Subtypes and Subsorts
in Overloaded Specifications

D. Duval, H. Kirchner, C. Lair

Rapport de Recherche IMAG-LMC
n° 1058 1
Septembre 2003

Subtypes and Subsorts
in Overloaded Specifications

Dominique DUVAL
LMC-IMAG, Université Joseph Fourier, Grenoble
Dominique.Duval@imag.fr

Hélene KIRCHNER
LORIA, Nancy

Helene.Kirchner@loria.fr

Christian LAIR

E’quipe Catégories et Structures, Université Denis Diderot, Paris
lairchrist@aol.com

September 10, 2003

Abstract.

A new point of view about overloading is introduced: overloaded specifications are considered as
morphisms of ordinary specifications. Then it is proven that some major issues about overload-
ing are quite simple to express and to study with this point of view. Moreover, the interaction
of overloading with subtyping and subsorting gets clarified. Then, in the framework of diagram-
matic specifications, it is shown that overloaded specifications and ordinary specifications can
be unified, and that this study can be generalized.

1 Introduction

This paper deals with overloading, in the sense that distinct operations are allowed to share the
same name. The focus is on specification concepts, rather than implementation issues.

A specification is a presentation of a logical theory. It is made of sort symbols, called sorts,
and operation symbols, called operations, together with azioms. A sort is interpreted as a set of
values, and an operation as a map between sets of values, which has to satisfy the axioms. In
addition, subsorts are interpreted as subsets.

On the other hand, in simply typed lambda calculus, there are type symbols, called types, and
function symbols, called functions. A type is interpreted as a set of values, and a function as a
map between sets of values. In addition, subtypes do not have to be interpreted as subsets.

In this paper, the words “sorts” and “operations” are used rather than “types” and “functions”,
but “subsorts” and “subtypes” remain distinct notions.

There is overloading as soon as several operations have the same name. In this paper, the
operations and their names are considered as distinct entities. More precisely, the names of the
operations are themselves considered as operations in another specification, so that the fact of
naming operations becomes a morphism of specifications. Hence, there is overloading as soon

as several operations get identified by this naming morphism.

It should be emphasized that the specification which is made of the names is built mainly for
syntactic purposes: its models are usually irrelevant.

Two semantics, at least, can be associated with overloading, depending on whether overriding is
allowed, or not. Indeed, a major issue about overloading is to choose the “right” interpretation,
when several terms share the same name. If overriding is allowed, then several terms with the
same name and the same profile may have distinct interpretations. Otherwise, such terms must
get identified: in this paper, this is called the identification rule. Both semantics may coincide,
under restrictive assumptions.

A subtype X of a type Y is such that a value of type X can be used in any context in which a value
of type Y is expected. This is expressed as a coercion, or an implicit conversion, from X to Y,
i.e., as an operation which does not appear in the notations. With our definition of overloading,
the coercions are the operations such that their name is an identity. The interpretation of this
operation can be any map, it is not required to be injective (i.e., an embedding).

The property of subtype is expressed by the subtyping rule, which can be used either when
overriding is allowed, or in combination with the identification rule.

A subsort X of asortY is such that the interpretation of X is a subset of the interpretation of Y.
This is expressed as a sort inclusion from X to Y, i.e., as a coercion such that its interpretation
is injective. In an overloaded specification, some coercions can be declared to be sort inclusions.
When the semantics of overloading satisfies the identification rule, it is required that the sort
inclusions satisfy the retraction rule. This ensures that their interpretation is an injective map,
and provides the required restrictions of operations, without involving any partial retraction
operation.

In section 2, overloading, subtypes and subsorts are studied in the context of equational speci-
fications, according to these lines.

However, looking at overloaded specifications as morphisms of ordinary specifications is not
completely satisfactory: it would be better to consider that all the specifications are of the
same nature. It happens that both equational and overloaded specifications are diagrammatic
specifications, in the sense of [Duval and Lair 2002].

Hence, overloading, subtypes and subsorts are revisited in section 3 in the framework of di-
agrammatic specifications. In addition, this point of view is not restricted to the equational
specifications. For instance, an application to subtyping of power types is presented.

This work is motivated by the decorated equational logic of [Hintermeier et al. 1998]. Other
approaches are presented in the survey paper [Mosses 1992], or more recently in [Castagna 1995],
[Bouhoula et al. 2000], [Casl 2003], among others.

2 Overloaded specifications as morphisms of specifications

In this section, overloaded equational specifications are considered as morphisms of equational
specifications. In part 2.1, some notions about equational specifications are reminded. Then
overloaded specifications and their plain semantics are defined in part 2.2, while the resolved
semantics is described in part 2.3. Then subtyping is studied in part 2.4 for its plain semantics
and in part 2.5 for its resolved semantics. Finally, subsorts are added in part 2.6, and the
resolved semantics is enriched accordingly.

2.1 Equational specifications and their semantics
Equational specifications

An equational signature is made of sorts and operations. Sorts are symbols like X, Y,...,
operations are symbols like f, ¢,..., so that distinct operations are distinct symbols. Each
operation f has a profile Xy,..., X;; — Y, made of its source Xy, ..., X} and its target Y; this
is denoted f: Xq,..., Xy — Y. When k£ = 0, the operation f is called a constant, it is denoted
f:— X, orjust f:X.

The terms of an equational signature are usually defined inductively, from sorted variables and
operations; let us call them the logical terms. In this paper, another classical definition of terms
is used, which avoids variables. From this point of view, the profile of a term is made of its
source and target, which both are lists of sorts. The terms with target a list of length one can
be identified to the logical terms. Here, the same kind of symbols X, Y,..., are used for sorts
and for lists of sorts, and the list made of one sort X is also denoted X. Terms are defined
inductively as follows, together with their profile.

— Each operation f: X — Y is a term (which corresponds to the logical term f(z), where z is
a variable of sort X).

— For each list of sorts Y, there is a term idy : Y — Y, called the identity of Y (which
corresponds to a logical term y, where y is any variable of sort V).

—Ift: X — Y and u : Y — Z are consecutive terms, then uwot: X — 7 is a term.

—Ift;: X — Y, is a term, for each i from 1 to n, then (¢1,...,%,) : X — Y7,...,Y, is a term
(so that, for each operation ¢ : Y1,...,Y, — Z, the term go (¢1,...,t,) : X — Z corresponds
to the logical term ¢(t1,...,%,)).

A term is closed when its source is the empty list of sorts. In the examples, when dealing with
closed terms, the logical notation g(t1,...,t,) will be used instead of g o (¢1,...,%,), and g(¢)
instead of g ot.

An equational specification is made of an equational signature together with equations. An
equation is made of two parallel terms ¢; and t,, i.e., two terms with the same profile; it is
written ¢; = ¢,.

It should be noted that, with these definitions, there is no kind of overloading in an equational
specification. The overloading will be introduced in part 2.2.

Equational theories

The equational theory I'(S) which is generated by an equational specification S can be considered
as an equational specification itself: its sorts are the lists of sorts of S, its operations are the
terms of S, and its equations are all the congruences which are generated from the equations of
S (we choose the following terminology: each element of the congruence relation in an equational
theory is called a congruence).

As usual, a deduction rule is a property which does not have to be satisfied in the specification .5,
but which has to be satisfied in the generated theory F'(S). Several deduction rules are used in
order to derive the theory F'(S) from the specification S, let us call them the equational rules.

Two major equational rules, for building the congruences, are the substitution rule and the
replacement rule:
ifuyy=u,:Y —72,t: X —Yandv:7Z — U,

then yjot =u,0t: X — Zandvouy =vou,:Y — U.

Other equational rules deal with identities:

ift: X — Y thentoidy =¢ and idy ot = ¢.

Another equational rule is the associativity of composition:

ift: X —Y,u:Y — Zandv:Z — W, then (vou)ot=vo(uot),
so that this term can be simply written vouot.

The generation of the congruence relation is a major issue about equational specifications, which
can be solved with the help of rewrite rules. The generalization of rewrite rules to subsorts is
addressed in [Hintermeier et al. 1998].

Morphisms and models

A morphism of equational specifications ¢ : T — S maps the sorts of T to sorts (or lists of
sorts) of S, the operations of T" to operations (or terms) of S, in such a way that the profiles are
preserved, and that the equations of 7" are mapped to equations (or congruences) of S. Such a
morphism is canonically extended to the theories: F'(¢) : F(T') — F(S5).

A (set-valued) model M of an equational signature, often called an algebra, interprets each sort
X as a set M(X) and each operation f : Xy,..., Xy — Y as a map M(f) : M(Xq) x --- X
M(Xy) — M(Y). Then, the interpretation of a term is defined recursively: an identity idy
is interpreted as the identity map idas(y), such that y — y; a term w o ¢ is interpreted as the
composed map M (u)oM (t),such that 2 — M (u)(M(t)(z)); and a term (¢4,...,%,) is interpreted
as the map (M (t1),..., M(t,)), such that z — (M(t1)(z),..., M(t,)(z)).

A (set-valued) model M of an equational specification S is a model of the signature of S such
that each equation ¢; = ¢, : X1,..., X — Y of S becomes an equality M (t;)(z1,...,25) =
M(t.)(zq,...,2g) for all (zq,...,z) in the set M(X;) X X M (Xy). There is a straightforward
notion of morphism of models of S.

Let M be a model of S, then all the congruences which are generated from the equations of S
become equalities in M: this is the soundness property of equational logic.

The theory and the models of S are nicely related: the semantics of S is sound and com-
plete, and the closed terms of S, modulo the congruence relation, form an initial model of S
[Goguen et al. 1978].

Extensions by definition

In addition, an equational specification S can be extended by definition, which means that a new
operation f is introduced, together with a defining equation, i.e. an equation of the form f =1t
where ¢ is a term which does not involve f. Such an extension does not modify the models of S,
and it does not modify the theory of S, up to congruence.

