Diagrammatic logic and effects : the example of exceptions

Dominique Duval* Jean-Claude Reynaud!

December 21, 2004

Abstract. This paper presents a unified framework for dealing with exceptions in axiomatic specifica-
tions and in programming languages. Our framework includes a deduction system and a denotational
semantics with respect to a diagrammatic logic [10, 8]. This approach can be seen as an alternative
to the monads approach for introducing effects in specifications and in programs [22]; for instance, our
denotational semantics is related to the monadic semantics of exceptions by an adjunction result between
two different logics. Moreover, in order to build upon a realistic computational model, we use extensive
categories as a minimal requirement to express our various logical theories.

Keywords. Exceptions, Diagrammatic Logic, Sketches, Extensive Categories, Specifications, Seman-
tics, Monads.

1 Introduction

This paper presents a unified framework for dealing with the deduction system and the denotational
semantics of exceptions, as an instance of a more general framework for formalising various features of
actual programming languages. A preliminary version of this work has appeared in [11].

In order to bridge the gap between theoretical approaches and the reality of programming languages, a
decisive step has been carried out by Moggi [22], with the basic idea that computational effects can be
modelled by the categorical notion of monad. In the monadic approach, the distinction between values
and computations is central; this distinction is also one of the starting points of our work.

However, instead of starting from a computational model (the computational lambda calculus, or \.-
calculus), as in [22], here we start from a logical theory in order to describe a deduction system for
specifications.

It is well-known that lambda calculus does not fully match actual functional programming languages
such as Standard ML: the call-by-value strategy does not match the unrestricted use of beta-reduction,
because it matters how often and in which order the arguments of a procedure are evaluated; detailed
examples can be found in [15]. Moreover, exponential types are not central for exceptions, since there is
an exception mechanism in languages which do not consider the functions as first-class citizens. While the
basic type constructor in the lambda calculus is the exponential, in this paper the basic type constructor
is the sum. Indeed, sum types are used for case distinctions, which in turn are heavily used in the
treatment of exceptions; usually an exception is raised only in some branch of a case distinction, then
it must be tested whether the program does raise an exception, and precisely which exception is raised:
thus, altogether, the exception mechanism makes use of three kinds of case distinctions.

*LMC-IMAG, Grenoble, Dominique.Duval@imag.fr
fLSR-IMAG, Grenoble, Jean-Claude.Reynaud@imag.fr



A categorical model of the A.-calculus is made of a category C with finite products and a monad T' on
C satisfying some additional properties (T is a strong monad with Kleisli exponentials). An object A
of C is viewed as the set of values of type A, and the object T A as the set of computations of type A.
A program from A to B can be identified with a morphism from A to T'B in C: the programs are the
morphisms of the Kleisli category of T. Moggi calls T a notion of computation since it abstracts away
from the type of values that a computation may produce. Each choice of T corresponds to a notion of
computation: side-effects, exceptions, interactive output, etc. The monad of exceptions on the category
of sets is such that TA = A + F for every set A, where E is a fixed set of exceptions.

Several denotational semantics have been proposed for the A.-calculus; following [15], three denotational
semantics can be distinguished. In the naive semantics, a term ¢ of context A and type B simply denotes
a morphism ¢ : A — B in C, which clearly is too crude. In the monadic semantics, such a term ¢ denotes a
morphism ¢ : A — T'B in C; whenever ¢ is a value, this morphism is obtained from a morphism ¢, : A - B
in C, composed with the unit morphism of the monad ¢ : B — T B. Several authors have designed other
categorical semantics, in order to provide a so-called direct semantics for the A.-calculus; in [25] it is
proved that the approach via Freyd categories (based on premonoidal categories) is equivalent to the
approach via k-categories (based on indexed categories); in [15] an approach via precartesian categories
is proposed. In this paper, an alternative to the monads approach is defined, and another way to get a
direct denotational semantics is presented.

Thus, in the monadic approach, the computational effects are encapsulated in a monad. In our approach,
what we call the logical effects are encapsulated in a logic. The direct denotational semantics is defined in
this logic, and the monadic semantics can be recovered thanks to a morphism between logics. A logic here
is a diagrammatic logic, as defined in [10, 8] and reviewed in appendix A: it is a morphism of projective
sketches satisfying some property, so that it is endowed with a deduction system and a denotational
semantics in a sound way. Two distinct diagrammatic logics are used in this paper: the decorated logic
for the syntax, the deduction system and the direct denotational semantics of exceptions, and the explicit
logic for the monadic denotational semantics of exceptions. The explicit logic is a “familiar” kind of logic,
which is presented here in the diagrammatic fashion, while the decorated logic is an “unfamiliar” kind
of logic. In addition, there is a robust notion of morphism between diagrammatic logics, such that the
relation between the direct and the monadic semantics is an easy adjunction result.

Now, let us look more closely at the mechanism of exceptions: when an exceptional situation occurs
at run-time, then an exception is raised, normal program execution is in abandoned, and the exception
is handled, which means that some actions are performed in response to the arising of the exception.
For computing with exceptions, a framework for dealing with non-exceptional situations can be used, at
the cost of adding a few keywords (like “raise” and “handle”, or “throw”, “try” and “catch”) and
modifying some of the usual rules. But, for describing a denotational semantics, the set of exceptions
has to be explicitly introduced, in order to get a sound interpretation of the computations. Hence, the
operational semantics of exceptions on one side, and its denotational semantics on the other side, are
described in two fairly distinct frameworks. This paper presents a unified framework for dealing with the
axiomatic and the denotational semantics of exceptions, in a Standard ML style [26]. This framework
is called the decorated logic for exceptions, it is a diagrammatic logic. As every diagrammatic logic, the
decorated logic is sound; in addition, its denotational semantics is the direct semantics we are looking
for. It is an unfamiliar kind of logic, but there are morphisms (of diagrammatic logics) from this logic
to more familiar ones; one such morphism gives rise to the naive semantics, another one to the monadic
semantics.

The handling of exceptions is some kind of case distinction: either the result of the expression before
handle is non-exceptional, then this result is returned, or it is exceptional, then the expression following
handle is executed. In this paper, the handling of exceptions is indeed defined as some kind of case
distinction, and the usual properties of the handling of exceptions follow from this definition. For instance,
handling exceptions depend on the expressions before and after the keyword handle in a natural way.
This naturality of handling exceptions does not correspond to the naturality of an algebraic operation,



as in [24]: the first one is satisfied, while the second one is not. Hence, this paper also suggests an issue
to Plotkin and Power’s question in [23]: “Ewvident futher work is to consider how other operations such
as those for handling exceptions should be modelled. That might involve going beyond monads, as Moggi
has suggested to us.”

Since there is a mechanism of exceptions in various kinds of languages, our basic logical framework is
kept as poor as possible: the basic logic in this paper corresponds to a language with records and case
distinction, so that the content of the paper could be adapted to a functional language like Standard ML
as well as to an object-oriented language like Java. This basic logic is defined in section 2, it corresponds
to the extensive categories with products of [4], which means categories with products and with well-
behaved sums; it does not deal with exceptions at all. The extensive categories with products correspond
to a reasonable fragment of a programming langage, since it has records (thanks to the products) and
case distinctions (thanks to the well-behaved sums). In addition, the corresponding syntax is simple
enough to be described in a detailed way in a reasonable space.

In section 3, the basic logic is refined in order to classify the terms and, more generally, all the ingredients;
in this way we get the decorated logic, which determines both the axiomatic semantics and a denotational
semantics of exceptions, which is the direct semantics we are looking for. Basically, the decoration of
terms corresponds to the distinction between wvalues and computations in the monads approach [22]: a
computation may raise an exception, while a value may not. The crucial point is that all the ingredients
in the property that defines a case distinction are also decorated; this gives rise to several notions of case
distinctions, which in turn yield a formalisation of the handling of exceptions. A simple undecoration
morphism, from the decorated logic to the basic logic, allows to look at the proofs with exceptions as
a refinement of proofs without exceptions, but it does not preserve the denotational semantics: the
undecoration morphism gives rise to the irrelevant naive semantics.

In section 4, a logic with explicit exceptions is defined, as the basic logic together with a distinguished
type for exceptions. Thanks to a non-trivial expansion morphism, from the decorated logic to the explicit
logic, it is proved that our direct semantics gives rise to the monadic semantics, that is, to the usual
interpretations of a language with exceptions.

decorated logic
direct semantics
(section 3)

undecoration, expansion

basic logic explicit logic
naive semantics monadic semantics
(section 2) (section 4)

A large part of the paper is devoted to the definition of the three diagrammatic logics and the morphisms
between them. The main results are:

— theorems 3.4, 3.18, 3.23 and 3.25 about raising exceptions, handling exceptions, and building records of
computations; they assert that our framework does fit with the treatment of exceptions in programming
languages;

— theorems 3.5 and 3.19, about the naturality of raising and handling exceptions;

— and theorem 4.6, which establishes the equivalence between our decorated semantics and the monadic
semantics, thereby proving that the decorated semantics provides a direct denotational semantics for
exceptions.



2 A basic logic

The diagrammatic point of view about logic is introduced in [10, 8] and presented in appendix A. Each
diagrammatic logic is defined from its syntaz (the definition of the specifications) and its aziomatic
semantics (the deduction rules for generating a theory from each specification). A deduction rule is
a morphism of specifications, which becomes an isomorphism between the theories generated by these
specifications. Both the syntax and the axiomatic semantics of a diagrammatic logic are defined by a
propagator, that is, by a morphism of projective sketches satisfying some property (see appendix A).
Then the denotational semantics of the logic defines the models of each specification in a systematic way,
such that the soundness is guaranted: the models of a specification are preserved by the deduction steps.

In this section, our basic logic is defined as a diagrammatic logic, which means that a propagator Py ;¢ for
this logic is described. This logic does not deal with exceptions; its domains correspond to the extensive
categories with products of [4], that means, categories with products and sums, where the sums are well-
behaved, as explained below. It follows that the basic logic corresponds to a language with records and
cases. The syntax we use is somewhat similar to the one of Standard ML (or SML) [26]; in SML there
is a constructor for products of types, and also a constructor for “datatypes” that combines sums and
type recursion. Moreover, in order to deal with computational notions, we use =-categories rather than
categories, so that for instance terms like t : X — Y and idy ot : X — Y are not identified, they are
only congruent. This basic logic is described here in a detailed way, which should help to understand the
decorated logic in section 3.

A basic specification is a Pp,sic-specification, a basic domain is a Pyagic-domain.

2.1 Types, terms, equations
The propagator Ppasic, like many usual ones, is based on enrichments of the propagator:
Pcomp : Scomp — 3comp )

from example A.16. The P.omp-specifications are the compositive graphs, in the sense of appendix A.1;
they are made of types and terms with exactly one argument. The Pgomp-domains are the saturated
compositive graphs, in the sense of appendix A.3.

The propagator Peomp is enriched, in order to get a propagator Peq : Seq — Seq for dealing with unary
equations and congruence. Let us say that a pair of terms is parallel when both terms share the same type
and the same context (that is, type of arguments, as in appendix A). The projective sketch Seq is made
of a copy of Scomp together with a point Para, which stands for parallel pairs (of terms), a distinguished
cone Ipara for the definition of parallel pairs, with two projections pr!,pri, : Para — Term, a point Eq for
equations, and a mono mon' : Eq » Para for the inclusion:

Tpara : , Para ,
LN
context Prll ,
e — mon
Type Term Para<———<Eq Term _ type context  LSTM
~— ~—
type pr) context\L \Ltype
2
Type Type

Hence, a Pey-specification can be illustrated as a (directed multi-)graph: a type becomes a point, a term
becomes an arrow (the source and target of the arrow are, respectively, the context and the type of the
term) and the equations are either mentioned by signs “=” added to the graph, or they are written
besides the graph.



