let ∼ denote the equivalence relation on the disjoint union N1 +N2 generated
by:

ϕ1(n0) ∼ ϕ2(n0) for all n0 ∈ N0 ,

let N3 be the quotient set N3 = (N1 + N2)/ ∼, and ψ : N1 + N2 → N3 the
quotient map. Two nodes n, n′ in N1 +N2 are called equivalent if n ∼ n′. For
i ∈ {1, 2}, let ψi : Ni → N3 be made of the inclusion of Ni in N1 +N2 followed
by ψ. Then, it is well-known that the square of sets:

N0
ϕ1

}}zz
zz ϕ2

!!D
DD

D

N1

ψ1
!!D

DD
D N2

ψ2
}}zz

zz

N3

is a pushout, which can be called canonical.
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Definition A.3 (Strongly labeled span of graphs) A span of graphs:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1 G2

is strongly labeled if for each n3 ∈ (N1 +N2)/ ∼:

• all the labeled nodes in the class n3 have the same label,

• and all the labeled nodes in the class n3 have equivalent successors.

Theorem A.4 (Pushout of a strongly labeled span of graphs) A strongly
labeled span of graphs has a pushout:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1

ψ1
!!C

CC
C G2

ψ2
}}{{

{{

G3

which can be built as follows:

• the underlying square of sets is the canonical pushout square, so that N3 =
(N1 +N2)/ ∼,

• NΩ
3 is made of the classes of N1 +N2 (modulo ∼) which contain at least

one labeled node,

• for each n3 ∈ NΩ
3 , the label of n3 is the label of any labeled node in the

class n3,

• for each n3 ∈ NΩ
3 , the successors of n3 are the classes of the successors of

any labeled node in the class n3.

Proof. It follows easily from Theorem A.2 that this square is a pushout of
graphs. �

Proof of Theorem 4.7. (the notations are simplified by dropping E and µ(E)).
Let us prove that the following span of graphs is strongly labeled:

D(L)
Dµ

zzuuu
uu ρ

""D
DD

DD

D(U) R

Then, Theorem 4.7 derives easily from Theorem A.4.
Let n, n′ ∈ NΩ

R +NΩ
D(U) be distinct equivalent nodes. We have to prove that

n and n′ have the same label and that their successors are pairwise equivalent.
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¿From the definition of the equivalence relation ∼, there is a chain of rela-
tions:

p15

zzuuu
uuu

�
  B

BB
BB

p2<

~~|||
|| �

!!B
BB

BB
. . . . . . pk7

{{www
ww 


%%JJJJJ

n = n0 n1 n2 . . . nk−1 nk = n′

for some k ≥ 1, where each pi is in ND(L), each ni in ND(U) + NR, and the
mappings are either Dµ or ρ. Let us assume that this chain has minimal length,
among similar chains from n to n′. Then:

• if pi = pj for some i < j, the part of the chain between pi and pj can be
dropped, giving rise to a shorter chain from n to n′: hence all the pi’s are
distinct;

• if ni−1 and ni are both in NR, then ni−1 = ρ(pi) = ni, and the part of the
chain between ni−1 and ni can be dropped, giving rise to a shorter chain
from n to n′: hence ni−1 and ni cannot be both in NR;

• similarly, ni−1 and ni cannot be both in ND(U).

If all the nodes in this chain are labeled, then, since Dµ and ρ are graph
homomorphisms, all nodes in the chain have the same label and have pairwise
equivalent successors, so that the result follows.

We now prove that all the nodes in the chain are labeled, by contradiction.
Let us assume that at least one node in the chain is unlabeled. Since ρ and Dµ

are graph homomorphisms, the first unlabeled node (starting from n) is some
pi. Let us focus on:

pi7

{{www
ww �

  B
BB

B

ni−1 ni

where ni−1 is labeled and pi is unlabeled.
It should be reminded that:

• ND(L) = NL+NE and ND(U) = NU+µ(NE), with Dµ(NL) ⊆ NU and Dµ

injective on NE (the last point comes from the fact that µ is Ω-injective);

• ρ(NX
L ) ⊆ NX

R and the restriction of ρ toNX
L is injective, since L D(L)

δLoo ρ // R
is a rewrite rule.