The illustration of specifications and rules

An equational specification S can easily be illustrated by ways of a directed graph: the points
of the graph are the sorts (and some lists of sorts) of S, its arrows are the operations (and
some terms) of S; moreover, an equation t; = ¢, : X — Y of S can be illustrated by adding a

symbol “=” to the graph:

This can also be used for illustrating the deduction rules. Let us look, for instance, at the rule:

Ift: X —Y and v:Y — 7 are terms of S,
then wot: X — 7 is a term of S.

Its hypothesis “¢ : X — Y and u : Y — Z are terms of S” corresponds to an equational
specification H:

X Y Z

Similarly, its conclusion “wot: X — Z is a term of S” corresponds to an equational specifica-
tion C:

uot
X=—Y— =7

There is a straightforward morphism from H to C, and the rule means that each occurrence
of H in an equational specification S can be extended as an occurrence of C in the equational
theory F'(S). This is illustrated with the help of a dashed arrow:

uot
X ——Y > C'/\Z

More generally, any deduction rule:

H

C

can be illustrated in a similar way, after replacing C by the conjunction H A C, if necessary:

~

T c

A deeper motivation for such illustrations can be found in [Duval et al. 2003].

2.2 Overloaded specifications and their plain semantics
An example

An overloaded specification is not an equational specification, strictly speaking. In an informal
way, an overloaded specification is “an equational specification where several operations are
allowed to share the same name”. Let us first look at a detailed simple example.

Example 2.1 In order to deal simultaneously with the set N of integers and with the set B
of booleans, the following overloaded specification Z; can be used. It is made of two sorts N
and B, two overloaded constants z and u, two non-overloaded unary operations s and n, two
overloaded binary operations a and m, and some equations:

Overloaded specification /i:
Sorts:
N, B.

Operations:
z,2u:N,z,u:B,s:N — N,n: B — B,
a,m: NN —N,a,m:B,B— B.

Equations:
s(z)=u:N,n(z) =u: B, n(u) =z: B,
a(zyu)=u:N,a(z,u) =u: B, a(u,u)=u:B, ...

~ 1l

The interpretation we have in mind maps the sorts V and B to the sets N and B, the constant
operations z and u to the integers 0 and 1 in N and to the booleans 0 (or f, for false) and 1 (or
t, for true) in B, the unary operation s to the successor map succ of N, the unary operation n
to the negation = in B, the binary operations @ and m to the addition + and multiplication X
of N and to the disjunction 4 (or V) and conjunction x (or A) of B.

Two distinct equational specifications T} and 57 can be associated to 77, as follows.

In the equational specification T}, the overloading is eliminated by giving distinct names to

distinct operations:

Equational specification 77:
Sorts:
N, B.
Operations:
zn,uN N, zp,up: B, sy : N — N, ng: B — B,
any,my:N,N— N,ap,mp:B,B — B.
Equations:
SN(ZN) = UnN, TLB(ZB) = upg, nB(uB) = ZB,
aN(zN,uN) = UnN, CLB(ZB,UB) =up, CLB(UB,UB) =UB, ...

SN

A

Sig(T1) - % N mfjv N,N
X B ‘* BB
U mp

npB

In the equational specification Sy, the overloading is eliminated by identifying the operations
which have the same name. For instance, both zx : NV and zp : B get identified as a unique
operation z : X, so that the sorts NV and B also get identified as a unique sort X:

Equational specification Sy:
Sort:
X.
Operations:
zu: X,s,n: X — X,
a,m: X, X — X.

Equations:
s(z) = u, n(z) = u, n(u) = z,
a(z,u) = u, a(z,u) = u, a(u,u) = u, ...

Let (; : 7 — S; be the morphism which maps N and B to X, zy and zp to z, and so on.
Then T4, S7 and {4 are determined from Z;. Conversely, Z; can be recovered from 77, S and
(1: indeed, Z; is a copy of T} where the names of the operations are modified as follows: if f’
is an operation of 77, its name in Z; is the image (1 (f’) of f/ via (;.

Overloaded specifications
The previous example suggests the following definition:

Definition 2.2
An overloaded equational specification is a morphism of equational specifications (: T — S.

In this section, an overloaded equational specification is called simply an overloaded specification.

Usually, in an overloaded specification, there is at most one operation with a given name and a
given profile. Then, as in example 2.1, it is non-ambiguous to represent an overloaded specifi-
cation (: T — S as a copy of T where each operation is named according to its image in S.
Indeed, f: X' — Y’ is equal to f: X" — Y" if and only if X' = X" and Y/ =Y.

Hence, graphically, our representation of an overloaded specification is the same one as usual.
However, by defining an overloaded specification as a morphism of ordinary specifications, we
avoid some ambiguities and we get a clearer view about the issues of overloading.

At first glance, the semantics of ¢ is determined by T, while S is a simplified syntactic view of
T, which can be used in order to organize the parsing in two steps: first on the names (i.e., in
S), then on T'. Indeed, usually S is much simpler than 7. For instance, in example 2.1, S; deals
only with the arity issues (i.e., the number of arguments), while 77 adds the typing information.

In this paper, the following systematic terminology is used:

Definition 2.3 The sorts, operations and equations of { : T — S are those of T. Their name
is their image in S via (. Two operations are homonymous if they have the same name. An
operation overloads another one when both are homonymous.

This terminology is extended to terms and congruences. However, it will be seen that there can
be more terms and congruences in ¢ than in T, according to the chosen semantics for (.

Here, this terminology is chosen for its coherence. But many other choices can be found, for
instance:

—in [Castagna 1995]: a function of { is an operation of S, and the operations of 7" with a given
name f are the branches of f;

— in [Hintermeier et al. 1998]: a term is a term of S, and a decorated term is a term of T’; the
decoration of a term ¢ (of S) is made of the targets of the terms (of 7') with name ¢; a term ¢
(of S) exists if is the name of at least one term (of 7); in addition, decorated rewrite rules are
used in order to generate the congruence relation of 7T’

—in [Bouhoula et al. 2000]: a sort of ¢ is indeed a sort of 7', and its name in S is called its kind;
— in [Bruce 2002]: an operation of (is indeed an operation of 7', and its name is called an
overloaded operator name;

—in [Casl 2003]: an operation of ¢ is indeed an operation of T, and its name is made of its name
in S together with its profile, so that the “same name, same thing” principle for operations
means that there is at most one operation with a given name and a given profile.

The plain semantics of an overloaded specification

The previous example also suggests that the semantics of (is the semantics of T. Actually, this
is only one of the possible semantics of {, we call it the plain semantics. This semantics allows
the overridding of operations: no relation is required between the interpretations of two terms
with the same name.

Definition 2.4 The plain models of an overloaded equational specification { : T — S are the
models of the equational specification T.

Since an overloaded specification is a morphism of equational specifications ¢ : T — S, it
generates, from the equational rules, a morphism of equational theories F'(¢) : F(T) — F(S5).

Definition 2.5 The plain theory of an overloaded specification ¢ is F(().

Proposition 2.6 The plain semantics of { is sound and complete. With respect to the plain
semantics, the closed terms of (, modulo the congruence relation, form an initial model of C.

Proof. Since the plain semantics of (is the equational semantics of T, this result follows
immediately from the corresponding result about equational specifications. [

Example 2.7 In example 2.1, with respect to the plain semantics:

— the term sy (zy) is a term of ; with name s(z), and sy (zny) = un is an equation of {; with
name s(z) = u,

— the term s(z) of Sy it the name of exactly one term sy (zn) of ¢y,

— the term a(u, u) of Sy is the name of two terms an (un, un) and ag(up,up) of (1: these terms
are homonymous,

— the term s(n(z)) of Sy is not the name of any term of ¢y,

— the equation s(z) = u of Sy is the name of exactly one equation sy (zn) = un of (1,

— the equation a(z, u) = u of S is the name of two equations an (z2x, un) = uy and ag(zp,uB) =
upg of (y: these equations are homonymous,

— the congruence s(z) = n(z) of Sy, which is derived from s(z) = u and n(z) = u, is not the
name of any congruence of (.

The following interpretation Mj is a plain model of (;:

Plain model M, of (i:
Interpretation of the sorts:

M(N) =N, M,(B) =B.
Interpretation of the operations:

MI(AN) =0¢€ N Ml(UN) =1€ N

(ZB)—O—fE]B Ml(uB)—l—tE]B

M, (sn) = succ : N — N, My(ng) =—-:B — B,
Mi(ay)=+:N? — N, Mj(mpy) = x : N2 — N,
Mi(ag)=+=V:B* — B, Mi(mg) = x =A:B* — B.

Example 2.8 In order to deal with the set N/2 of integers modulo 2 rather than the set N
of naturals, 7} is enriched with the equations sy(unx) = zny and an(un,uny) = zy. Hence
Sy is enriched with the equations s(u) = z and a(u,u) = z. This leads to a new overloaded
specification (3 : T — S. It follows from both equations a(u,u) = u and a(u,u) = z in S
that the congruence u = z can be derived in S;. In T3, there is an equation ag(up,ug) = up
with name a(u,u) = u, and an equation ay(un,un) = zy with name a(u,u) = z, but there is
no congruence with name « = z. Hence, there is no congruence of {3 with name u = z.

The following interpretation My, where succy denotes the successor map modulo 2, is a plain

model of (5:

Plain model M, of Ti:
Interpretation of the sorts:

M,(N) =N/2, My(B) =B.
Interpretation of the operations:

MQ(AN) =0¢€N/2, My(uny) =1 € N/2,

(ZB)—O—fE]B MQ(UB)—l—tE]B

M;(sn) = suce : N/2—>N/2 M;(ng) =—-:B — B,
My(an) = + 1 (N/2)2 — N/2, My(my) = x 1 (N/2)? — N/2,
Ms(ap) =

ap) =+ =V :B? — B, My(mpg) =x =A:B> — B.