The propagator Poq : Seq — geq is made of the deduction rules of FPeomp, together with additional
deduction rules, in order to ensure that the equations form a congruence relation, in the following sense.
The structural equations are the usual associativity and unitarity properties of categories, but only up
to equivalence. A congruence relation is an equivalence relation which contains the structural equations
and which is compatible, on both sides, with the composition of terms.

The P,q-domains are called the =-categories (“equiv-categories”). The =-categories where the congruence
is the equality are the categories. For instance, the category of sets, with the equality for congruence, is
a P.q-domain.

The propagator FPeq is now progressively enriched, in order to add products and well-behaved sums of
types, which will yield the propagator Ppasic-

2.2 Products for records

Products of types are used as types for records (t1,...,¢,). In this way, a n-ary term can be considered
as a term with exactly one argument, which is a n-ary record. Here we deal with =-products (“equiv-
products”), which become actual products, in the categorical sense, as soon as the congruence is the
equality. Only finite =-products are considered. Let n denote any non-negative integer; the illustrations
(via the Yoneda functor, as explained in appendix A.4) correspond to n = 2.

Definition 2.1 An =-product is a finite discrete cone (p; : Y — Y;)1<i<n such that for each cone with
the same base (¢; : X — Y;)i1<i<n there is a term (py : t1,...,pp : tp), or simply (¢1,...,t,) : X = Y,
such that for each :

pio(tla"'atn) Eti)

and this term is =-unique: if a term u : X — Y is such that p; o u = ¢; for each i, then u = (¢1,...,t,).
The vertex of the =-productis Y =Y; x...xY, = H?:l Y; and its projections, or labels, are the p;’s.
A shortcut for “the =-product with vertex ¥ = ]_[;l:1 Y; and projections p; : Y — Y;” is “the =-product
[T (pi:Y = Y;)". The term (t1,...,t,) : X = Y is the record of t1,...,tn.

Rules 2.2 In a basic domain, every tuple of types has a chosen =-product, and discrete cone has a chosen
record.

This corresponds to three active deduction rules of P, i.: on efor the existence of a chosen =-product, a
second one for the existence of a chosen record, and the last one for the =-unicity of records. With the
convention that projections are represented as dashed arrows, these rules can be illustrated as follows; in

the last one, there are double symbols “=" where one equation involves (¢1,t2) and the other one involves
U.
Y; Y;
! PN ! AR
r N
£ N
Y1 xY,
Yé - ;2
Y2 £
Y; Y;
121 1*\171 T t1 _1‘ P1
~ - = ~
X Y1 xYs, X (t1,t2) Yi xY,
x - ;2 x = L

Y, Y,




Y Y

/ ~ ~Dn R 13} ~ ~Dn
= = ~ Vs = = ~
e (t1,t2) ——— - (t1,t2) ———s

/ >
Xi_/?/yixn Xizu_%/yleyé
‘ = = _ ;2 t2 = = _ ;2
2 Y,z £ }/,2 £
Now, a n-ary term u with parameters of types Yi,...,Y, and with type Z, is considered as a unary

term u : Y — Z with context Y = [, ¥;. Then, the term u(t1,...,t,) : X — Z is composed from
(t1,--ytp): X > Y andu:Y — Z:

u(ty,t2)=uo(t1,t2)

XV =hxh——>2

The usual properties of records are easily derived from these properties, for instance below the compati-
bility of records with congruence and composition.

Proposition 2.3 Lett;: X - Y; fori=1,...,n.

o Lett; =t; for each i, then:

—~
=
Y
N—r
1l

(tl,...,tn):X—>HYi.
i=1
o Lett' : X' - X, then:
n
(tr,..stn) ot = (ot taot) : X = Vi,
i=1

When n = 0, the vertex of the =-product is a terminal point, denoted 1 (or Unit, or Void). The deduction

rules become: _
N 1
G ety
Ox P ()x
e i et =ty

2.3 Well-behaved sums for cases

A case distinction, or simply a case, looks like:
caseu of [j1 = t1 | ... | jn = tn] ,

where u : X — Y is a term and Y. (j; : ¥; = V) is a sum. This assumption about the j;’s means
that one and only one among the patterns in the match is relevant, for each value of u; this could be
weakened. The terms ¢;’s all have the same type Z. When u is the identity idy, the context of ¢; is Y;.
But in general, u : X — Y is any term, and the context of ¢; is a type dependent on u, which is denoted



u~1(Y;); in a set-valued interpretation, it is the set of pairs (z,y;) where z in X and y; in Y; are such that
u(z) = ji(y;). The case construction can be defined from the notion of well-behaved sums. This notion is
borrowed from [4], where an eztensive category is defined as a category with well-behaved sums, and it
is proved that an extensive category with products is a distributive category, and moreover the relation
between the well-behaviour of sums and the existence of pullbacks along coprojections is stated. Here, let
us first introduce sums, then the well-behaviour. We deal with =-sums (“equiv-sums”), which become
actual sums as soon as the congruence is the equality. Only finite =-sums are considered. The =-sums
are dual to the =-products. As above, n denotes a non-negative integer, and the illustrations correspond
ton =2.

Definition 2.4 An =-sum is a finite discrete cocone (j; : ¥; = Y)1<i<n such that for each cocone with
the same base (t; : Y; = Z)1<i<n thereis aterm [j; = ¢ | ... | jn = tn], or simply [ty | ... |t,]: Y = Z,
such that for each 4:

[t1]...|tn]oji =ti,

and this term is =-unique: if a term u : Y — Z is such that uwo j; =¢; for each i, then u =[t1 | ... | tn].
The verter of the =sum is Y = Y, + ... +Y, = > | Y; and its coprojections, or patterns, are the
ji’s. A shortcut for “the =-sum with vertex Y = Y7 | Y; and coprojections j; : ¥; = Y” is “the =-sum
S (i Y; 5 Y)”. The term [t1,...,t,) : Y — Z is the match of t1,. .., tn.

Rules 2.5 In a basic domain, every tuple of types has a chosen =-sum, and each tuple of terms with the
same type has a chosen match.

This corresponds to active deduction rules of Py ,sc.. With the convention that coprojections are repre-
sented as dotted arrows, these rules can be illustrated as:

Y;
Y,
. e , R
n tl Tl J1 ~ t1
A \ £ —> 2 = \
Y1+7; Z Yi+Y; [t1]t2] Z
S T =
Yi Y,

il \:
e ::III
\\V
N

.71: :X P/ — ]1:
PR - £ 3

Vi + Y, ] z Vi+Y,
<. _Z 2 <. =

The usual properties of matches are easily derived from these properties, for instance below the compat-
ibility of matches with congruence and composition.

=
o

Proposition 2.6 Lett;:Y; > Z fori=1,...,n.



o Let t; =t; for each i, then:

n
B[t =]t > Vi 2.
=1
o Lett' : Z — 7', then:
n
tofty|...[ta] =[Hots|...|tota] =D Vi 2",
i=1

When n = 0, the vertex of the =-sum is an initial point, denoted 0. The deduction rules get simpler:

|
&

In order to formalize all kind of cases, as explained above, it is assumed that the =-sums are “well-
behaved”, in the sense of [4], but only up to equivalence, in the following sense.

Definition 2.7 Two =-sums » . ,(k; : X; - X) and >, (k} : X/ — X) with the same vertex are
equivalent if for each i there is an invertible term s; : X] — X; such that k; o s; = k. This is denoted:

n n

D ki Xi - X) =D (K X[ - X))

i=1 i=1
Definition 2.8 Let >.» ;(j; : ¥; & Y) be an =-sum and u : X — Y a term. An inverse image of
(i :Y; = Y) by u is an =-sum

n

QoG Y= YY) =) () s e () = X)

i=1 i=1
and terms u; : u~1(Y;) = Y; such that for each i:
wou (ji) = jiowu,

and such that this =-sum is =-unique.

Ly, “ Y;
U_I(Jl)u :( ) Ji . !
1, =
u (]2) U_l(}é) J2 er

The terms u; : u'(Y;) — Y; are called the restrictions of u with respect to Y 1 (j; : Y; = Y). They are
such that u = Y7 u;.

The notation (37 ,(ji : ¥; — Y)) is ambiguous, but only up to -unicity; this ambiguity will
disappear as soon as one such inverse image will be chosen. But the notation u~1(Y;) remains ambiguous
as soon as several among the Y;’s share the same name: whenever this occurs, this notation has to be
changed.

co



Proposition 2.9 Let Y. (j;i : Vi = Y) be an =-sum and v : X - Y a term. Let X; = u ' (Y;) and
ki =u"'(j;). Let an =-sum Y, (ki : X! = X)) and terms u} : X] = Y; be such that wo k} = j; o u}, so
that from the Z-unicity there are invertible terms s; : X; — X; such that k; o s; = k} for each i. Then,
u; © s; = u for each i.

Proof.

It is known that:
jioujos;=uokjos; =uok=jjou,.

According to [4], an extensive category with products is distributive, and the coprojections in a distribu-
tive category are monic. Similarly, in the basic logic, the coprojections are monic up to =, so that it can
be derived from j; o u; o s; = j; o u} that u; o s; = u}, as required. O

Rules 2.10 In a basic domain, every chosen =-sum has a chosen inverse image by every term.

This corresponds to active deduction rules of P sic, here is an illustration of the existence rule:

The compatibility of inverse images with respect to congruence and composition, as stated now, easily
results from the Z-unicity of inverse images.

Proposition 2.11 Let Y be the vertez of a sum > . (ji : Y; = Y) =Y. j;.
o Letu' =u:X =Y, then:
_ N a1 .
w O ) =d O
i i
o Letu: X —-Y andu' : X' — X, then:

T Q) = o) () -

Definition 2.12 Let w: X — Y, with >0, (j; : ¥; = V), and let ¢; : w=*(Y;) = Z for each i. Then the
term “caseu of [j1 = t1 | ... | jn = tn]”, which is called a case construction, is defined as:

caseu of [j1 =t | ... |jn=tn] = [0 ' (G1) =t |.n|u ' (n) > ta] : X = Z.



u — Y]

L e caseuof[_h

=t;]
\‘Z

This means that the term “case u of [j; = t; Ji<i<n” is characterized, up to =, by the equations:

case u of [j, = t’i]lfiﬁn o (uil(ji)) =t; , for 1<i<n.

Clearly, when u =idy : Y = Y

caseidy of [ji =t | ... |jn=2>th] = [1i=2>t|...|jn=>th] : Y = 2.

The compatibility of cases with congruence and composition (on both sides) is now easily derived from
this definition and from the properties of matches (proposition 2.6) and inverse images (proposition 2.11).
In the illustrations, for readibility, only one index ¢ is mentioned, and the equations are omitted.

Proposition 2.13 Let Y be the vertez of a sum Y . ,(ji : Y; = Y).

e letu' =u: X =Y, let s; : u’_l(Yi) — u=1(Y;) be the invertible terms arising from proposi-
tion 2.11, and let t; : v (V;) = Z and ¢t : u’fl(Yi) — Z be such that t; = t; o s; for each i.
Then:

case u’ of [j, = t;]lﬂiﬁn = case u of []z = ti]lfiﬁﬂ X 7.