Case 1: ni−1 is a node of R. Then ni−1 ∈ NΩ
R . Since ρ(NX

L ) ⊆ NX
R and

pi is unlabeled, it follows that pi ∈ NE . Then, since Dµ maps NE to µ(NE),
ni ∈ µ(NE). Then k > i, since the last node in the chain is labeled. Since Dµ is
injective on NE , and maps NL to NU , it follows that pi+1 = ni. So, pi = pi+1,
which is impossible since the chain is minimal.

pi ∈ NE.

wwnnnnnn �
((PPPPPPP

pi+1 ∈ NE-

vvmmmmmmm

ni−1 ∈ NΩ
R ni ∈ µ(NE)

21



Case 2: ni−1 is a node of D(U). Then ni−1 ∈ NΩ
U . Since Dµ maps NE to

µ(NE) and Dµ(NL) on NU , it follows that pi ∈ NX
L . Since ρ maps NX

L to NX
R ,

it follows that ni ∈ NX
R . Then k > i, since the last node in the chain is labeled.

Then pi+1 ∈ NX
L + NE . If pi+1 ∈ NE , a contradiction follows as in case 1.

Hence, pi+1 ∈ N
X
L . Since the restriction of ρ to NX

L is injective, pi+1 = pi,
which is also impossible since the chain is minimal.

pi ∈ NX
L.

wwnnnnnn �
''NNN

NNN
pi+1 ∈ NX

L +NE,

uulllllll

ni−1 ∈ NΩ
U ni ∈ NX

R

Finally, it has been proved that all the nodes in this chain are labeled, which
concludes the proof. �

Proof of Corollary 4.8. We use the proof of theorem 4.7, as well as the notations
in this proof. Let n ∈ NΩ

V , we have to choose a representative r(n) of n. It
should be reminded that NΩ

D(U) = NΩ
U .

(R.) If there is a node nR ∈ NΩ
R such that n = ν(nR), let us prove that it

is unique. Let n′
R ∈ N

Ω
R be another node such that n = ν(n′

R), i.e., such that
nR ∼ n′

R. Let us consider a chain with minimal length k ≥ 1 from nR(= n0) to
n′
R(= nk); we know that all the nodes in this chain are labeled. Since n0 and
n1 cannot be both in NR, it follows that n1 ∈ NΩ

U , so that p0, p1 ∈ NΩ
L and

n1 = µ(p0) = µ(p1). The Ω-injectivity of µ implies that p0 = p1, but this is
impossible. So, we have proved that νΩ : NΩ

R → N
Ω
V is injective, and we define

r(n) = nR.
(U.) If there is no node nR ∈ NΩ

R such that n = ν(nR), then there is a node
nU ∈ NΩ

U such that n = ρ′(nU ). Let us prove that it is unique. Let n′
U ∈ N

Ω
U

be another node such that n = ρ′(n′
U ), i.e., such that nU ∼ n′

U . Let us consider
a chain with minimal length k ≥ 1 from nU (= n0) to n′

U (= nk); we know that
all the nodes in this chain are labeled. Since n0 and n1 cannot be both in NU ,
it follows that n1 ∈ NΩ

R , which contradicts our assumption: there is no node

nR ∈ NΩ
R such that n = ν(nR). Let ÑΩ

U denote the subset of NΩ
U made of the

nodes which are not equivalent to any node in NΩ
R . So, we have proved that the

restriction of ρ′
Ω

: NΩ
D(U) → N

Ω
V to ÑΩ

U is injective, and we define r(n) = nU .

(L.) We still have to prove that ÑΩ
U = NΩ

U − µ(NΩ
L ), i.e., that a node

nU ∈ N
Ω
U is equivalent to a node nR ∈ N

Ω
R if and only if there is node nL ∈ N

Ω
L

such that nU = µ(nL).
Clearly, if nL ∈ NΩ

L and nU = µ(nL), let nR = ρ(nL), then nR ∈ NΩ
R and

nU ∼ nR.
Now, let nU ∼ nR for some nU ∈ NΩ

U and nR ∈ NΩ
R . Let us consider a chain

with minimal length k ≥ 1 from nR(= n0) to nU (= nk); we know that all the
nodes in this chain are labeled. If k > 1, then the Ω-injectivity of µ leads
to a contradiction, as in part (R) of the proof. Hence k = 1, which means
that p1 ∈ N

Ω
L is such that nR = ρ(p1) and nU = µ(p1), so that there is node

nL = p1 ∈ NΩ
L such that nU = µ(nL).
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This concludes the proof that:

NΩ
V = (NΩ

U − µ(NΩ
L )) +NΩ

R .

�
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