2.3 The name-driven semantics of overloaded specifications
The disambiguation question
One major issue about overloading is the following disambiguation question:

If there are several homonymous parallel terms,
which one is the “right” one?

The overloading is resolved when an answer can be given to this question.

Example 2.9 In example 2.1, such a situation cannot occur: two homonymous terms of T} may
have the same source, but not the same target, so that they cannot be parallel. For instance,
the terms an(zn, 2x) and ag(zg, zg) have the same name a(z, z), the same source (the empty
list of sorts), but they have different targets, namely N and B.

Example 2.10 Let us enrich the overloaded specification (3 : Ty —> S5, from example 2.8, in
order to deal with equalities as operations in the specification. For this purpose, two operations
eqy : NyN — B and eqg : B, B — B are added to T3. This leads to a new overloaded
specification (3 : Ts —> S3. The model M; of T} is extended as a model M3 of T3 by interpreting
eqy and eqg as the equality on N and B, respectively.

Then, both terms eqy(an(un,un),zn) : B and eqg(ap(up,us),25) : B of T3 are parallel and
have the same name eq(a(u,u), z), but they are not congruent in 75. Indeed in M5 they have
distinct interpretations, since 1 +1 =0 is true in N/2 and false in B.

in (3 : (a(uu) 2 N.N o in M3 : ©0.0) (N/2)? »
\B / 2 \B
(alwm) 2™ p g T hﬂy /

The identification rule
The disambiguation question can be solved by prescribing the following identification rule.
Definition 2.11 Let (: T — S be an overloaded specification. The identification rule is:

If two parallel terms ¢’ and ¢’ are homonymous,
then t' = ¢".

This rule can be illustrated as:

t
X' Yy’)/ > CX”
t

Then, homonymous parallel terms always have the same interpretation, so that any of them is
“as good as” any other.

Iy =

Y/

o~

Usually, ¢ is built in such a way that distinct parallel operations do not have the same name,
but this becomes false for terms.

10

The diamond example

The basic example for studying the disambiguation question is the following diamond situation:

¢: \
/

)(I

which means that:
T S Xty tsy

Z/

\/ /\

/
\

where (maps t', t” to t, and «/, u” to w.

Then there are two terms of ¢ with name w ot and profile X/ — 7/, which are not congruent
in 7. Indeed, it is easy to find a model of 7" where the interpretations of u’ o ¢’ and u” o ¢" are
distinct (see example 2.10).

This can be stated as follows: under the easily-checked assumption that there is at most one
operation with a given name and a given profile in {, the operations are easily disambiguated
by their name and profile, but this does not hold for terms. In this example, the notation
wot: X' — Z' is ambiguous, it gets disambiguated as (v : Y — Z') o (t : X' — Y’) or
(u:Y"—ZNo(t: X' —Y").

Now, let us build a new overloaded specification (= : T= — S, where T= is T together with
the equation ' ot' = u o t":

=

/\
\/

In any model of 7=, both terms with name uo¢ and profile X’ — Z’ have the same interpreta-
tion. The models of (= are the models M of ¢ such that M (u')o M(t') = M (u") o M (t"). Then,
at the specification level, the ambiguity among both terms u ot : X’ — Z’ does not matter.

The name-driven semantics of an overloaded specification

The identification rule is used now, in order to severely modify the semantics of overloaded
specifications.

Definition 2.12 The name-driven models of an overloaded equational specification { : T — S
are the models M of the equational specification T such that, moreover, M (t') = M (") as soon
as t' and ¢” are two parallel homonymous terms of (.

11

Let (: T — S be an overloaded specification. By applying the equational and identification
rules to ¢, a morphism of equational theories I'=({) : T'= — F(S) is generated, which satisfies
the identification property. The equational theory 7= differs from F(7T'): it has more equations,

and it depends on the whole ¢ (not only on 7).

Definition 2.13 The name-driven theory of an overloaded specification ¢ is F'=(().

Then, it is easy to check that the name-driven models of { are the models of the equational
specification T=. However, as in example 2.16, 7= can be infinite even when (is finite.

The name-driven semantics of { is usually fairly different from its plain semantics:

Proposition 2.14 With respect to the plain models of {, the identification rule is unsound.

Proof. 1t can happen that a plain model of (does not satisfy the congruence rule: this does
happen in the diamond example. O

Example 2.15 In the overloaded specification (3 : T35 — S5 from example 2.10, both terms
eqn(an(un,un),zy) : B and eqg(ap(up,up),zg) : B are parallel and have the same name
eq(a(u,u), z), but they are not congruent. In F=((), the equation eqy(an(un,un),zn) =
eqg(ap(up,uB),zp) is added. Clearly, the plain model Mj of (3 is not a name-driven model
of Cg.

Approximation of the name-driven semantics

The identification rule, like for instance the substitution rule, is a pattern for generating con-
gruences, and it may generate an infinite number of congruences. The next example illustrates
this property: even when (is finite, there is usually no finite overloaded specification (= such
that F=(¢) = F(¢¥). This proves that finite overloaded specifications with their name-driven
semantics, are strictly more expressive than finite equational specifications.

Example 2.16 Let (4 be the following overloaded specification:

g

)

Ca - Y!

f h
X' — zZ'
\‘ yu /h7
@)

g

which means that:

g/

9] | g

Ty : Y’

f! '
» / h ,
fx) Y/ %
)

"

Q

12

and (4 maps X' to X, Y and Y’ toY, Z' to Z, f' and f” to f, ¢’ and ¢" to g, i/ and A" to h.

Then, the smallest equational specification (F such that F'=({4) = F(¢F) is built by adding to
T4 the equations:
hloglo“‘oglof/Eh//ogllo“‘ogllof”7

with n copies of ¢’ and ¢”, for every n > 0, so that (T is infinite.

Both semantics may coincide

It can happen that the plain and the name-driven semantics coincide. The following condition
is well-known.

Proposition 2.17 Let (: T — S be an overloaded specification such that:

If two operations [’ and " have the same source and the same name,

then they have the same target and ' = f".
Then, the plain and the name-driven semantics of (coincide.

Proof. 1t is easy to check that if the operations of { satisfy this property, then its terms also
satisfy it, hence two homonymous parallel terms are congruent. [J

A well-known drawback of this result is that constants are not allowed to be overloaded, since
they all have the same (empty) source. For instance, 0 cannot be both the name of an integer
and the name of a boolean. For this reason it is not assumed, in this paper, that both semantics
coincide.

Example 2.18 The overloaded specification (3 : T35 — S3 from example 2.10 does not satisfy
the condition of proposition 2.17. It can be modified, by adding the names ¢, f : X in S
and by naming Op and 1p as ¢t and f, respectively, instead of 0 and 1. Then the terms
eqnl(an(un,un),zy) : B and eqg(ag(up,up),zp) : B are still parallel, but they have distinct
names 1 + 1 =0 and t +¢ = f, so that there is no ambiguity.

2.4 Subtypes and the plain semantics of subtyping
Subtypes and coercions

A subtype Y' of a type Y is such that a value of type Y’/ can be used in any context in which a
value of type Y is expected: this is the subtyping property, sometimes called the subsumption
property [Bruce 2002]. This means that there is some canonical way, in every model M, to
identify each element of M(Y’) to an element of M(Y"). It is viewed as a coercion from Y’ to
Y”, i.e., an implicit type conversion, so that it is an operation, or a term, which does not appear
in the notations. The identification of each element of M(Y’) to an element of M (Y") can be
done through an inclusion, like N C Z. It can also be done through a canonical surjection, like
Z — Z)2%, where Z /27 = {0, 1}, which maps each integer to 0 or to 1 according to its parity.
More generally, a coercion can stand for any map, as soon as this map is considered as canonical,
in the sense that it may be skipped from the notations.

13

From the point of view of notations, this means that a coercion behaves like an identity. This
is easy to state in the framework of overloaded specifications:

Definition 2.19 In an overloaded specification, a coercion is a term such that its name is an
identity.

A sort Y’ is a subtype of a sort Y if there is a coercion from Y’ to Y”; this is generalized to
lists of sorts.

Let (: T — S be an overloaded specification, a coercion is a term ¢ : Y/ — Y"” in T such that
C(e)=idy : Y — Y in S, hence in (it is denoted idy : Y’ — Y.

The following properties of coercions follow directly from their definition, and from the properties
of identities in an equational specification.

Proposition 2.20

- reflexivity of subtyping: every identity of T is a coercion,

— transitivity of subtyping: the composition of two coercions is a coercion.
- subtyping and record types: the product of two coercions is a coercion.

The subtyping rules

The subtyping property can be prescribed, thanks to the two following rules, which correspond
to two complementary views of the subtyping property.

Definition 2.21 Let (: T — S be a specification with coercions. The subtyping rules are:
If there is a coercion idy : Y/ — Y,

and if t: X' — Y/,
then t is overloaded by t: X/ — Y.

If there is a coercion idy : Y/ — Y
and if u:Y" — 7',

then u is overloaded by u:Y' — 7.

They can be illustrated as:

In [Hintermeier et al. 1998], the coercions are expressed by ways of decoration rules, which can
be compared to our first subtyping rule.

14

The plain semantics of subtyping

Let (: T — S be an overloaded specification. By applying the equational and subtyping rules
to ¢, a morphism of equational theories Fy () : Tsy — F'(S) is generated, which satisfies the
subtyping property.

Definition 2.22 The plain theory with subtyping of an overloaded specification ¢ is Fg ().
The plain models with subtyping of { are the models of the equational specification T%;.

In this way, a canonical map can be defined as the image of a coercion: this definition depends
both on the overloaded specification and on its model.

This semantics allows the overridding of operations: within the subtyping rules, no relation
is required between the interpretations of both terms ¢t : X’ — Y" and ¢t : X’ — Y, and
similarly for u : V" — 7' and u : Y' — 7.

In addition, a unique plain model of {, in the sense of part 2.2, may give rise to many plain
models with subtyping, since there is no prescription on the interpretation of the operations
which are generated by the subtyping rules.