/—\Y

\ case u of [fi=>ti ] /

case u' of [j;=t}]
o Letu:X =Y andt' : Z — 7', and let t; : w1 (Y;) — Z for each i. Then:

t'o (caseu of [j, = ti]lfign) = case u of [J, = (tl oti)]lﬁiﬁn X s 7.

X

zZ——=17

wof[ﬁ:ﬂi] /

case u of [ j;=>(t'ot;)]
e Letu:X Y andu' : X' = X. Let s; : (wow)™ " (V;) = o'~ (u=2(Y;)) be the invertible terms
arising from proposition 2.11, let u} : ' HuH(Y;) = wN(Y;) be the restrictions of v, and let

ti :u=Y(Y;) = Z for each i. Then:

(caseuof []z #tz’]lsisn)oul = case (UOUI) of [Jz = (tiou;osi)]lsign X' 7.

10



’
t;0u;08;

NS

X'= o xZ u Y 7z

\ \case uM

case (uou’) of [ji=(t;ou})]

2.4 The basic logic

The basic propagator Phasic : Spasic = Sbasic is the enrichment of P,y with the deduction rules for =-
products and well-behaved =-sums. The basic logic is the diagrammatic logic associated to the propagator
Pbasic-

The basic domains are the saturated compositive graphs with congruence, =-products and well-behaved
=-sums. When the congruence is the equality, the basic domains are the extensive categories with
products [4]. Each basic specification pasic generates a basic domain Fp, . (Zpasic), called the basic
theory of Ypasic, with all the types which are generated from the types of Xpasic by =-products, =-sums
and inverse images of =-sums, all the terms which are generated from the terms of Xy,,5ic by composition,
records and cases, and all the equations which are generated from the equations of ¥, in order to form
a congruence relation.

From now on, =-products and =-sums are called simply products and sums.

2.5 Basic models

Definition 2.14 Let Y5 be a basic specification and Ay, a basic domain. The set of basic models
of Ypasic with values in Ap,sic is defined as in appendix A:

MOdba.sic(Ebasic; Abasic) = HomDom(Pbas;c) (FPbasic (Ebasic)a Abasic) = HomSpec(Pbasic) (Ebasica GPbaS;c (Abasic)) -

The category of sets with the equality for congruence, the cartesian products for products, the disjoint
unions for sums, and the canonical pullbacks for inverse images, is a basic domain, denoted Set.

Definition 2.15 Let Xy, be a basic specification. A set-valued model of Ypasic is a basic model of
Ybasic wWith values in the basic domain Set.

This simply means that, as usual, a set-valued model of ¥y, interprets types as sets, terms as maps,
equations as equalities, products as cartesian products and sums as disjoint unions.

Example 2.16 Let X,,.; be the basic specification:

(f) with the product: and the sum: ‘Nat
% Nat 1 Nat
g

Hence, Y4t has types Nat and 1, terms 2z : 1 — Nat and s : Nat — Nat, no equation, and empty records
()x : X — 1 can be added, as well as binary matches [s = u | 2 = t] : Nat - X. We are interested

11



in the set-valued model M, of ¥, that interprets Nat as the set N of naturals, z as 0 € N and s as
the successor map succ : N — N. Let pred : N — N denote the predecessor map on the positive integers,
extended to the naturals by pred(0) = 0. It is easy to build from ¥,y a term p : Nat — Nat which
formalizes pred (the subscript Nat is omitted):

p=caseidof [s=>id | 2= z] =[s=1id | z = 2] : Nat — Nat

3 A decorated logic for exceptions

Now, let us define some available mechanism for exceptions, similar to the one in SML [26]. Then, the
predecessor map pred, from example 2.16, can also be formalised in the following way, in pseudo-SML
syntax.

e First, an exception e is created:
Exception e

e Then a term p' : N — N is generated, such that p'(z) raises the exception e:

p'(z) = case z of [s(y) = y | z = raise e]

e And finally, a term p"” : N — N is generated, which calls p' and handles the exception e:
p"(z) = p'(z) handle [e = z]

We are going to modify the basic logic, in order to be able to deal with the mechanism of exceptions,
which means to deal with the three keywords:

Exception, raise, handle.

For this purpose, we use a kind of logic where the terms are associated to symbols, which are called
decorations, and which appear as superscripts. The main decorations are “v” for “value” and “c” for
“computation”, they are borrowed from the monads approach [22]. Moreover, all the ingredients of a
specification are decorated: the types (in a trivial way), the equations, and above all, the properties of
the products and sums are also decorated, which gives rise to a variety of decorated features. Our point
of view about exceptions is that expressions of the form:

raise e or u handle ¢ ,

as well as any other expressions, can be considered as decorated terms. In actual programming languages,
decorations do not appear, but they can be derived from the use of the keywords and from the rules of
the decorated logic: each exception is a computation, then the rules imply that every term involving an
exception is also a computation.

The propagator Pgeco for this decorated logic for exceptions is described in this section. It yields an ax-
iomatic semantics and a denotational semantics of exceptions. Another point of view on the denotational
semantics of exceptions will be given in section 4.

A decorated specification is a Pyeco-specification, a decorated domain is a Pgeco-domain. In this section,
a decorated specification Ynat deco 1S built, in order to define p” as a decorated term.

12



3.1 The decoration “v” for “value”

The types are not decorated. All other features are decorated, but some decorations may be omitted in
the notations, when they can be easily guessed in a non-ambiguous way.

The terms which have nothing to do with the exceptions are called values; they are decorated with the
symbol v, as well as the equations between them.

The identities are values, and the composition of values is a value. The value equations generate a
congruence. The products and sums of types behave as in the basic logic, with values instead of arbitrary
terms: the projections (or labels) and the coprojections (or patterns) are values, a record of values is a
value, a match of values is a value, and sums are well-behaved with respect to values, so that cases over
values give rise to values. This property means that all the rules of the basic logic give rise to rules of the
decorated logic where each term and equation is decorated with v. These products and sums, records,
matches and cases are denoted as in the basic logic, so that the terminal and the initial types for values
are denoted respectively 1 and 0.

For the case construction, this means that a case like “case u of [j; = t;];”, where u and the ¢;’s are
values, is the value:

(caseuof [j1 =ty | ... [ jn=>tn])? = [u () >t |- v (o) =2 t]” : X = Z.

Uy

(v Y
Wiy _(u 1) i o
X :/..;/zv/?f'"'—‘(C:a.seuof[j,-:>i&,-])”\> 7
R TP = o =
u” " (j2) u_l(y,z) J2 Y,

Example 3.1 In our example, the value part of the decorated specification Yya¢ deco is @ copy of the
basic specification X5 from example 2.16. Hence, Yyt deco has types Nat and 1, values 2 : 1 — Nat
and s¥ : Nat — Nat, and no value equation. It generates a value:

p’ =caseidof [s=id|z=z]=[s=1id| 2= z]: Nat — Nat .

from which it follows that pos =" id and po z =" 2.

3.2 The decoration “c” for “computation”

All the terms which may raise exceptions, and which propagate the exceptions, are called computations;
they are decorated with the symbol ¢, as well as the equations between them. From this definition,
computations may (and not must) raise exceptions, hence every value can be considered as a computation,
so that the decoration c¢ is more general than v: each value t¥ may be coerced into a computation t¢.
Similarly, each value equation may be coerced into a computation equation. Moreover, it is assumed
that each computation equation between values comes from a value equation, so that the decoration of
equations does not really matter.

The composition of computations yields a computation: in the composition (uot)® = u®ot®, any exception
which is raised by t¢ is propagated by u¢. The computation equations generate a congruence.

As is well-known, there is no straightforward way to build a record of computations: if two terms ¢¢ and
u® raise two distinct exceptions e and €', there is no canonical way to decide what should be the result
of a record of t¢ and u°. However, most often, a choice is done; it may correspond to the fact that “t is
evaluated before u”; the corresponding record of computations will be defined in section 3.8.

13



On the contrary, a match of computations is a computation, in a straightforward way. When n = 0,
this means that the initial type for values is also initial for computations: for every type X, there is
a ="-unique value []% : 0 = X, and its coercion as a computation []% is the =°-unique computation
[1% :0 = X.

Since a match of computations is a computation, a case like “case u of [j; = t;];” is defined when the
t;’s are computations and wu is a value; the same notation “case” is used for this construction:

(casewof [f1 = t1 | ... |jn=>ta]) = [0 G1) 2t |- [u ™ (o) 2 ta]® : X = 7.
-1
u_l(Jl)”u _(,JY1) Jf =¢
X f;;”’/zv/?f'"“——(caseuof[ji:ti])‘:\ 7
— 1/ NG = v =-
u (.72) u ()/2) J2 Yv2

But there is no such definition when v is a computation; indeed, if u raises an exception, there is no
canonical way to decide which Y; the exception “comes from”. However, in section 3.5 a special situation
is described, where some kind of “case u of ...” can be defined when u is a computation.

Each set E gives rise to a decorated domain Setgeco[E], where:

— a type is a set;

—avalue ¥ : A —» Bisamap ¢, : A— B;

— the composition (Y op)? : A — C of values ¢ : A —» B and ¥ : B — C is the map (¢ op), =P, 00, :
A= C;

— a computation ¢¢: A — Bisamap ¢.: A =+ B+ E;

— the composition (o) : A — C of computations ¢°: A — B and ¢° : B — C'is defined in the Kleisli
way: it is the map (¢ o ). = [¢c | r¢] o e : A = C + E, where r¢ : E — C + E is the inclusion;

— the coercion of a value ¢ : A — B to a computation ¢¢ : A — B is the map ¢, =ipoy, : A > B+E,
where ig : B = B + E is the inclusion

— an equation @ =V ¢V : A — B is the equality ¢, =9, : A = B;

— an equation ¢ =€ ¢°: A — B is the equality ¢, = 9. : A - B+ E.

It should be noted that the coercion from values to computations is the reason why the subscripts v and
¢ are used.

Whenever E is the empty set, in the decorated domain Setgeco[l)], types are sets, values as well as
computations are maps, and equations are equalities.

3.3 The keyword Exception

In a decorated specification, the values are generated from some elementary values, which are the oper-
ation symbols of a signature, and the computations are generated from some elementary computations,
which are the exceptions. Recall that a computation ¢ : X — Y in a decorated specification may raise
an exception instead of returning a result of type Y, as would be the case with a term ¢t : X — Y in a
basic specification. Following this idea, we consider that a declaration “Exception e of P”, for some type
P, adds to the decorated specification a computation with context P and with type 0: indeed, such a
computation cannot return a result of type 0, since 0 stands for the empty set, hence it has to raise an
exception.
P—S—0

As usual, “Exception e” is a shortcut for “Exception e of 1”. In this paper, it is assumed that all the
exceptions in a given decorated specification are given once and for all; this assumption could be weaken,
in order to take into account the extensibility of exceptions, as in SML.

14



Moreover, the exceptions form the coprojections of a new kind of sum in the decorated specification ;
this exceptional sum is studied in section 3.6.

Example 3.2 In the decorated specification X4 deco, the values are generated from the operation sym-
bols z¥ : 1 — Nat and s’ : Nat — Nat: for instance, the value p¥ in example 3.1. The declaration
“Exception €” adds a computation:

e

1———=0

from which other computations will be derived in example 3.6.

3.4 The keyword raise

Recall that 0 is an initial type for values and for computations.

Definition 3.3 The keyword raise is the polymorphic value:
raisex?’ = []x":0 — X .

In a decorated specification X, let e° : P — 0 be an exception and X a type. To raise the exception e in
the type X is to build the composition:

(raisex oe)’: P — X .
(raisex oe)®
0

c Y
e raise’y

P X

The following result proves that the exceptions propagate, as required.

Theorem 3.4 For every computations t° : X —Y and u®: P — 0:

t oraisex ou =°raisey ou .

Proof. The initiality property of 0 with respect to the computations proves that ¢ o raisex =° raisey,
and the result follows because =° is a congruence. [

The next result derives immediately from theorem A.31. Essentially, it has the following meaning. Let
o : Y1 — Xy be a morphism of decorated specifications, X; a type of ¥; and X» = 0(X1). Let £} be
made of ¥, together with raise%, : 0 — X, and ¥ of ¥ together with raise%, : 0 — X,. Then the
unique way to extend o to ¢’ : ¥ — X is to map raisey, to raisey,.

Theorem 3.5 Raising a given ezception in a type X of a decorated specification ¥ is natural in ¥ and X.

Example 3.6 In the decorated specification pnatdeco, the computation p' is defined as follows (the
subscript Nat is omitted):

p'‘ = (caseid of [s = id | 2 = raiseoe])® = [s = id | z = raise o €] : Nat — Nat

Nat

sv T id?
—c

Nat p'c Nat
< _e
2 —1 M

It follows from theorem 3.4 that, for every computation ¢° : Nat — Nat, the computation (¢ o p' o 2)°
raises the exception e.

15



3.5 The case construction over a computation

The case construction over a computation, which is described now, can be used only inside a handle
construction (section 3.7), or a record of computations (section 3.8).

Such a construction occurs only with respect to a sum of the form Y + 0, for any type Y. It is easy to
prove that this sum is isomorphic to Y, with the coprojections raisey and idy: indeed, the proof involves
only values, it is similar to the usual proof, in the basic logic. The subscript Y is often omitted in the
illustrations.

Y
idv
o
Y
~.
raise” .
0

As the other sums, this sum ¥ = Y + 0 may be used for building matches of values and matches of
computations, and also for building new sums by inverse images of values: the inverse image of the sum
Y =Y +0 by avalue v’ : X — Y is simply the sum X = X 4 0, up to ~, because of the unicity of the
inverse images.

Moreover, the inverse image of the sum Y =Y + 0 by a computation u° : X — Y is defined now, with
the following meaning: if u raises an exception, then we decide that this exception “comes from” the 0
part of the sum Y =Y 4 0. More precisely, this inverse image is defined below, using a decorated version
of the equivalence of =-sums (definition 2.7).

Definition 3.7 Two =-sums y . (k¥ : X; — X) and Y ., (k" : X - X) with the same vertex are
equivalent if for each i there is an invertible value s} : X] — X; such that k; o s; =" kf. This is denoted:

i(kf X o X) ~ i(k;v X! > X).

i=1 i=1
Definition 3.8 Let u®: X — Y be a computation. An inverse image of the sum:

(idy : Y = Y) + (raise}, : 0 = Y)
by the computation u is an =-sum:
@)Y +0) = (g1 : Xug = X) + (o : Xuo = X),
a value uf : X1 =Y and a computation ug : X, o — 0 such that:
uoju1 =u; and uo j,o = raisey o uy .

and such that this =-sum is ~-unique.

Rules 3.9 In a decorated domain, every sumY = Y +0 has a chosen inverse image by every computation.

T

Uy
Y v Xy ————y
1d_._.-"' /// -~ J“’_l___.-" —c ldv
. YA e ~ 4
X =Y X u—=Y
T ~. . v
raise o e = v
Ju0 raise’ ..
0 Xu,() —_— 0
u

16



Some properties of this inverse image are stated now, their proof is easy. The second one shows that
there is no ambiguity in our definition: when a computation u¢ comes, by coercion, from a value u”, then
the inverse image of Y = Y + 0 by the computation u, as defined here, is (up to equivalence) the same
as the inverse image of Y =Y + 0 by the value u, as defined in section 3.1.
Proposition 3.10

o Letu®,u'“: X =Y be two computations such that u = u', then:

WY +0) ~u' (Y +0).
e Letu’: X =Y be a value, then:
(W) MY +0)~ X +0.
o Letu®: X =Y be a computation and v’ : Y — Z a value, then:
(w'’ ou) " (Z+0)~u (Y +0).

Let us now prove the “back-propagation” of the raising of exceptions, with respect to values.

Proposition 3.11 Letu®: X =Y be a computation and v’ : Y — Z a value. If u' ou =° raisez ot for
some computation t° : X — 0, then u =° raisey o t.

Proof. On the one hand, from the assumption and from the initiality of 0, we get:

raise”
0 > 7
raise” .| 1d”
X <. (vou)* ——= 7 <.
id”.""'--...__z raise® "
- 0
t
On the other hand:
uy u'”

- u,1 - Z
.]u,l.. _ id¥ e idv -7
e = L =

X u® Y u't—=7
~ ~. X ~.
j}:’o""' = raise’ . raise?
Xu,O - 0 ) 0
ug id

From the ~-unicity of inverse images, the sums X =0+ X and X = X, 1 + X, 0 are equivalent, so that
ug =° t, hence u =€ raisey o t, as required. [

Definition 3.12 Let u® : X — Y be a computation, and t{ : X,1 — Z and t§ : Xy0 = Z two
computations. Then the computation “case® u of [id = #; | raise = #]”, which is called a case over
computation construction, is defined as:

(case® u® of [id = t1 | raise = t0])° = [Jug1 = t1 | Juo =] : X > Z.

17



uy
Xu,l Y

) .
Ju,l____.--- id?

f/-’j/f— (case® u of[id=>t1 |raise=>to] )¢
X< w vZ —z

Juo raise” .

This means that the computation “case® u of [id = t; | raise = t¢]” is characterized, up to =, by the
equations:

case® u of [id = t; | raise = tg] 0 (ju1 = t1 and case® u of [id = #1 | raise = to] o (ju,0 =° to -

3.6 The exceptional case construction

Let us come back to the declarations of exceptions. The declarations “Exception e; of P;”, for 1 <14 < k,
add to the decorated specification a sum of a new kind, called the ezceptional sum, which allows to test
which one among the e;’s is some given exception. In the illustrations, it is assumed that k = 2.

Definition 3.13 Let ef : P; — 0, for 1 <14 < k, be the exceptions in some given decorated specification.
The exceptional sum is the cocone with vertex 0 and with coprojections the computations ef’s for 1 <
i < k:

k
Z(ef P — O) .
i=1
. B
ef -
0%
eg.. P,

The exceptional sum is quite special: Its coprojections are computations, instead of values; it is used
only inside a handle construction (section 3.7). The exceptional sum enjoys a decorated version of only
one among the properties of sums, namely the well-behaviour, as follows.

Definition 3.14 Let u¢: X — 0 be a computation, and let Ele (€5 : P; = 0) be the exceptional sum.
An inverse image of the exceptional sum by u° is an ~-unique =-sum:

k
Z(u_l(ei)” cuH(P) = X),
i=1
with values u? : u=!(P;) — P; such that for each i:

uwo (u t(e;)) = ejou;.

Rules 3.15 In a decorated domain, the exceptional sum has a chosen inverse image by every computation
with type 0.

18



Here is an illustration of the corresponding existence rule:

. Pl

P

Definition 3.16 Let u¢ : X — 0 be a computation, Zle(ef : P; — 0) the exceptional sum, and I a
subset of {1,...,k}. For each i € I, let ¢§ be a computation:

t:u T (P) =Y,
and for each i ¢ I, let t{ be the computation:
t¢ = (raisey ouou~'(e;)) :u " (P) = Y .

Then the computation “case® u of [e; = t;];er”, which is called an exceptional case construction, is
defined as:
(case® u® of [e; = t;licr )¢ = [u™(e;) = tili<i<k + X =Y.

u (en).. ¢ er . —c

—y

Z (case® uof[e;=>t;] )¢
<

This means that the computation “case® u of [e; = t; ];er” is characterized, up to =¢, by the equations:

case® u of [e; = t;]icr o (u™ (e;)) =t; ,for 1<i<k.

3.7 The keyword handle

The keyword “handle” has two arguments; for instance, in the term “p’ handle [e = 2]”, the arguments of
handle are p’ and [e = z], so that handle behaves, syntactically, as an infix binary operator. Informally,
there are two nested kinds of cases in a handling expression “t handle u”. The first one tests whether u
raises an exception, and when this is true, the second one tests which is the raised exception. The first
one is a case distinction over a computation, as in section 3.5, and the second one is an exceptional case
distinction, as in section 3.6. Now, the handling construction is easily defined from these two kinds of
cases.

Definition 3.17 Let u®: X — Y be a computation, and let (j;, ; : Xu,1 — X)+ (s, o : Xu0 = X) be the
inverse image of the sum Y =Y + 0 by the computation u®, together with the restrictions u} : X, 1 = Y
and u§ : Xy 0 = 0. Let Zle(ual(ei) s ug '(P;) = X,,0) be the inverse image of the exceptional sum
Zle e : P > 0 by the computation u§. Let I be a subset of {1,...,k} and for each i in I, let
5 : ual(Pi) — Y be a computation. To handle an exception arising from u® according to the match
[e; = t;]icr is to build the computation:

(u handle [e; = t;]icr)® = (case® u of [idy = u; |raisey =t]))*: X — Y,

19



where t¢ is the computation:

t° = (case® ug of [e; = t; licr)® : Xyo — Y .

1
u” (id)” _uc’l u? uo_l(m),i___uo (Pr) i
P \ P = \
X - (u handl”)7 Y Xu0 . te Y
u_l(raise.).."’"' = t© -1 u =° /
Xuo ug (e2) UEI(PQ) 2

The following result proves that the exceptions are handled as required; it can be compared to the rules
for “handle” in the definition of SML [21].

Theorem 3.18

o Let ug =€ uy : X = Y, with (from the ~-unicity of inverse images) the invertible values s :
ul_(l)(P,) — u;é(P,) fori=1,.. k. Iftf,: u;&(H) — Y for each |l € {1,2} and each i € I are
such that ta ; 0 5; =° t1 ;, then:

u1 handle [61' = tl,i]z’eI =° us handle [ei = t2,i]i€1 .

e For every value u’ : X - Y:
u handle [61' = ti]z’eI =‘u.

e For every computation u® = raisey ou' : X =Y where v'° : X — 0:
u handle [e; = t;];cr =€ case® u' of [e; = t;]ier -
If in addition u' = ejou" : X -Y for some j € {1,...,k} and some value u"" : X — P, then:
v handle [e; = t;)icr =°¢t; if j€I,
w handle [e; = t;];er = u otherwise .

Proof. The first point is an immediate consequence of the =-unicity in the case® and case® constructions.

For the second point, since u is a value, the inverse image of Y =Y +0 by wis (upto ~) X =X +0
with u; = v and ug = idg. Then, the “raisey” part of the definition of “u handle [e; = t;];” does not
play any role, so that the result follows.