The contravariant property of coercions

Clearly, the subtyping rules have the following consequence, which can be called the contravari-
ant property of coercions [Castagna 1995]:

Proposition 2.23 From the subtyping rules, if there are two coercions idx : X' — X" and
idy : Y —Y" and ift : X" — Y, thent: X' — Y.

2.5 The name-driven semantics of subtyping
The coherence rules

Another widely used semantics for subtyping prescribes that homonymous operations, when
their profile differs only by a coercion, should get the same interpretation. More precisely, this
semantics is obtained from the following rules.

Definition 2.24 Let (: T — S be an overloaded specification. The coherence rules are:
If there is a coercion idy : Y/ — Y,

and if t: X' — Y’ and ¢t : X' — Y,
then idy ot = ¢.

15

If there is a coercion idy : Y/ — Y
and if u:Y" — 7 and v:Y' — 7',
then v oidy = u.

They can be illustrated as:

It is now proven that any one of these rules is equivalent to the identification rule. As a
consequence, both coherence rules are equivalent.

Theorem 2.25 In an overloaded specification, the identification property is satisfied if and only
if one of the coherence properties is satisfied.

Proof. For clarity, the proof is written in T rather than in (. Moreover, only the first coherence
property is considered, since the proof for the second one is similar.

First, let us assume that the first coherence property is satisfied, and let us prove the identifica-
tion property. Let t/ : X’ — Y’ and t” : X’ — Y be two parallel terms with the same name
t. Since the identity idy: is a coercion, the first coherence property ensures that idy ot’ = ¢".
But idys o #' = ¢/, so that indeed t' = t".

Now, let us assume that the identification property is satisfied, and let us prove the first coherence
property. Let ¢ : Y/ — Y be a coercion, and let ¢/ : X/ — Y’ and t : X’ — Y be two
terms with the same name ¢. Then both eot’: X — Y"” and idy»ot” : X — Y are parallel
and have the same name idy o #, hence, from the identification property, ¢ o' = idy» ot”. But
idyn ot =", so that indeed " = cot'.

/X'/ L Y/
tl\ }/\'L/E/ D idy-n

The name-driven semantics of subtyping

Let (: T — S be an overloaded specification. By applying the equational, subtyping and
identification rules to ¢, a morphism of equational theories I'Z({) : T5 — I'(S) is generated,
which satisfies the subtyping and identification properties.

16

Definition 2.26 The name-driven theory with subtyping of an overloaded specification (is

g (<)

The name-driven models with subtyping of (are the models of the equational specification T3.

Some properties of coercions
The identification rule has various consequences, here are some of them.

Proposition 2.27 From the identification rule:

— if there are two coercions fromY' to Y, then they are congruent,

— if there is a coercion from Y' to Y', then it is congruent to the identity of Y,

- antisymmetry of subtyping, up to congruence: if there is a coercion from Y' to Y" and a
coercion from Y'" toY', then they are inverses, up to congruence.

As an example, the following property is an application of the identification rule:

t

P P iy

The contravariant property of coercions, revisited

The subtyping rules together with the coherence rules yield an enforced version of the con-
travariant property of coercions:

Proposition 2.28 From the subtyping and coherence rules, if there are two coercions idx :
X' — X"andidy : Y — Y", and ift : X" — Y', then t : X' — Y" with idy otoidx = t¢.

The covariant property of coercions

On the other hand, the subtyping, coherence and identification rules have the following conse-
quence, which can be called the covariant property of coercions [Castagna 1995]:

Proposition 2.29 From the subtyping, coherence and identification rules, if there are two co-

ercions idx : X' — X" andidy : Y — Y"”, and if t : X' — Y and t : X" — Y, then
idy ot =toidy.

17

Proof. The first subtyping and coherence rules give rise to t : X’ — Y" with ¢t = idy ot, and
the second subtyping and coherence rules give rise to ¢ : X' — Y” with ¢t = toidy. Then the
identification rule yields the congruence idy ot =toidx. O

This can be understood as follows: a coercion behaves as a morphism, with respect to the
homonymous operations. Quite often, this situation occurs when the overloading comes from
parametric polymorphism.

Example 2.30 Here is a well-known example, where this property is not satisfied. The same
name /— is used for cubic roots, either over the reals, or over the complex numbers. Since it
is required that ({/z)® = z for all z, there is no choice for the definition of {/— over the reals.
Usually, the definition of </~ over the complex is such that the minimal nonnegative argument
is chosen. Then, the value of ¢/—1 is —1 over the reals, but it is exp(im/3) over the complex:

3_
" p
id # lid
C—C

\3/:

A classical example

Let us now look at the classical example of dealing with pred(pred(succ(succ(0)))) over the
naturals: clearly this number is equal to 0, however it is not so easy to get it as the image of a
well-formed term. This will be done progressively in examples 2.31, 2.32 and 2.38.

Example 2.31 Let us consider the overloaded specification (5 : Ts — Ss:

Ts : P S e x <
sp < > PN A\S P
ZNE N pos=id x

pnosp=idy

where (5 maps P, N, zn, sp and py to X, X, z, s and p, respectively, so that it is illustrated
as:

Gs P

s< >p
—Z= N

pos=idx: N—N

18

Then:
— the term s(z) : X of S5 is the name of the term sp(z2y) : P,
— but the term s(s(z)) : X of S5 is not the name of any term.

Example 2.32 Now, let us add a coercion from P to N, so that (5 becomes (g:
o : P

()

—N

pos=idx N—sN
Since s is the name of an operation sp : N — P, the first subtyping rule asserts that an
operation sy : N —» N with the same name s can be added. Then:
— the term s(z) : X of Sg is the name of both terms sp(zy) : P and sy(zn) : N,
— the term s(s(z)) : X of Sg is the name of both terms sp(sy(zn)) : P and sy(sn(zn)) @ N,
— and the term p(s(s(z))) : X of Sg is the name of the term pn(sp(sn(zn))) : N, which is
congruent to the term sy(zn) : NV
— but the term p(p(s(s(z)))) : X of Se is not the name of any term.

SPSPpPp
AN NN

p(s(s(2)))

The sort-inheritance rule

In [Hintermeier et al. 1998], a sort-inheritance property is required, in order to find a least
subsort for a term; this property is used in the decorated unification algorithm.

In a similar way, here, the following sort-inheritance rule could be added, which would change
the semantics:

Ift: X' —Y andt: X' —Y",
then t 1s overloaded by t : X' — Y
with coercions idy : YY" — Y' and idy : Y — Y".

More precisely, this property means that there is some way to choose Y t : X' — Y,
idy : YY" — Y andidy : YY" — Y"” from¢: X' — Y'and t : X' — Y.

19

As an example, the following property is an application of the subtyping, sort-inheritance and
identification rules:

y% £ yzj
' C e -
t t

Extensions of overloaded specifications by definition

Before proving that the name-driven semantics of subtyping is not much more than the name-
driven semantics from part 2.3, let us come back to the extensions by definition, in the case of
overloaded specifications.

As for an equational specification, an overloaded specification can be extended by definition. This
means that a new operation f’ is introduced in T, together with a defining equation f' = t',
where t’ is a term which does not involve f’. The name of f’ can be either in S, or in an
extension by definition of S. Such an extension does not modify the plain semantics of ¢, up
to congruence. However it can modify the name-driven semantics: for instance if #{ and t,, are
non-congruent parallel terms, and if f] and f} are defined by f{ = t| and f} = t,, where both
f1 and fj have the same name, then the identification property adds the equation f| = f}, from
which a new congruence t] = t}, is derived.

Definition 2.33 An extension of an overloaded specification ¢ : T — S by an operation
f': X' — Y’ with name f and with a defining equation f’ =t' is non-ambiguous if, before this
extension, for any term f{ : X’ — Y’ with name f, the congruence f; = holds in T.

If an extension by definition is non-ambiguous, then it does not modify the name-driven seman-
tics of ¢, up to congruence.

The subtyping rules from the identification rule

The following result proves that the subtyping rules can be derived from the identification rule.

Theorem 2.34 In an overloaded specification { : T — S, let e : Y' — Y" be a coercion.

— If there is a term t' : X' — Y' with name t, then the extension of (by an operation
t" : X' — Y with the defining equation t"" = ¢ ot’ and with name t, is non-ambiguous.

— If there is a term u" : Y" — 7' with name u, then the extension of (by an operation
u' Y — Z' with the defining equation ' = u” o e and with name u, is non-ambiguous.

Proof. Let us prove the first assertion, the proof of the second one is similar. Let t{ : X' —
Y"” be a term with name ¢, and let us prove that t{ = cot’. Both eot : X — Y" and
idy» ot] : X — Y are parallel and have the same name idy ot, hence, from the identification
rule, ot =idyw» o t{. But idy» o t] =t{, so that indeed t{ =c ot’.

0

Theorem 2.34 means that the name-driven semantics with subtyping is essentially the same as
the name-driven semantics from part 2.3.

2.6 Subsorts and the name-driven semantics of subsorting
Subsorts and sort inclusions

The notion of subsort refers to a more restricted property between sorts, or types, than the
notion of subtype. It aims at formalizing the set-theoretic notion of subset. Whenever a sort Y’
is a subsort of a sort Y, then in each model, the interpretation B’ of Y’ should be a subset of
the interpretation B” of Y, which means that there should be an inclusion from B’ to B”. In
fact, a sort inclusion is defined below as a monomorphic coercion, so that its interpretation is a
canonical injection, i.e., an implicit embedding, i.e., an injection which may be skipped from the
notation.

It is proven below that, with respect to the name-driven semantics for subtyping, the injectivity
can be expressed as a retraction rule.

Specifications with subsorts

Since a canonical map can be formalized as a coercion idy : Y’ — Y, a sort inclusion is now
defined as a coercion which satisfies some additional property. Hence, the sort inclusions are
some coercions among all the coercions of a given overloaded specification.