For the last point, since u = raisey o 4/, the inverse image of Y =Y + 0 by uis (upto~) X =0+ X
with v} = raise¥ and u§ =u'°: X — 0:

uy =raise”
raise’_’__.-------' - ldu
c H !
= oy’ ——>
X w =raiseou Y<
idv e raise” .
X P 0
ug=u

Then, the “idy” part of the definition of “u handle [e; = ¢;];” does not play any réle, so that:

u handle [e; = t;]; =° case® u' of [e; = t; Jier -

20



Now, let u' = e; ou”, where u"” is a value. The inverse image of the exceptional sum by u' is such that,
up to ~:
WP =X, W) =idx , u (B)=0foriel,i#j.

It follows that:

case® u' of [e; = t;|icr =° t; .
If j € I this is the required result. Otherwise, ¢; is the default computation:

t; = raisey ou' o (u' " (e;)) =° raisey ou' =u,

so that, as required:

case® u' of [e; = t;]icr = u .
O

The next result derives immediately from theorem A.31. Essentially, it has the following meaning. Let
o : X1 — Y be a morphism of decorated specifications. Let Ele(e‘{,i : P1 ; = 0) be the exceptional sum
in ¥4, let P, ; = 0(P1;) and ez ; = o(eq,;) for each ¢, so that Zle (€5, : Po,i — 0) is the exceptional sum
in 5. Let u§ : X; — Y7 in 31 and u§ = o(u§) : X2 — Y3 in ¥y, For each ¢ in some subset I of {1,...,k},
let 7 ; : urt(Py;) = Y in % and 5, = o(tf,;) : uy'(Ps;) = Ya. Let %) be made of ¥ together
with (u1 handle [61,,' = tl,i]ie[)c : X1 — Yl, and EIQ of Yo together with (UQ handle [62’1' = tzﬂ']jej)c :
Xy — Y5. Then the unique way to extend o to ¢’ : £{ — X} is to map (u; handle[e1,; = t1,]icr)¢ to
(up handle [e2; = t2;]icr)C.

Theorem 3.19 Handling a given exception arising from a computation u® according to a match [e; =
tilicr of a decorated specification ¥ is natural in X, u and the t;’s.

Example 3.20 In our example, there is only one exception e, and it has no parameter, so that &k = 1
and P; = 1. As an example of a proof in the decorated logic, let us now prove that:

" _—c

p p-
From example 3.1, p? is the value:
p’ =caseidof [s=id|z=z]=[s=1id |z = z]: Nat — Nat .
On the other hand, from example 3.6, p'® is the computation:
,

p'‘ =caseid of [s = id | z = raiseoe] =[s = id | z = raiseoe] : Nat — Nat .
It follows that:

id”
Nat — = Nat
s, id® .-
e = L
Nat —»'*— Nat
s raise® ..

=

. 0
e

Hence, up to ~, the inverse image of the sum Nat = Nat + 0 by the computation p’ is Nat = Nat + 1,
with coprojections s and z, and with p;” = id and p{“ = e. Thus:
p"" = p' handle [e = 2] =° case® p' of [id = id | raise = u] =° [s = id | z = u] : Nat — Nat ,
where:
u®=case eof [e=2]=°2:1— Nat .
It follows that:
p'=°[s=1id |z = z]:Nat — Nat,
thus, from the =-unicity of matches, p" =°¢ p. Since p is a value, it follows that the computation p",
actually, never raises an exception.

21



3.8 Records of computations

As mentioned in section 3.2, the product of types behaves nicely with respect to values, not with respect to
computations. However, usually, some kind of records of computations are used, but, from an operational
point of view, the value of these records may depend on the evaluation strategy. Here, we describe this
kind of record in a way which corresponds to the SML strategy: record expressions are evaluated from
left to right. For simplicity, let us focus on the binary case. let ¢ : X — Y and u° : X — Z be two
computations, then the computation (¢,4)¢ : X — Y x Z should behave as follows: if ¢ raises an exception
e, then (¢,u) also raises e, otherwise if u raises an exception €', then (¢,u) also raises €', and otherwise
(t,u) returns the pair of the results of ¢ and w.

It follows from this description that the definition of (¢,u)¢ involves two nested cases over computations
(as defined in section 3.5), according to ¢ and u respectively, and a record of values.

More precisely, let us consider the inverse image of the sum Y =Y + 0 by the computation ¢ : X — Y:

.
v X1 Y
Jea id®

L = e
X tc—=Y
.. ~*
e = raise’ ..
X0 0

Then, let X = Xiqand 4 = uojy : X - Z, and let us consider the inverse image of the sum Z = Z+40
by the computation u¢:

~v

u

> 1
-y — >
.y Xu,l B Z
Jug id”
oz - 7 &
uc—=
X3 ~.
=
iz o - raise?
Ko — 0

Definition 3.21 Let t°: X — Y and u® : X — Z be two computations, and let T = X x Z. With the
notations above, the record of t¢ and u° is the computation (¢,u)¢: X — T

(t,u)® = case® t of [idy = w | raisey = raiserotg] : X — T,
where w® : X — T is the computation:

w® = case® u of [idz = (to jz1,u1)" | raisey = raiser o g : X ——T.

Omitting the records and matches, this definition can be illustrated as:

N 4 .
~N
~

fapd ~

N X T
Ja o7 id?
P ~ -
Jea Uup 27 Pz
X S Xt,l =X VA T
. <. raise”
gy Ko = 07/ iser
X0 - 0
t
0



The equations py o (t,u) =t and pz o (t,u) = u do not hold here, in any relevant decorated way. This
means, as is well known, that the usual rules for eliminating products do not hold for the products of
computations.

However, some version of the usual compatibility properties still hold for records of two computations.

Proposition 3.22 Let t°: X - Y and u®: X — Z be two computations, and let T =Y x Z.

o Lett' =°t and u' =° u, then:
t,u)=(tu): X > T.

o Letw': X' = X be a value, then:

(t,u)ow =° (tow,uow): X' = T.

The following result proves that the record (¢,u)® has the properties which are required for formalising a
left-to-right evaluation strategy.

Theorem 3.23 Lett°: X — Y and u®: X — Z be two computations, and let T =Y x Z.
e Whent and u are values, then (t,u)¢ =° (t,u)".
o When t° = raisey o t' for some computation t'°, then (t,u)¢ = raiser ot'.
o When t is a value and u® =° raisez o u' for some computation u', then (t,u)° =° raiser o u'.

Proof. For the first point, since ¢ and u are values, the “raisey” and “raisez” parts of the definition of

(t,u)¢ do not play any réle and (up to ~) jy1 =idx, t; =t, X = X, & =u, jz1 = idx, 41 = u, so that:

(t,u)® =° (t1 0 ja, ) =° (t,u)" .

For the second point, since ¢t = raisey o t', the “idy” part of the definition of (¢,u)¢ does not play any
role and (up to ~) ji0 = idx and to = t/, so that:

(t,u)® =° raiser o tqg =° raiser ot' .

For the last point, since t is a value and u = raisez ou/, the “raisey” and “idz” parts of the definition of
(t,u)¢ do not play any role and (up to ~) ji1 =idx, t1 =t, X = X, U = u, jgo = idx, U = v/, so that:

t,u)¢ =° raiser o 4y =° raiser ou’ .
b)

3.9 Records of a value and a computation
Let us now focus on an intermediate situation, where ¥ : X — Y is a value and u® : X — 7 is a
computation. Then the record (¢,u)¢ gets simpler, since the sum t~1(Y + 0) is X + 0, so that X = X,

ti =tand u = u:

(¥, u)° = case® wof [idz = (t 0 ju1,u1)" | raisez = raiseroug] : X — T .

23



) Y

(tOJV ‘\ pUY

N

~

- Xu,l T

Ju,1 g
\ _ <Y
£ Uy A Pz
A
0

X

<.

T

Jujo
0 Xu,O

/

raise”

-
Ug

Proposition 3.24 Lett' : X = Y be a value and u° : X — Z a computation, then:
((tw)) (Y +0) ~u ' (Z+0).
Proof. From the definition of (¢,u)¢ when ¢ is a value, we get:

(toju,1,u1)”
Xu,l = T

)
]u,l____.--' . id?

X1l

—e

jz,o...""- raise”.""'--.._
Xu,O 0

-
Ug

Then, the result follows from the ~-unicity of inverse images. [

Clearly, the other way round, the record (tV,u°)¢ could be first defined as above:
(¥, u®)° = case® u of [idz = (t 0 jyu,1),u1)" | raisez = raiseroug] : X — T .
and then (t°,u°)° could be defined as:
(t,u)® = [Jeq = (1,1 05¢,1)°) | je,o = raiser oto |°.

th

A

J'Z),o.
Xt o 0

e

0

There is still another way to define a record of computations from a record of a value of a computation,
which does not involve any sum. It is based on the remark that, in the basic logic, a record (¢,u) can be
decomposed as follows, where p and ¢ are the projections from X x Y:

(t,u) = (q,uop)o (idx,t)

idx §¥\ q Z*\
X ([dx,t) —= X x Y (q,u0p) Y xZ
i S o PPt

In the decorated logic, the following result proves that a similar property allows to express a record of
computations as the composition of two records of a value of a computation.

24



Theorem 3.25 Lett®: X —» Y and u®: X — Z be two computations, then:
(t,u)=° (¢°,uop)o(id%,t): X >Y xZ.

Proof. Since (omitting some subscripts):
(t,u)° = [jr,1 = (t},u011)°) | jro = raiseotqy |,
the result will follow from:
(g,uop)o(idx,t) oji1 =° (t],u0js1) and (g,uop)o (idx,t) o jso =°raiseoty .

On the one hand, since jy; is a value:

(idx,t) o jea =° (Je,1,t 0 Je,1)
and since ¢ o ji 1 = t;, which is a value, we get:

(idx,t) 0 e =° (Je1,t1)" -
Again, since (ji,1,t1) is a value:
(q,uop)o(idx,t) o ji,1 =° (go (Jea,t1),uopo (Jri,t1)) =€ (t1,uo ji1) ,

which proves the first equation.
On the other hand, since j; ¢ is a value:

(idx,t) o jro = (Jz,0,t © j,0) -
Since t o j; o =° raisey o tg, according to theorem 3.23:

(idx,t) o jt,0 = raisex xy o tg .

Then:
(g;uop)o(idx,t) o jro =° (¢, u o p) oraisexxy oto ,

and since exceptions propagate (theorem 3.4), this yields:
(qa U Op) o (ldX7 t) o jt,O =° I‘a‘iseT o tO )

which proves the second equation. [

The values in the records that occur in theorem 3.25 are respectively an identity idx and a projection q.
Thus, from an operational point of view, each of these records correspond to keeping some information
in memory, while dealing with some computation.

Moreover, the record of a value and a computation enjoys a decorated property for the elimination of
products, in contrast with a record of two computations. First, let us introduce a new decoration ne for
an “equation when the results are non-exceptional”.

Definition 3.26 Let u¢: X — Y be a computation and t¥ : X — Y a value. Let us consider the inverse
image of Y + 0 by u:

1
W Xy ——————=Y
Jua o id®
s - £
X uw—=Y
~.. .
. .
Jv o - raise” ..
Xu,O — 0
u,

Then an equation when results are non-exceptional between u and ¢ is written v =™ ¢t and it means that:

="t = uoju1 ='tojy1 <= ur ="1t05yu1 -

25



This decoration ne for equations has to be handled with care: it does not generate a congruence, not
even an equivalence relation. Here are some of its few properties.

Proposition 3.27
o An equation when results are non-exceptional between values is equivalent to o value equation:
u’l) Ene t’U : 3 u’l} E’U t’l) X

e Values can be substituted in an equation when results are non-exceptional: if t' is a value, and t'
and t are consecutive, then:

u® ="tV = (ot =" (tot').
Now, the decoration ne can be used for decorating the elimination property of products, as follows.

Proposition 3.28 For every value t¥ : X =Y and every computation u®: X — Z, the record (t’,u°)° :
X o> T, where T =Y X Z, is the =°-unique computation from X to T such that:

py o (t,u) ="t and pzo (t,u) =u .

The existence part of this property is illustrated as follows.

Y Y Y v

v N~ Py PG v LY Py

/ K 1 k—) /: I \
X _ T X (t,u)® > T

xzi Pz X_Zﬁ Py

Proof. Since t is a value, as above:

(t¥,u)° = case® w of [id = (t 0 jy,1,u1)" | raise = raiseoug] : X — T .

P Xu,1 where
w1

. . Y
K \% R
. = = ~
« N
X < (tw)° Y Xu,l (toju,1,u1)® 9/ T
_e v -
R raiseouo)” W e

Thus, on the one hand:

py o (t,u)* 0 jur = py o (tofjur,ur)” =10 ju

Since t is a value, from proposition 3.24, ((t,u)®)™1(T +0) ~ u~=*(Z + 0).
Since py is a value, from proposition 3.10, (py o (t,u)¢) "1 (Y +0) ~ ((t,w)¢) (T +0).
Let w® = py o (,u)°, we have proved that w 1(Y +0) ~ u~1(Z +0), so that j, 1 can be replaced by jy 1
in the equation above, leading to:
w ij,l =t ij,l )
which means that w =" ¢: this is the first congruence to prove.

On the other hand:
pz o (t,u)° 0 jyu1 = pzo(tofy1,u1)’ = ur =°uo gy

26



and:
pz o (t,u)€ o jy 0 =° pz oraiser o ug =° raisez o ug =° w0 jy 0,

so that pz o (¢,u)® = u, which is the second congruence to prove.
Now, let us prove the =¢-unicity. From its definition, (¢,u)¢ is the =°-unique computation such that:
py o (t,u)° 04,1 = toj,1 and pgo (t,u) 0,0 = u; and (¢, u)®oj,1 = raiser oug .
Now, let w® : X — Y be such that:
pyow="°t and pzow=°‘u.

From proposition 3.10, since pz o w =° u where pz is a value, we get w™ (T 4+ 0) ~ u~*(Z + 0). Thus,
the first assumption on w means that:

Py Owo fyu1 =10y .
From the second assumption on w, and the fact that u o j, 1 =° u1, we get:
PZOWO jyu1 = Uy .
From the second assumption on w, and the fact that u o j, o =° raise o ug, we get:
Pz 0w o o =° raisez owup .
According to proposition 3.11, the raising of exceptions can be “propagated back” along values, so that:
W 0 Jy,0 =€ raiser o ug .

Finally, the three equations that characterise (¢,u)® up to =° are satisfied by w®, which proves that
w =° (t,u)°, as required. O

3.10 The decorated logic

The decorated propagator Pyeco takes into account all these properties. First, in order to deal with values,
Pyeco contains a copy Py,., of the basic propagator Phasic.

Then, in order to build computations and equations between them, Pyeco also contains a copy Py, ., of

the part (called Peq in section 2.1) of the basic propagator Ppasic which deals with terms and equations.
Since every value can be considered as a computation, in a decorated specification every value may (and

not must) be coerced to a computation, there is in Pyeco another copy P} ’¢ of Peq, with a span:

P’U—)C

deco

N

v c
Pdeco Pdeco

The morphisms in this span are called coercions. For instance, the composition in Spagic:

comp
Comp ————— = Term

gives rise in Sgeco to the commutative diagram:

v—C
comp
Comp? ¢ Term?—°
Comp? Comp* Term? Term®
comp” comp®

27



Moreover, since the types are not decorated, the points Type®, Type’ "¢

unique point Type.

and Type® are identified in a

In a decorated domain, every value is a computation, so that the coercion from S¥7¢ to S” gets invertible
in Sgeco-

The construction “case u of [j; = t;];” where the t;’s are computations and w is a value builds another

link between Pj,. and Pf,... The constructions case® and case®, for cases over a computation and
exceptional cases, are also added. Then, the raise and handle constructions, as well as the records of

computations, are defined from the existing decorated sums and products, following the previous sections.

If the sums were forgotten, from section 3.9, the records of computations could be defined from the records
of a value and a computation, which in turn satisfy a decorated product property (proposition 3.28).
Hence, roughly speaking, when the congruence is the equality, a decorated domain corresponds to a
morphism, that is the identity on objects, from a category with products to a category with some “kind
of” products; more precisely, it corresponds to a Freyd category, in the sense of [25].

The decorated logic is the diagrammatic logic associated to the propagator Pyeco-

3.11 Decorated models

Definition 3.29 Let X4eco be a decorated specification and Ageco a decorated domain. The set of
decorated models of Xgeco with values in Ageco is defined as in appendix A:

MOddeco(Edecm Adeco) = HomDom(Pdeco) (FPdem (Zdeco); Adeco) ~ HomSpec(Pdeco) (Ede(:o; GPdeco (Adeco)) .

For each set E, the decorated domain Setgeco[E] is defined in section 3.2: it is some kind of “decorated
domain of sets”, which depends on E; hence, a model of a decorated specification with values in some
Setgeco[F] is called a “set-valued” model.

Definition 3.30 Let Y4eco be a decorated specification. For each set E, a set-valued decorated model
of Ydeco With set of exceptions E is a decorated model of Ygeco with values in the decorated domain

Set deco []E] .

Let M be a set-valued model of Ygeco With set of exceptions E, then it must interpret 0 as the empty set,
and each exception ef : P; — 0 as a map &; : M (P;) — E, since § + E = E. The exceptional sum must be
interpreted as a sum ¢; : M(P;) - E.

3.12 The undecoration morphism

The decorated propagator Pyeco has been built by classifying the features of the basic propagator Ppasic-
The other way round, by forgetting the decorations, one gets a morphism from Pyeco 10 Phasic-

Definition 3.31 The undecoration morphism:
0 : Pyeco — Poasic

forgets about the decorations, which means that S¢ is mapped to S for every point S of Spasic, and s?
is mapped to s for every arrow s of Spasic.

Since it is a morphism of propagators, the undecoration morphism gives rise to an adjunction between
the basic specifications and the decorated specifications, and to an adjunction between the basic domains
and the decorated domains. Each decorated specification Y4eco freely generates a basic specification
Yhasic = F5(Zdeco), simply by forgetting the decorations.

28



Decorated products and sums in Y4eco give rise to ordinary products and sums in ¥pagc. It follows that
decorated records and cases give rise to ordinary records and cases. The types 1 and 0 with respect
to values, in Ygeco, give rise to the types 1 and 0 in ¥ya5.. The sum Y = Y + 0 gives rise to the
sum Y =Y + 0, every computation u® : X — Y gives rise to a term v : X — Y, so that the sum
X = Xy, + Xy 0 gives rise to the sum X = X 4 0. The exceptional sum in Ygeco gives rise in Ypasic to a
sum with vertex 0. Hence, the undecoration morphism allows to get a simplified view on the terms and
equations, by forgetting all the decorations. It allows to get a simplified view on the proofs, since the
image of a proof in the decorated logic is a proof in the basic logic. This can be stated as:
“A proof in Ygeco is a proof in Ypasic which can be decorated”.

This yields a two-step method for checking a proof in the decorated logic: first, the proof without its
decorations must be valid in the basic logic, then it must be feasible to add the decorations in a way that
is valid in the decorated logic.

However, this simplified view “does not preserve the models”: for instance a constant exceptione®:1 — 0
in Ygeco gives rise in Yp,sic to a term e : 1 — 0, which has no set-valued interpretation. More precisely, it
follows from proposition A.34 that, for each decorated specification Ygeco and each basic domain Ay g;c,
there is a natural bijection:

MOddeco(Edecm Gs (Abasic)) A MOdbasic(Ebasic; Aba»sic) .

When Aypggic = Set, it is easy to check that Gs(Set) is the trivial decorated domain of sets Setgeco[d],
as described in section 3.2. But the models of interest are the models of Xgeco With values in Setgeco[E]
for some non-empty set E.

The models of Tpagc form the naive semantics of Ygeco, in the sense of [15]. In section 4, another
morphism from the decorated propagator to a “classical” (non-decorated) logic is defined, which “does
preserve the models”.

Example 3.32 In X4 basic = Fo(Enat,deco), there is a term e : 1 — 0, so that this basic specification
has no set-valued model.
In ¥pat,deco, the computations (involving the three kinds of decorated cases):

p'® = caseid of [s = id | z = raise o e] : Nat — Nat

and:

p"“ = p' handle [e = 2] = case® p' of [id = id | raise = u] : Nat — Nat

where:
u® = case® eof [e = 2] : 1 — Nat

give rise in a4 basic t0 the terms (involving three times the basic case distinction):
p' = caseid of [s = id | z = raise o €] : Nat — Nat

and:
p'' = case p' of [id = id | raise = u] : Nat — Nat

where:
u=caseeof [e= z]:1— Nat.

It can be proved that p” = p in X4t basic, by undecorating the proof from example 3.20. This means that
p , g

the inverse image of the sum Nat = Nat + 0 by p’ has to be chosen as Nat = Nat + 1 with coprojections
s and z, instead of Nat = Nat + 0 with coprojections id and [ ]. Indeed, both sums are equivalent in
Y nat,basic, but only the first one can be properly decorated.

29



4 A logic with explicit exceptions

In this section, exceptions are considered in an ezplicit way, which means that there is a type of excep-
tions E which formalizes the set of exceptions, and that E appears in the type of a term, as soon as this
term may raise an exception. This corresponds to the explicit logic, which has no decorations. It is an
enrichment of the basic logic with a distinguished type E. The expansion morphism x from the decorated
logic to the explicit logic is described in this section. It is proved in theorem 4.6 that, for any decorated
specification Ygeco, the freely generated explicit specification F, (Xqeco) makes ezplicit the meaning of
the exception mechanism, in the sense that the set-valued decorated models of Y4eco, can be identified
with the set-valued basic models of Fy, (Zgeco). Thus, our direct semantics is equivalent to the monadic
semantics.

An explicit specification is a Pexpi-specification, an explicit domain is a Pexp-domain.

4.1 The explicit logic

Definition 4.1 The explicit propagator Pexpi : Sexpl —* gexpl is the basic propagator Ppasic together with
an arrow:
E: 1T — Type

The explicit logic is the diagrammatic logic associated to the propagator Pexpi-

Hence, an explicit specification (resp. an explicit domain) is a basic specification (resp. a basic domain)
together with a distinguished type, still denoted E.