Definition 2.35 A specification with subsorts is an overloaded specification where some coer-
cions are called sort inclusions.

In a specification with subsorts, a sort Y’ is a subsort of a sort Y if there is a sort inclusion
from Y’ to Y”; this is generalized to lists of sorts.

For simplicity, a specification with subsorts is still denoted (: T — S, although this notation

does not mention the chosen sort inclusions. In this paper, a sort inclusion is represented in T
as € : Y’L>Y” , and in C as idy : Y’L>Y”

The monomorphism rule and the retraction rule

The traditional way to assert that an operation, for instance a sort inclusion idy : Y/ <Y",
has to be interpreted as an injection, is the following monomorphism rule:

If t,u: X' — Y’ are such that idy ot = idy o u,
then ¢t = u.

21

The monomorphism rule can be illustrated as follows:

1 ~ - ~ i
—_— —
X' —Y' X' ——Y'
N} fidy N} idy
= " = "
idyou Y idyou Y

However, the rule which is used for dealing with subsorts is not the monomorphism rule, but
the following retraction rule:

If t: X’ — Y" is such that ¢t = idy o u for some u: X' — Y,
then ¢ is overloaded by ¢t : X' — Y’ with ¢ = u.

More precisely, the retraction rule means that there is some way to choose ¢t : X’ — Y from
t: X' —Y"and u: X' — Y.

It can be illustrated as follows:

~ ~ 1
A
XI u Y/ - X’/ =
- = \[Edy \ \Ij\dy
Y// Y//

In [Hintermeier et al. 1998], the rule which is expressed as : “equal terms belong to the same
sort”, is similar to our retraction rule.

The equivalence of both rules
The next result proves the equivalence of both rules, when dealing with coercions.

Theorem 2.36 In the name-driven theory with subtyping of an overloaded specification:

— if a coercion satisfies the retraction rule, then it satisfies the monomorphism rule.

— if a coercion satisfies the monomorphism rule, then it satisfies the retraction rule, up to a
non-ambiguous extension by definition.

Proof. For clarity, the proof is written in 7' rather than in . The name of ¢/, ", ¢}, is ¢, and
the name of «’, u”, is u. Let ¢ : Y/ — Y be a coercion.

First, let us assume that ¢ satisfies the retraction rule. Let ¢/, 4’ : X’ — Y be two terms such
that e ot' = ¢ o/, then we have to prove that t = u’. Since ¢ is a coercion, the subtyping and
coherence rules add t" X' — Y with " = e ot’. Since it is assumed that cot' = ¢ o v/,
it follows that ¢ = ¢ o u’. Now, the retraction rule can be used: ¢’ can be overloaded by
t : X! — Y with #{ = «'. Since ¢’ and #| are parallel and homonymous, the identification rule
adds the equation ¢’ = ¢}. Finally, since t’ =] and t) =/, it follows that t' = u'.

22

Now, let us assume that ¢ satisfies the monomorphism rule. Let ¢ : X — Y" and v/ : X' —
Y’ with ¢ = e o u’, then we have to prove that, up to a non-ambiguous extension by definition,
t" can be overloaded by t' : X’ — Y’ with ¢/ = «/. Since ¢ is a coercion, the subtyping and
coherence rules add u” : X’ — Y” with «” = e ou’. Since t = ¢ o4/, it follows that ¢’ = u".
Let us consider the extension by definition of an operation ' : X’ — Y such that ' = u’. We
have to prove that it is non-ambiguous. Let ¢} : X’ — Y, then both idy» o t” and € o t] are
parallel and homonymous, hence the identification rule adds the equation idy» ot” = cot|. But
idynot” =t", and t"” = o’ from the hypothesis, so that eot] = cou’. Now, the monomorphism
rule can be used, it proves that t{ = «’, so that indeed the extension is non-ambiguous. O

The name-driven semantics of specifications with subsorts

Let (: T — S be a specification with subsorts. By applying the equational, identification,
subtyping and retraction rules to ¢, a specification with subsorts F5(¢) : TS — F(S) is

S8
generated, which satisfies the identification, subtyping and retraction properties.

Definition 2.37 The name-driven theory of a specification with subsorts ¢ is I'Z (¢).
The name-driven models of are the models of the equational specification TZ.

So, the interpretation of a sort inclusion in such a model is an injection.

Example 2.38 Let us build {7 from (g, by adding that the coercion form P to N is a sort
inclusion:

Gr r
8
s 1\? P
—~N
pos=idy :N— N

Since the congruence p(s(s(z))) = s(z) : N can be derived from pos =idy : N — N, and since
s(z) : N is overloaded by s(z) : P, it follows from the retraction rule that the term p(s(s(z))) : N
can be overloaded by p(s(s(z))) : P. This means that an operation up : P can be added to 717,
with name (7(up) = p(s(s(z))). Hence the term p(p(s(s(z)))): X of S7 is the name of the term
pn(up) @ P.

p(s(s(2)))

Static vs. dynamic typing

With this approach, the introduction of partially defined retraction operations, as partial inverses
for sort inclusions, is avoided. It is well known that retraction operations are rather difficult

23

to handle, mainly because of their partiality. A slightly different point of view is chosen in
[Casl 2003], where a term can be casted from a sort to a subsort, thanks to a partial casting
operation.

In this paper, the keypoint for avoiding retraction operations is that, as in the previous example,
an operation can have a composed name without being itself a composed operation: the image
via (of an operation of T' can be any term of S.

Moreover, the retraction rule clearly illustrates an intrinsic difficulty in the use of subsorts: the
following typing question cannot be solved statically in a specification with subsorts:

If t is a term of S, and X — Y a profile in T,
is there a term with name ¢t and profile X — Y'?

Indeed, in overloaded specifications, even with the subtyping and identification rules, the rules
for forming terms only depend on terms, not on congruences. It follows that the typing question
can be solved statically, i.e., without any computation, i.e., without using the equations. This
becomes false with the retraction rule: indeed, the hypothesis of this rule contains an equation
t =idy o u, while its conclusion generates a new operation ¢ : X' — Y.

3 Overloaded specifications as diagrammatic specifications

In section 2, overloaded equational specifications are defined as morphisms of equational spec-
ifications. A drawback of this approach is that overloaded specifications are not of the same
nature as ordinary specifications.

In the context of diagrammatic specifications, as introduced in [Duval and Lair 2002], it is pos-
sible to define both ordinary specifications and overloaded specifications as two families of dia-
grammatic specifications. Then, the deduction rules for ordinary specifications are an instance
of the deduction rules for diagrammatic specifications, and the deduction rules for overloaded
specifications are another instance of the deduction rules for diagrammatic specifications.

There is a general notion of model of a diagrammatic specification. The models of an ordinary
specification coincide with its models as a diagrammatic specification. But the models of an
overloaded specification are different from its models as a diagrammatic specification. It is the
zooming process, as introduced in [Duval et al. 2003], which yields the right definition for the
models.

Moreover, this new point of view on overloaded specifications is not restricted to the equational
frame.

The basic features of diagrammatic specifications are presented in part 3.1. As an example,
equational specifications are presented as diagrammatic specifications in part 3.2. Then, over-
loaded specifications, their plain semantics and their resolved semantics are revisited in parts 3.3
and 3.4. The same technique is used for subtyping and subsorting semantics in part 3.5. Finally,
a non-equational example is considered in part 3.6.

24

3.1 About diagrammatic specifications and their semantics
Projective sketches and propagators

Diagrammatic specifications are defined below, as realizations of meta-level specifications (the
word “realization” is used at the meta-level, instead of “model”). The basic tool for building
diagrammatic specifications is the theory of sketches [Ehresmann 1966], [Coppey and Lair 1984],
[Coppey and Lair 1988]. On the one hand, diagrammatic specifications generalize sketches,
and on the other hand, they are defined by means of projective sketches at the meta-level: a
diagrammatic specification has models, and at the same time it is a realization of a projective
sketch. Diagrammatic specifications are introduced in [Duval and Lair 2002], as summarized
below.

Definition 3.1 A (directed) graph is made of points and arrows, in such a way that each arrow
f has a profile X — Y, made of its source X and its target Y; this is denoted f: X — Y.
A morphism of graphs v : G — G’ maps each point G of G to a point y(G) of G', and each
arrow g : G; — Gy of G to an arrow v(g) : v(G1) — v(G2) of G.

Definition 3.2 A compositive graph is a graph where some points X have an identity arrow
idx : X — X and some consecutive pairs of arrows (f : X — Y, ¢:Y — Z) have a composed
arrow go f : X — Z. In a compositive graph, there is no assumption about associativity and
unitary properties of composition and identities.

A morphism of compositive graphs is a morphism of directed graphs which preserves the identity
arrows and the composed arrows.

Definition 3.3 A cone in a compositive graph G is made of a vertex point GG, a base morphism
b:7 — G, where the compositive graph 7 is called the indez, and projection arrows py : G —
b(I) for each point I in Z, such that b(i) o p; = pp for each arrow ¢ : I — I' in Z.

Definition 3.4 A projective sketch is a compositive graph where some cones are called distin-
guished cones.

A morphism of projective sketches, or propagator, is a morphism of compositive graphs which
preserves the distinguished cones.

Definition 3.5 A category is a compositive graph with an identity arrow for each point, a
composed arrow for each consecutive pair of arrows, which satisfies the associativity and unitary
axioms:

—if (f,9) and (g, h) are consecutive, then (hog)o f="ho (go f),

—if f: X — Y, then foidy = f and idy o f = f.

A morphism of categories, or functor, is a morphism of compositive graphs.

For instance, up to some care about the size, the sets and maps form a category, which is called
the category of sets.

In a category, some cones are called limits, and a limit gives rise to factorization arrows. For
instance, a product is a limit; it is a cone:

25

for some integer n > 0, such that, for each cone with the same base:

/Y
fl/ \fn
Y, - Y,

there is a unique arrow (fi,..., fn) : X — P, called the factorization of fi,..., f,, such that
pio(fiy..oyfu)=fifori=1,...,n.

When n = 0, this property says that for each point X there is a unique arrow from X to P; this
means that P is a terminal point in the category.

Here is another kind of limit cone:
z’dp/P idp

J\

P idp P

NV 4
Q

This limit cone means that m : P —) is a monomorphism, i.e. whenever mo f; = mo f,.,
then f; = f.. Then m is represented as m : P>—() .

For instance, in the category of sets:

— a product is a cartesian product, which means that P =Y; X --- X Y,, and py, ..., p, are the
projections; the factorization arrow (fi,..., fu) : X — Y7 X --- x Y, builds n-uples.

— when n =0, P is a singleton, i.e., a one-element set;

— a monomorphism is an injective map.

Definition 3.6 A (set-valued) realization S of a projective sketch & maps each point E of £ to
a set S(F) and each arrow e : ' — E’ of £ to a map S(e) : S(F) — S(E'), in such a way
that each identity arrow becomes an identity map, each composed arrow becomes a composed
map, and each distinguished cone becomes a limit cone.

A morphism o : S1 — Sy of realizations of £ is a natural transformation. This means that o
is made of a map o : S1(E) — S3(F) for each point E of &, in such a way that S;(e) oop =
op 0 Sy(e) for each arrow e : E — E’ of €.

The category of realizations of £ is denoted Real(E).

Example 3.7 Let £g,. be the projective sketch:

sce
‘T
Eqr Pt TAr
tgt

The idea is that Pt and Ar are understood as “points” and “arrows”, sce and tgt as “source”
and “target”, so that the category of realizations of £¢, is the category of directed graphs.

Example 3.8 The projective sketch £g,. can be enriched in order to get a projective sketch
Ecqt such that the realizations of £¢,; are the categories.

For instance, in order to prescribe that every pair of consecutive arrows can be composed, the
enrichment can be performed as follows, in two steps.

First, a point Cons is added to g, for “pairs of consecutive arrows”. In order to ensure that
it is interpreted as the set of pairs of consecutive arrows, it is accompanied with two arrows

26

first : Cons — Ar and second : Cons — Ar (first and second arrow in the pair) and with
the following distinguished cone with vertex Cons (as often, the diagonal arrow sce o second =
tgt o first : Cons — Pt is omitted):

Cons

iy WHd
Ar Ar
Pt

The realizations of this new projective sketch still are the graphs: this kind of enrichment does
not modify the realizations.

Then, an arrow comp : Cons — Ar is added, with the composed arrows:
sce o comp = sce o first | tgt o comp = tgt o second .

This restricts the realizations of the projective sketch to the graphs where any pair of consecutive
arrows is composable.

In a similar way, the whole definition of a category can be expressed in the projective sketch £¢y;.
This enrichment defines a propagator Pe,: : Eqgr — Ecur-

The adjunction associated to a propagator

Let us consider a propagator:
P:&£—E&.

The omitting functor Gp : Real(§) —s Real(€) is such that Gp(C) = C o P for all realization C
of €.

The freely generating functor Fp : Real(£) — Real(€) is such that for all realization S of £
and all realization C of &:

Hompea(e) (S, Gp(C)) = Homp, g (FP(S5),C) -

Fp
Real(£) _ " Real(€)
Gp

In categorical terms, this means that Fp is the left adjoint of Gp. The existence of this left
adjoint is a major property of projective sketches [Ehresmann 1966], [Lair and Duval 2001].
When the propagator P is fixed, the subscript P can be omitted.

Example 3.9 Let P = Pg,: : Eqr — Ecar be the propagator from example 3.8. The omitting
functor Gp maps each category to its underlying graph. The freely generating functor Fip maps
each graph to its freely generated category, by adding all the missing identities and composed
arrows, and by identifying arrows when it is needed for the unitarity and associativity axioms
to be satisfied.

27

Diagrammatic specifications and domains

Now, projective sketches and propagators can be used at the meta-level for specifying the dia-
grammatic specifications. Hence, let us consider a propagator:

P:£E—E.

Basically, the projective sketch & describes the form of the specifications, while £ and the
propagator P describe the rules for deriving a theory from any given specification. For instance,
a propagator Pp, for equational logic is described in part 3.2.

Definition 3.10 A (diagrammatic) P-specification is a realization of £, and a (diagrammatic)
P-domain is a realization of &.

In addition, a morphism of P-domains is a morphism of realizations of £. But a morphism of
P-specifications is somewhat more general than a morphism of realizations of £; it is defined in
the Kleisli way, as explained now.

For instance, with respect to the propagator Pg,: : Egr —> Ecat, @ morphism of realizations
of £g, is a graph morphism v : G; — G5, so that it maps each arrow of G; to an arrow of
(G'5. More generally, a morphism of Pg,-specifications is allowed to map each arrow of GGy to
an arrow in the category F(G3): such an arrow can be composed from several arrows in Go.
Clearly, only a part of F'(G3) is needed for describing v; this part is a graph G, extending G
and such that F(GY) is the same as F(G3).

More generally, a morphism of P-specifications o : S1 — So is defined as a morphism of
realizations of £ from S; to I'p(S3). In this way, the category of P-specifications is the Kleisli
category of Real(£) [Mac Lane 1971].

Not all of F'p(S2) is needed in order to describe . Actually, a morphism of P-specifications o :
S1 — S can be described from two morphisms of realizations of £: a morphism 7 : 53 — 5
such that F'(7) is an isomorphism, and a morphism ¢’ : Sy — SJ.

So, the category of P-specifications and the category of P-domains are such that:
Spec(P) D Real(€) , Dom(P) = Real(E) .
The adjunction is easily generalized:

Fp

Spec(P) Dom(P)

Gp

Definition 3.11 The P-theory generated by a P-specification S is the P-domain Fp(5).

Models of diagrammatic specifications

Definition 3.12 Let S denote a P-specification and C a P-domain. The set of P-models of S
with values in C is:

Modp (S, C) = Homp,,,(py(Fr(S),C) .

28

The adjunction property yields the following bijection, which can be viewed as a kind of sound-
ness property:

Modp(S,C) = Homg,e.(p) (S, Gp(C)) -
For each morphism o : S — 57, it is easy to define a map:
Modp(o,C) : Modp(S’,C) — Modp(S,C),

so that Modp(—,C) is a contravariant functor from the category of P-specifications to the
category of sets.

In addition, it can happen, and it does happen in the most usual cases, that there is a natural
notion of morphisms of P-models, so that there is a category of P-models of S with values in C.

Example 3.13 Let P = Pgg:. A model M of a graph G with values in the category of sets
interprets each point G of G as a set M(G) and each arrow g : G4 — G2 of G as a map
M(g): M(G1) — M(Gy).

3.2 Equational specifications as diagrammatic specifications
A propagator for equational specifications

A propagator Pgy : gy — Ep, is built now, in such a way that the Pp,-specifications are
the equational specifications, and the propagator Pg, corresponds to the equational logic. The
Pp,-domains are called the equational categories.

Actually, equational specifications are rather similar to projective sketches, and equational cat-
egories to categories.

Definition 3.14 An equational specification S can be defined as a compositive graph together
with:

— some pairs of parallel arrows (f: X — Y,g: X — Y) in 5, called equations (or potential
equalities), which are written f=g¢ : X — Y, or just f =g,

— some cones (p; : P — X;)i=1..n, called (potential) products; when n = 0, the vertex P of the
cone is called a (potential) terminal point, which is written P = 1.

This definition of equational specifications is slightly different from the usual one, as reminded in
part 2.1. Indeed, traditionally, an equational specification is built step by step. First some points,
called the sorts, followed by some potential products of sorts, which vertices are represented as
lists of sorts. Then some arrows, called the operations, followed by some potential composed
operations, called terms, Finally the equations are pairs of parallel terms. In this new setting, a
point may correspond to a sort or to a list of sorts, and an arrow to an operation or to a term.

It follows from the definition of equational specifications that they are the realizations of a

29

projective sketch £g,, which contains the following graph:

comp

i2
Cong =———— Comp

{ ﬁrS/t
‘1 \1’ tgt second

T
S ight

left

So, the projective sketch &g, is an enrichment of £¢,.. The points Cons and Comp stand for “pairs
of consecutive arrows” and “pairs of composable arrows”, Para and Equa for “pairs of parallel
arrows” and “equations”, Ptld for “points with identity”. The arrows first, second, left, right
stand for the projections, iy, i3, 3 for the inclusions, comp for the composition (f,g)+— go f,
and ident for the selection of identities A — id 4.

Para<———— Equa

The projective sketch £g, also contains composed arrows like:

sce o ident = 71 , tgt oident = ¢y ,
sce o comp = sce o first | tgt o comp = tgt o second ,

which mean that the profile of id 4 is A — A, and that the profile of go f is X — Z where X
is the source of f and 7 is the target of g¢.

Moreover, g, contains a distinguished cone with vertex Cons, as in example 3.8, as well as a
similar distinguished cone with vertex Para, and distinguished cones for monomorphisms, like:

Ptld == Pt, Comp =—>Cons, Equa —> Para.