The ezpansion morphism:
X : Paeco = Pexpl

is defined below. Actually, x is a generalized morphism, in the sense of section A.2: it maps Pgeco tO
some enrichment of Pexpi, which is equivalent to Pexpi-

From corollary A.13, x is characterized by a generalized morphism of projective sketches:

X - Sdeco = Sexpl

such that, for each active deduction rule s™' of Pieco(s), the arrow x(s) in Sexpi becomes invertible

in Sexpl, via Poxp. Moreover, as explained in corollary A.20, since our goal is to describe the explicit
specification Fy (Zgeco) for any decorated specification Ygeco, we do not have to describe directly x, but
rather the contravariant functor (where Yonexp = Yons,, , and Yongec, = Yong,,..):

expl
W = Yonexpi 0 x ~ Fy 0 Yongeco : Sdeco %= Real(Sexpl) ,

since Fy (Xdeco) is isomorphic to a colimit of images of W. The contravariant functor W must be such
that, for each active deduction rule s~! of Pyeeo(s), the morphism W(s) of Peypi-specifications becomes
an isomorphism between the freely generated Feyp-domains.

Now, the contravariant functor W is described, in a progressive way. Each explicit specification contains
one copy of the distinguished type E, but in the illustrations below, for clarity, any number of copies of £
may appear: from no copy, when E is not used, to several copies, when this improves the readability. Let
Ydeco denote a decorated specification, and Zexpr = Fy (Zdeco) the freely generated explicit specification.

30



4.2 Types, terms, equations

A type X in ¥geco remains a type X in Fy (Zgeco), so that the explicit specification W(Type) is simply

made of one type:
W(Type) = Yonexpi(Type) =

For each type X distinct from FE, the coprojections from X and E to the sum X + FE are denoted
respectively ix and rx:

A decorated term t¢ : X — Y in Sgeco remains a term in Fy (Zgeco), but its type and context depend on
its decoration d.

A value t¥ : X — Y becomes a term ¢, : X — Y, so that the explicit specification W(Term?) is:

W(Term’) = Yoneypi(Term) = X

e

Y

A computation #¢ : X — Y becomes a term t. : X = Y + E, so that the explicit specification W(Term®)

1S:
X

Y o ....>Y+E< .......... E
Y TY

k3

W(Term®) = | X

Moreover:

W(Term"7¢) = | X

s,

Y oo Y>Y+E< .......... E

7 TY

The coercions from Term’ ¢ to Term” and to Term® are mapped by W on the injections of W(Term?) and
W(Term®) in W(Term?¢). The injection of W(Term”) in W(Term”¢) becomes an isomorphism on the
freely generated explicit domains, as required: every value may be seen as a computation.

The morphisms W(type?) : W(Type) — W(Term?), for each decoration d, map X to X.
The morphisms W(context?) : W(Type) — W(Term?), for each decoration d, map X to Y.

The values are composed in the usual way:

W (Comp”) = Yonexpi(Comp) =

b

ty

Uy Oty

Uy

N <<

31



The computations are composed in the Kleisli way (in the monads approach, this composition is part of
the description of the monad of exceptions):

W(Comp®) = (X

[ty = uc|ry =rz]ot.

/R e VA +E<1‘z ........... E

1z

It follows from the description of W(Term?~¢) and W(Comp®) that the composition of a value t¥ and a
computation u¢ is such that:

(uot) =liy = uc |1y = rz]ote =iy = uc | ry = rz]oiy oty =ucot,

Z Z>Z+E<'r‘z ....... E

(3

About equations, the description of W(Eq) and W(Eq°) is straightforward.

W(EQ") = Yonexpi(Eq) = X
ty (E)/uu
Y
W(EQ®) = | X ..
te N

Y ........... >Y+E< .......... E

According to [4], an extensive category with products is distributive, and the coprojections are monic in
a distributive category. Similarly, the coprojections are monic, up to =, in the explicit logic. Hence, the
expansion preserves the property that a computation equation between values is equivalent to a value
equation.

4.3 Products and sums

Every product []7,(p? : Y = V;) in Zgeco is expanded as a product [, (piv : ¥ = V) in Sexpr, s0
that the terminal type 1 for values in ¥qeco is expanded as the terminal type 1 in Yexp1. In this way, the
properties of products of values in the decorated logic get satisfied by their images in the explicit logic.

Similarly, every non-exceptional sum Y.»  (j¥ : ¥; = Y) in Sqeco is expanded as a sum Y. (jio :
Y; = Y) in Eexpi, so that the initial type for values 0 in Xgeco is expanded as the initial type 0 in
Yexpl, and the value raise}, = []" : 0 = Y gets expanded as [ ], : 0 = Y, for each type Y. In this

32



way, the properties of sums of values in the decorated logic get satisfied by their images in the explicit
logic. This includes the existence and unicity, up to =, of the inverse image of any value ", which gets
expanded as the inverse image of the term u,. This also includes the property that there are matches
of computations ; indeed let (t{ : Y; = Z)1<i<n be computations in Zgeco, they get expanded as terms
(tie 1 Yi = Z 4+ E)i<i<n, and the computation [t; | ... | t,]° : ¥ — Z gets expanded as the term
1] .- | tnle=T[t1,c| | tne:Y > Z+E.

Let us now look at the cases over computations. Let u¢ : X — Y be a computation in Ygeco, then the
inverse image of the sum Y =Y 40 by u® is a sum X = X, 1 + X, o together with a value u} : X1 = Y
and a computation uf : X, 0 — 0 satisfying the equations uo j,, 1 =° u; and wo j, ¢ =° raisey o ug. From
section 4.2, the expansion of the equation u o j,1 = u; is the equation:

U © Ju,1,0 = U1,c Where ui =iy ousy,
and the expansion of the equation u o j, 0 =° raisey o ug is the equation:
U © Ju0,0 = ([]v)e 0 ug,. where ([]y)couo,c =7y oug, .

This means that the expansion of this inverse image in Y 4eco is the inverse image of the sum Y + FE by
the term u, : X = Y 4+ E in Zexpl.

U1,
. Xu,l "~ Y
Ju,1,v .-

Vi -

X———u>Y+FE
X ~
L = Ty
Ju,0,0

Xu,O u0,e E

Now, let us look at the exceptional cases. The exceptions ef : P; — 0 are computations, so that they
get expanded as e; . : P; = E. The image of each exceptional sum in Y4ec, is a sum, with vertex F, in
Yexpl- The expansion of an inverse image of an exceptional sum in Ygeco is the inverse image of a sum
with vertex E in Yeyp.

Since the raising and handling of exceptions, as well as the records of computations, have been defined
in terms of these sums and products, they get expanded accordingly.

4.4 The expansion morphism

In sections 4.2 to 4.3, the contravariant functor:
W = Yonexpi © X : Sdeco % Real(Sexpi)

is defined, from which the generalized morphism x : Pgeco —+ Pexpl follows, by the properties of the
Yoneda functor.

Definition 4.2 The expansion morphism:
X : Paeco = Pexpl

is the unique generalized morphism from Peco t0 Pexpi, such that W = Yonexpi o x.

Example 4.3 Let Tpapexpt = Fy (Znat,deco): it is made of a copy of pa0 from example 2.16, with the
index v, together with e, : 1 — E, which has to be a sum, which means that e, has to be an isomorphism.



with the product: and the sums: ‘Nat  and:

4.5 Explicit models

Definition 4.4 Let Ty be an explicit specification and Aexp an explicit domain. The set of ezplicit
models of Yexpl with values in Aexpi is defined as in appendix A:

Modexpt (Zexpl; Aexpl) = HomDom(Pexpl)(FPexpn(EeXPl)a Aexpl) = Homspec(Pexpl)(Eexp17 Gr.,. (Aexpl)) -

Each set E gives rise to an explicit domain Setexpi[E], made of the basic domain Set together with the
distinguished set E.

Definition 4.5 Let Ycxp1 be an explicit specification. For each set E, a set-valued explicit model of Yexp
with set of exceptions E is an explicit model of X, with values in the explicit domain Setexpi[E].

This means that it is a set-valued explicit domain is a set-valued model (in the basic sense) such that the
interpretation of the type E is the set E.

Since it is a morphism of propagators, the expansion morphism gives rise to an adjunction between the
explicit specifications and the decorated specifications, and to an adjunction between the explicit domains
and the decorated domains. Each decorated specification Yqeco freely generates an explicit specification
Zexpl = Fy(Zdeco). By corollary A.20, the freely generated specification exp can be built from the
images of W:

Texpt = Fy(Zdeco) ~ colim(s, ., \2yeeo)or (W(S)) -

It follows from proposition A.34 that, for each decorated specification Y4eco and each explicit domain
Agxpl, there is a natural bijection:

MOddeco(Edecoa G&(Aexpl)) jad MOdexpl(Eexpla Aexpl) -

For each set E, when Agxpr = Setexpi[E], it is easy to check that G (Setexpi[E]) ~ Setgeco[E], so that the
expansion morphism “does preserve the models”.

Theorem 4.6 (Denotational semantics of exceptions) Let Ygeco be a decorated specification, and
let Yexpt = Fy(Zdeco). For each set E, there is a natural bijection:

MOddeco(Zdeco; Setgeco []E]) ~ MOdexpl(Eepr Setexpl []E]) .

The explicit models of Eexp1 with values in Setexpi[E] form the monadic semantics of exceptions, in the
sense of [15]. Thanks to theorem 4.6, they can be identified to the decorated models of T geco with values
in Setgeco[E], so that these decorated models provide a direct semantics of exceptions.

34



5 Conclusion and further work

We have defined three propagators, for three diagrammatic logics, related by two morphisms:

decorated logic
direct semantics

F, deco
undecoration ETPANSIon
5 X
basic logic explicit logic
naive semantics monadic semantics
g basic P, expl

The decorated logic provides a syntax, a deduction system and a direct denotational semantics for ex-
ceptions. The undecoration morphism gives a simplified view on the syntax and the deductions, while
the expansion morphism provides the monadic semantics of exceptions.

This work could be improved by taking into account the extensibility of exceptions, as in SML.

This work could also be completed in the operational direction. It has been stated in section 3.12 that “a
proof in Ygeco is a proof in Yy ,sic which can be decorated”. In order to go further, it should be possible
to extend this from proofs to computations, so that “a computation in Y4eco is @ computation in Yy asic
which can be decorated”. This could rely on [17] and on [12, 13].

Another direction for future research is to use a similar approach, via morphisms of diagrammatic logics, in
order to study other effects, like the side-effects due to the state in imperative languages. The combination
of various effects should run smoothly in our diagrammatic framework. Other computational features,
like the overloading of terms, can also be studied from this point of view; this looks quite promising, as
suggested by [9].

References

[1] A. Asperti, G. Longo. Categories, Types and Structures. An introduction to Category Theory for the
working computer scientist. M.I'T. Press (1991). http://www.di.ens.fr /users/longo/download.html

[2] M. Barr, C. Wells. Category Theory for Computing Science, Prentice Hall (1990).

[3] J. Bénabou. Les Distributeurs. Rapport de [’Université Catholique de Louvain, Institut de
Mathématique Pure et Appliquée 33 (1973).

[4] A. Carboni, S. Lack, R.F.C. Walters. Introduction to extensive and distributive categories, J. Pure
Appl. Algebra 84145-158 (1993) .

[5] L. Coppey. Théories algébriques et extensions de pré-faisceaux, Cahiers de Topologie et Géométrie
Différentielle 13 (1972).

[6] L. Coppey, C. Lair. Lecons de Théorie des esquisses (I), Diagrammes 12 (1984).
[7] L. Coppey, C. Lair. Lecons de Théorie des esquisses (II), Diagrammes 19 (1988).

[8] D. Duval. Diagrammatic specifications. Mathematical Structures in Computer Science 13 857-890
(2003). This is the journal version of [10].