Example 3.15 Let us consider the equational specification T5 from example 2.31. It is made
of three points V', N and P, where V is a terminal point, five arrows z: V — N, s: N — P,
p:P— N,idy : N — N and pos: N — N, where idy is the identity of N and pos
is composed of s and p, and one equation pos = idy. In the illustrations, the identities and
composed arrows can be skipped, and the fact that V' is a terminal point is represented as V = T,
so that the illustration is essentially the same as the usual illustration, as in example 2.31:

T5 : P
()
V=1—-—N

pos=idy

The specification Ts has a model M5 which interprets the sort V' as a singleton {x}, the sort N
as the set N of non-negative integers, the sort P as the set I’ of positive integers, the constant z
as the constant map x — 0, and the operations s and p as the maps 2 — 2+ 1 and z — z — 1,
respectively:

Ms P

#r+1 (> #2r—1

{*}ﬂﬂ\l

30

On the other hand, 75 is a realization of £g,, which gives rise to a totally different illustration
of Ts:

(s,p)—rpos

T5Z

{NC} w\ /

{V7‘7V7P} {Z7S7p7pos7idN}

<<\\

{(pos,idN),...}<2—{posEidN}

Equational categories as diagrammatic domains

Definition 3.16 A congruence relation in a category C is a binary relation = on the arrows of
C such that:

if g = g, then g; and g, are parallel,

= is an equivalence relation,

is compatible with the composition, which means that:

—-ifgg=g-:Y —Zandif f: X — Y, thengjof=g,0f: X — Z,

—-ifgg=g-:Y —Zandif h: Z — U, then hogi=hoyg,: Y — U.

Clearly, the equality of arrows is a congruence relation.

Definition 3.17 An equational category is a category together with a congruence relation =
which is compatible with the products.

A morphism of equational categories is a morphism of categories which preserves the congruence
relation.

Any category C can be considered as an equational category Cg,, where the congruence relation
is the equality of arrows. For instance, the category of sets set can be considered as an equational
category setg,.

Then, it is easy to enrich £g, in order to get a projective sketch £g, such that its realizations
are the equational categories.

For instance, in order to prescribe the reflexivity of the congruence relation, the enrichment can
proceed in two steps. First, a point Diag is added, together with a distinguished cone, so that
Diag stands for the pairs (f, f) of identical arrows, and an arrow j : Diag — Para is also added,
which stands for the inclusion. Then, the reflexivity of the congruence relation corresponds to an
arrow r : Diag — Equa such that i30r = j. Clearly, the reflexivity could be prescribed without
adding the point Diag, since the interpretations of Diag and Ar are isomorphic. However, the
point Diag will prove helpful later on.

Definition 3.18 The equational propagator is the enrichment:

PEq : EEq — EEq

Hence, the Ppgg-specifications are the equational specifications and the Ppg,-domains are the
equational categories.

31

Let P = Pg,. Let S be a P-specification, i.e., an equational specification, and F'(S) its theory.
Then the arrows of F'(S) are the terms of S, and the equations of F'(S) are the congruences
of S, in the sense of part 2.1. On the one hand, in order to deal with computations issues, for
instance with rewriting techniques, I'(S) has to be an equational category, not just a category:
the equations are not equalities. On the other hand, the models of S, as defined in part 2.1,
coincide with its P-models with values in setg,. Hence, the equations become equalities in these
models. Actually, although the models of S with values in C are defined, as explained in part 3.1,
for any equational category C, most often C = CJ’% for some category C' (typically C = setg,),
i.e., the congruence relation of C is the equality of arrows.

Extensions of equational specifications by definition

It has been noted that any category C can be considered as an equational category Cg,, where
the congruence relation is the equality of arrows. More precisely, Cg, = G'p/(C), where Gps is
the omitting functor associated to the propagator:

P/ :EEq —>ECat

which maps the arrow r : Diag — Equa of qu to the identity arrow idpjag : Diag — Diag of
Ecat- Let P" = P'oP : Epy — Ecar- The following definition generalizes the one from part 2.1.

Definition 3.19 A morphism of equational specifications o : S — Sy is an extension by
definition if Fpu(o) is an isomorphism.

The definition asserts that an extension by definition does not modify the generated theory, up
to congruence. The following result proves that an extension by definition does not modify the
models, as long as their values are taken in a category.

Proposition 3.20 Let P = Pg,, and let 0 : 51 — Sy be an extension by definition. Then, for
every category C, the map:

Modp(o,Cgq) : Modp(S2,Cry) — Modp(S1,Cry)
is a bijection.
Proof. Let S denote either Sy or S3. From the definition of models:
Modp (S, Cry) = Homp,,, (py(FP(S),Cry) -
Since Cgy = G'p/(C), from the adjunction property with respect to P':
Modp(S,Cry) = Homp,,(pry(Fpr(S),C) .

The result follows. O

32

3.3 Overloaded specifications as diagrammatic specifications
Towards a propagator for overloaded specifications

Let us consider any propagator:
P:&£—E&.

The aim of this part is to define a propagator:
L:L—L,

in such a way that, when P is the equational propagator, the L-specifications are the overloaded
equational specifications and for each L-specification S, the L-theory F,(S) is the plain theory
of the overloaded equational specification .S, as defined in part 2.2.

A projective sketch for morphisms

Let us define, from the projective sketch £, a new projective sketch £, such that the realizations
of £ can be identified to the morphisms of realizations of £ (actually, £ is the laz-colimit of the
identity morphism of &£, it is described for instance in [Duval et al. 2003]).

Definition 3.21 The projective sketch £ is made of two copies £ and &y of £, with an arrow
trg : By — Ej for each point F of £, such that ey o trg = trgs o ey for each arrow e : £ — E’
of &:

51 O El HE{
...... trEl = ltrE,
o1 eeeee Fy —2~ E, .

The arrow trg : 'y — FEj is the transition arrow of £ with respect to F.

When & = Eg,, the projective sketch £ = L, contains:

sceq
EGT : Ptl /—\Al‘l

scegotrp,=trposce;

tgtgotrar=trpgotgt;

The next result is easy to check.

Proposition 3.22 For each realization Z of L, let T, S and { : T — S be defined by the
following equalities, for each point E of &:

T(E)=Z(E), S(E)=Z(E), (p=Ztg): T(E)— S(E).

This defines a one-to-one correspondence between the realizations of L and the morphisms of
P-specifications.

33

A propagator for morphisms

Similarly, the projective sketch £ is defined from &, and the propagator L is defined as the
canonical propagator from £ to L:

L:L—L.

Overloaded P-specifications and overloaded P-domains

Definition 3.23 An overloaded P-specification is a L-specification, and an overloaded P-domain
is a L-domain.

Hence, from proposition 3.22, an overloaded P-specification is a morphism of P-specifications,
and an overloaded P-domain is a morphism of P-domains. So, the definition of overloaded
P-specifications generalizes the definition of overloaded equational specification from part 2.2.

The plain semantics of an overloaded P-specification

Definition 2.5 is generalized as follows.

Definition 3.24 The plain theory of an overloaded P-specification (is the overloaded P-do-
main Fr,(¢).

Like any L-domain, F,(¢) is a morphism of P-domains. It is easy to check the following reliability
property:

Proposition 3.25 The L-domain Fr,(C) is such that:
FL(C) :FP(T) — FP(S) .

The plain models of an overloaded P-specification

When P is the equational propagator, from definition 2.4, the plain models of { are the P-models
of T, i.e., the morphisms from Fp(7T). This suggests the following definition:

Definition 3.26 Let ¢ be an overloaded P-specification. For any P-domain C, the plain P-
models of ¢ with values in C are the morphisms from Fp(T') to C:

MOdP(C7C) = Hom'Dom(P) (FP(T),C) = MOdP(T7C) :

Hence, the difference between an overloaded P-specification and a L-specification lies in the
associated notion of model. Indeed, a L-specification has L-models in a L-domain, according to
part 3.1. When it is considered as an overloaded P-specification, it has P-models in a P-domain;
this definition of models stems from the notion of zoom [Duval et al. 2003].

This paragraph can be skipped. A zoom, as defined in [Duval et al. 2003], is associated to three specifica-
tions: a far specification S, an intermediate specification T, and a near specification U; starting from S,
a decoration process builds T, then an ezpansion process builds U. For dealing with overloading, the ex-
pansion process is trivial, so that 7' = U, and the decoration process is simply the morphism ¢ : " — S.
The unique non-trivial feature of zooms which is used here is the definition of models, and the related
notion of reliability.

34

3.4 The name-driven semantics, diagrammatically
The identification rule

The propagator L from part 3.3 does not take into account the identification rule: two homony-
mous parallel terms do not have to be congruent. It is now enriched, in order to take this rule
into account. Part 2.3 suggests that the new propagator:

L= .05 — [=
should be such that £L= = £ and the L=-domains are the L-domains which satisfy the identifi-

cation rule.

From definition 2.11, the identification rule is:

If two parallel terms ¢’ and ¢’ have the same name,
then t' = ¢".

The construction of £= from £ can be made in two steps.

First, as for the point Cons in part 3.2, a point can be added to £, without changing its
realizations, if it is the vertex of a distinguished cone with its base in £ and with new projections.
In this way, let us now add two points H and C to £, so that ((H) is the set of pairs of parallel
homonymous terms (¢/,¢"”) (the hypothesis of the rule) and {(C') is the set of pairs of equations
t' = t" made of parallel homonymous terms (the conclusion of the rule).

H Para,
L e
Diagy Parag
C Equa, Paray
| o
Diagg Parag

Then, an arrow e : C — H can also be added to £, together with the obvious equations, so
that ((e) is the inclusion of {(C') in ((H):

H = C

Until now, the resulting projective sketch has the same realizations as L.

Then, a new arrow r : H — C'is added, which is the inverse of e, i.e., eor = idy and roe = id¢,

or simply r = e~ !:

Then, the realizations of £= are the realizations ¢ of £ such that ((C) = ((H): this means that
they are the realizations of £ which satisfy the identification rule, as required.

35

An illustration of the identification rule

In order to illustrate this construction, the propagator L= : L5 — L= can be represented as a
copy of L together with H, C, e, which do not modify the realizations, and with r as a dashed
arrow. So that L= contains:

\AC

As explained in [Duval et al. 2003], the contravariant Yoneda morphism maps this piece of L=
to a morphism of L=-specifications, which is the one from part 2.3:

The name-driven models of an overloaded P-specification

The new propagator L= : L= — L= does take into account the identification rule, but it
does not satisfy the reliability property: this means that, if (: T — S is any overloaded P-
specification, the source of F,=(() is different from Fp (7). More precisely, Fr,=(¢) is a morphism
of P-domains Fr=(¢) : T= — Fp(S), but its source T= is not isomorphic, in general, to Fp(T').
Actually, the P-domain T= does not depend only on 7', but on the whole (. This is easily seen

from the diamond example, as described in part 2.5: the equation w' ot = w” ot” is in T=,
although it is not in Fp(T).

Definition 3.27 Let { be an overloaded P-specification. For any P-domain C, the name-driven
P-models of ¢ with values in C are the morphisms from T= to C:

MOd]ED (C7 C) = HOInDom(P) (TE7 C) :

It follows, because L= does not satisfy the reliability property, that the name-driven P-models
of ¢ with values in C are different from the P-models of T with values in C. Actually, there
is a canonical map from Mod%((,C) to Modp(T,C), which corresponds to the fact that the
name-driven P-models of ¢ are the models of T" which satisfy the identification property.

3.5 Subtypes and subsorts
About the propagators for dealing with subtypes and subsorts

In this part, it is assumed that the propagator P : £ — & is such that there is some reasonable
notion of arrows and identity arrows; typically, there is in £ a copy of a sketch of compositive
graphs, with a point Ptld and an arrow ident : Ptld — Ar, and there is in € a copy of a sketch
of categories, so that the unitarity properties of identity arrows are prescribed. For instance,
Pp, satisfies this assumption.

Then, from its definition, the projective sketch £ contains:
AI‘l

ltI‘Ar

Ptldo AI‘O

ident

36

Each of the semantics from section 2 corresponds to a propagator L', which is obtained by some
enrichment of the propagator L. More precisely, the correspondence is such that:

— the specifications are the L’-specifications,

— the theory of a specification (is its freely generated L’-domain Fr(¢),

— and the models of a specification { with values in a P-domain C, are the morphisms from 7"
to C, where T" is the source of I':(¢), when Fr,(() is considered as a morphism of P-domains.

This correspondence holds for the plain and the name-driven semantics of overloaded specifica-
tions, as explained in parts 3.3 and 3.4. It is now checked that it does hold for the plain and the
name-driven semantics of subtyping, as well as the semantics for subsorting. These propagators
do not satisfy the reliability condition.

Subtypes

Let us add to £ a point Coer, together with three arrows from Coer to Ary, Arg and Ptldg,
respectively, and with the distinguished cone with vertex Coer:

Coer Ary
T
Ptldo AI‘O

ident

This projective sketch is called L4, its realizations are still the overloaded P-specifications:
indeed, if ¢ is a P-specification, then {(Coer) is the set of operations of ¢ such that their name
is an identity arrow. Hence, the following definition generalizes definition 2.19:

Definition 3.28 In an overloaded P-specification (, a coercion is an element of {(Coer). A
point Y’ is a subtype of a point Y if there is a coercion from Y’ to Y.

The semantics of subtyping

Then, the projective sketch L is built from £ by adding the subtyping rules, in a way similar
to the construction of £= in part 3.4. This yields a new propagator:

Lst:ﬁst H*C:_57f7

which corresponds to the plain semantics of subtyping, from part 2.4.

The projective sketch £ is built from L, by adding the coherence rules, so that the new
propagator: o
L; : L:st — [;i

corresponds to the name-driven semantics of subtyping, from part 2.5.
Subsorts

Let us add to L a point Incl, together with a monomorphism m : Incl>= Coer . This projective
sketch is called Lss. The following definition generalizes definition 2.35:

Definition 3.29 A P-specifications with subsorts is a realization of L.

37

The semantics of subsorting

Finally, the projective sketch £Z, is built from £ by adding the retraction rule. This new
propagator:
LZ, : Lss — L3

corresponds to the semantics of subsorting, from part 2.6.

3.6 An example over non-equational specifications
Functional specifications

Section 2 is restricted to equational specifications, while section 3 deals with more general spec-
ifications. In this last part, a non-equational application is considered. It deals with subtyping
when operations and terms are considered as first-order objects: this is the context of simply-
typed lambda-calculus.

The functional rule states that, for all points X and Y, there is a point YX, called a power sort,
which stands for the set of functions from X to Y, usually called a power set. The power sort
Y X is such that, for any point Z, the terms from Z x X to Y can be identified with the terms
from Z to YX. More precisely, for all points Y and X, there is an application operation:

appY7X:YX><X—>Y,

and for all point Z, each term ¢ : Z x X —» Y corresponds bijectively to a term ¢ : Z —s YX
such that:

-~

appyx (#(2),2) = t(z,2) .

The functional propagator Pr, is obtained by adding the functional rule to the equational
propagator.

Coercions between power sorts

The usual functional subtyping rule is:

If there are coercions X' — X" and Y/ — Y,
then there is a coercion (Y’)(X") — (Y”)(X/),

Now, it is proven that this rule derives from our definition of coercions.
Theorem 3.30 In an overloaded Pp,-domain, the functional subtyping property is satisfied.

Proof. Tetex : X' — X" and ey : Y’ — Y be two coercions. Let us consider the following
composed arrow (where id denotes the identity of (Y/)(X")):

foE) xSy

38

(Y/)(X”) % X! Y
idx.sxl = €y

(Y/)(X”) < X" >~y

appy/ x

It corresponds to an arrow:

-~

f . (Y/)(X“) N (Y//)(X’)]

Let us now check that fis a coercion. The image of f in S is the following composed arrow
(where id denotes the identity of YX):

YXx X

idxidxl =]idY

X - 9
Y2 XX ey x Y
Hence, the name of f is:
appy,x Y X — VY.

On the other hand, it is easily checked that:

am = ldyX .

It follows that QT?) = idy x. Since CT]T) = C(f), it follows that the name of f is an identity arrow
of S, i.e., f is a coercion, as required. [

About other propagators

The equational propagator Pp, generates new points X XY (“record types”) from points X and
Y. The functional propagator Pg,, moreover, generates new points YX (“power types”) from
points X and Y. Other propagators may generate pull-backs, for instance; then points (the
vertices of the pull-backs) are generated from points and arrows (the base of the pull-backs).
In such a case, the congruence on arrows generates a congruence on points. Such situations are
considered in [Cury 1991].

4 Conclusion

In this paper, overloaded specifications are defined as morphisms of ordinary specifications.
Thanks to this new point of view on overloading, we get a clear description of the disam-
biguation issue and of the name-driven semantics for solving it. The interaction of overloading
with subtyping and subsorting also gets clearer. From a more operational point of view, it

39

would be worthwhile to interpret papers like [Hintermeier et al. 1998], [Bouhoula et al. 2000]
and [Casl 2003] in this framework.

The more abstract level offered by the diagrammatic specifications allows to consider that over-
loaded specifications and ordinary specifications are of the same nature. Moreover, diagrammatic
specifications can also deal with other major issues, like for instance the treatment of exceptions

[Duval et al. 2003].

References

[Bouhoula et al. 2000] A. Bouhoula, J.-P. Jouannaud and J. Meseguer. Specification and Proof
in Membership Equational Logic. Theoretical Computer Science 236, 35-132 (2000).

[Bruce 2002] K.B. Bruce. Foundations of Object-Oriented Languages, Types and Semantics.
MIT (2002).

[Casl 2003] M. Bidoit and P.D. Mosses. The CASL Book.
http://www.cofi.info/ (2003).

[Castagna 1995] G. Castagna. Covariance and covariance: conflict without a cause. ACM Trans-
actions on Programming Languages and Systems 17 431-447 (1995).

[Coppey and Lair 1984] L. Coppey and C. Lair. Lecons de Théorie des esquisses (I). Diagrammes
12 (1984).

[Coppey and Lair 1988] L. Coppey and C. Lair. Lecons de Théorie des esquisses (II). Dia-
grammes 19 (1988).

[Cury 1991] F. Cury. Catégories lax-localement cartésiennes et catégories localement carté-

siennes : un exemple de suffisante complétude connexe de sémantiques initiales. Diagrammes
25 (1991).

[Duval and Lair 2002] D. Duval. Diagrammatic specifications. To appear in Mathematical Struc-
tures in Computer Science. A preliminary version is available as: D. Duval and C. Lair. Dia-
grammatic specifications. Rapport de recherche IMAG-LMC 1043.
http://www-lmc.imag.fr/lmc-cf/Dominique.Duval/ (2002).

[Duval et al. 2003] D. Duval, C. Lair, J.-C. Reynaud, C. Oriat. A zooming process for specifi-
cations. Rapport de recherche IMAG-LMC 1055.
http://www-lmc.imag.fr/Imec-cf/Dominique.Duval/ (2003).

[Ehresmann 1966] C. Ehresmann. Introduction to the theory of structured categories. Report
10, University of Kansas, Lawrence (1966).

[Goguen et al. 1978] J.A. Goguen, J.W. Thatcher and E.G. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types. In Current trends
in Programming Methodology, ed. R.T. Yeh, 4, Prentice-Hall (1978).

[Hintermeier et al. 1998] C. Hintermeier, C. Kirchner, and H. Kirchner. Dynamically-Typed
Computations for Order-Sorted Equational Presentations. Journal of Symbolic Computation
25, 455-526 (1998).

40

[Lair and Duval 2001] Lair, C. and Duval, D. (2001) Esquisses et Spécifications, Manuel de
Référence, 4eme partie : Fibrations et Eclatements, Lemmes de Yoneda et Modéles Engendrés.
Rapport de Recherche du LACO 2001-03.
http://www.unilim.fr/laco/rapports/ (2003).

[Mac Lane 1971] Mac Lane, S. (1971) Categories for the working mathematician. Springer-
Verlag.

[Mosses 1992] P.D. Mosses. The Use of Sorts in Algebraic Specifications. In Recent Trends in
Data Type Specification, ed. M. Bidoit and C. Choppy, LNCS 655, Springer-Verlag (1992).

41