35



[9] D. Duval, C. Kirchner, C. Lair. Subtypes and Subsorts in Overloaded Specifications Rapport de
Recherche IMAG-LMC 1058 (2003) http://www-1mc.imag.fr/lmc-cf/Dominique.Duval/

[10] D. Duval, C. Lair. Diagrammatic specifications. Rapport de recherche IMAG-LMC 1043 (2002).
This is a preliminary version of [8]. http://www-1mc.imag.fr/lmc-cf/Dominique.Duval/

[11] D. Duval, C. Lair, C. Oriat, J.-C. Reynaud. A =zooming process for specifications,
with an application to exceptions Rapport de Recherche IMAG-LMC 1055 (2003)
http://www-1lmc.imag.fr/lmc-cf/Dominique.Duval/

[12] D. Duval, J.-C. Reynaud. Sketches and computation (Part I): Basic Definitions and Static Evaluation
Mathematical Structures in Computer Science 4 185-238 (1994)

[13] D. Duval, J.-C. Reynaud. Sketches and computation (Part IT): Dynamic Evaluation and Applications
Mathematical Structures in Computer Science 4 239-271 (1994)

[14] C. Ehresmann. Introduction to the theory of structured categories. Report 10, University of Kansas,
Lawrence (1966).

[15] C. Fiihrmann. The structure of call-by-value. PhD thesis, Division of Informatics, University of
Edinburgh (2000).

[16] M. Hébert, J. Addmek, J. Rosicky. More on orthogonality in locally presentable categories. Cahiers
de Topologie et Géométrie Différentielle Catégoriques XLII-1, 51-80 (2001).

[17] C.B. Jay. Tail recursion through universal invariants. Theoretical Computer Science 115 151-189
(1993).

[18] C. Lair. Trames et sémantiques catégoriques des systémes de trames, Diagrammes 18, Paris, CL1-
CL47 (1987).

[19] C. Lair, D. Duval. Esquisses et spécifications. Manuel de référence, 4éme partie : Fibrations et
Eclatements, Lemmes de Yoneda et Modeles Engendrés. Rapport de recherche du LACO, Université
de Limoges 2001-03. http://www.unilim.fr /laco/rapports/.

[20] S. Mac Lane. Categories for the working mathematician, Springer-Verlag (1971).

[21] R. Milner, M. Tofte, R. Harper. The definition of Standard ML, MIT Press (1990).

[22] E. Moggi. Notions of computation and monads, Information and Computation 93, 55-92 (1991).
[23] G. Plotkin, J. Power. Semantics for algebraic operations. Electronic Notes in Theoretical Computer

Science 45, 1-14 (2001).

[24] G. Plotkin and J. Power. Algebraic Operations and Generic Effects. Applied Categorical Structures
11, 69-94 (2003). This is the journal version of [23].

[25] J. Power, H. Thielecke. Closed Freyd- and k-Categories Proc. ICALP’99, LNCS 1644 (1999).

[26] M. Tofte. Tips for Computer Scientists On Standard ML. Department of Computer Science, Uni-
versity of Copenhagen (1993). http://www.diku.dk/users/tofte/publ/publ.html

36



A Diagrammatic logic

A diagrammatic logic is made of a syntax, a deduction system and a sound notion of models. The syntax
tells which features can be defined (typically, axioms and theorems). The deduction system is such that
some features (typically, theorems) can be generated from some elementary ones (typically, axioms), and
any generated feature can be added to the elementary ones, changing neither the generated features nor
the models.

The papers [10, 8] introduce a framework for dealing with diagrammatic logic, which is based on projective
sketches, more precisely on propagators, which are quite simple:

a propagator is a morphism of projective sketches such that the associated omitting functor is full
and faithful®.

Any morphism of projective sketches gives rise to an adjunction, so that “features can be generated from
elementary ones”. The additionnal property of propagators ensures that “any generated feature can be
added to the elementary ones”. For instance, a propagator for a logic with records and case distinctions
is built in section 2.

In this appendix, the main definitions and results from [10, 8] are presented, together with a simplified
definition of a deduction step and a new result about the naturality of deduction steps (theorem A.31).
Some knowledge of category theory is assumed, which can be found in many textbooks, like [20] or [1].
As usual, the definitions and results in this appendix are valid only under relevant size assumptions.

A.1 Projective sketches

As explained in [10, 8], projective sketches are used at the meta-level in order to define a diagrammatic
logic. Sketches appear in [14], and an introduction to sketch theory can be found in [6, 7] or in [2]. Some
basic definitions are given below, together with the theorems which are used for defining diagrammatic
logic.

Definition A.1 A (directed multi-)graph is made of points and arrows, with a source and a target for
each arrow. A morphism of graphs is made of two maps, one for points and one for arrows, which preserve
the sources and targets. Graphs with their morphisms form a category Gr.

Definition A.2 A compositive graph is a graph where some points X have an identity arrow idx : X —
X and some consecutive pairs of arrows (f : X = Y,g:Y — Z) have a composed arrow go f : X — Z
(there is no assumption about associativity and unitary of composition and identities). A morphism of
compositive graphs is a morphism of graphs which preserves the identities and the composed arrows.
Compositive graphs with their morphisms form a category Comp.

In a compositive graph G, a cone is made of a vertex point G, a base morphism of compositive graphs
b:Z — G, and projection arrows py : G — b(I) for each point I in Z, such that b(:) o py = pp for each
arrow¢:1 — I' in 7.

Definition A.3 A projective sketch is a compositive graph where some cones are called distinguished
cones. A morphism of projective sketches is a morphism of compositive graphs which preserves the

distinguished cones. Projective sketches with their morphisms form a category PSk.

The vertex of a distinguished cone with an empty base is denoted 1.

IThis is slightly different from [8], where any morphism of projective sketches is called a “propagator”.

37



Definition A.4 A (set-valued) realization X of a projective sketch S, also called a S-realization, maps
each point S of S to a set X£(5) and each arrow s : S1 — S of S to a map X(s) : £(S1) — X(S2), in such
a way that each identity loop becomes an identity map, each composed arrow becomes a composed map,
and each distinguished cone of § becomes a limit cone in the category of sets. A morphism of realizations
of S is a natural transformation ¢ : ¥ — ¥'; this means that it is made of a map og : £(S) — ¥'(S) for
each point S of S, such that ¥'(s) o og, = og, 0 X(s) for each arrow s : S1 — S of S. The realizations
of & with their morphisms form a category Real(S).

A realization is often called a model of S. But here we speak about the realizations of a projective sketch
S at the meta-level, then we will speak about the models of a diagrammatic specification X at the level
of specifications.

Definition A.5 An arrow m : S — S’ in a projective sketch S is called a mono, and is represented as
S =" &' when there is in S a distinguished cone of the following form:

vabS

S S

NV S

SI

It follows that a mono becomes an injective map in each realization of S.

A.2 Adjunction
Let us consider a morphism of projective sketches:
M:85- 8.

The omitting functor Gy : Real(S') — Real(S) is such that Gy (X') = X' o M for all realization X' of
S'. The following major theorem about projective sketches is due to Ehresmann [14].

Theorem A.6 (adjunction theorem) The functor G : Real(S') — Real(S) has a left adjoint Fyr :
Real(S) — Real(S').

Fu

Real(S) Real(§’)

Gum

The adjunction determines two natural transformations: the unit 1 : idreaisy = G o Fyr and the
counit € : Fpr o Gy = idReal(s’)-

Definition A.7 The freely generating functor with respect to M is the left adjoint functor Fas of Gy

A morphism of projective sketches @ : & — &' is called an equivalence if both Fg of Gg are full and
faithful. The equivalence of projective sketches, as well as the equivalence of morphisms of projective
sketches (both denoted ~), are the equivalence relations generated by the fact that, if there is an equiv-
alence morphism ) : § — §', then:

-S§~8,

—for every M1 : 81 = S, Qo My ~ My,

—and for every M| : 8’ = S|, M{oQ ~ M.

38



It is easy to check that a morphism of projective sketches ) : S — &' that adds identity arrows to points
in S, composed arrows for consecutive pairs of arrows in S, and distinguished cones with their base in S,
is an equivalence.

The notion of morphism of projective sketches can be generalized as follows: a generalized morphism of
projective sketches from So to S is a morphism M : Sg — &' together with an equivalence morphism

Q:8§—-S8".

Equivalent sketches have equivalent categories of realizations (the equivalence of categories is also denoted
~): if § ~ &', then Real(S) ~ Real(S').

Definition A.8 A projective prototype is a projective sketch such that its underlying compositive graph
is a category and all its distinguished cones are limit cones. A morphism of projective prototypes is a
morphism of projective sketches.

Theorem A.9 (prototype theorem) FEach projective sketch S freely generates a projective prototype
Proto(S).

The prototype theorem can be derived from the adjunction theorem A.6, since the categories of projective
sketches and of projective prototypes can themselves be identified to the categories of realizations of two
projective sketches.

A.3 Propagators and distributors

Definition A.10 A propagator is a morphism of projective sketches P : S — S’ such that the functor
Gp is full and faithful 2.

Equivalently, P is such that the counit € : Fp o Gp = Real(S') is an isomorphism.
The following theorem is proven in [16].

Theorem A.11 (inversion theorem) A morphism of projective sketches is a propagator if and only
if, up to equivalence, it consists of adding inverses to arrows.

Definition A.12 A morphism of propagators « : P, — P5, where P, : §; — &) and Py : So — S} is a
pair of morphism of projective sketches, both denoted a:

a:8 -8 anda:S — S

such that o P, = Py o o

Py
S — s

P

S —2 o8

Propagators with their morphisms form a category Prop.

Theorem A.11 has the following corollary.

Corollary A.13 (morphisms of propagators) Let P, : S; — S; and P» : S; — S} be two propaga-
tors. A morphism of projective sketches o : Sy — Sz determines a morphism of propagators o : Py — Py
if and only if, for each arrow s in S such that Pi(s) is invertible in S, the arrow Py(a(s)) in Sy is
invertible in S}

21n [8], this is called a “fractionning propagator”.

39



Definition A.14 A distributor is a morphism of projective sketches D : & — 8’ such that the functor
Fp is full and faithful. 3.

Equivalently, D is such that the unit 7 : idreals) = Gp o Fp is an isomorphism.
The following theorem is the main result of [10, 8]; it states that, up to equivalence, any morphism of
projective sketches can be decomposed as a distributor followed by a propagator.

Theorem A.15 (decomposition theorem) Let M : S — S be a morphism of projective sketches.
There are a projective sketch S', a distributor D : S — S' and a propagator P : §' — S, such that:

M~PoD.
propagator _
S - S
distributorTD ~
S M

This decomposition is not unique. The proof which is given in [8] is an effective one: it builds explicitely
D and P in such a way that, in addition, the functor Fp is very easy to compute.

Example A.16 In the examples, “sketch” means “projective sketch”. Graphs are used at the meta-level,
for building sketches; at the meta-level, we speak about points and arrows, and about the source and
the target of an arrow. Graphs are also used at the level of specifications, for building various kinds of
specifications; at this level, we rather speak about types and terms, and about the contert and the type of
a term. Usually, types are built from elementary types, called sorts, and terms are built from elementary
terms, called operations, or operation symbols. In this example, there is no type constructor, and the
unique constructor for terms is the composition. In section 2, other constructors will be introduced.

Let Sgr be the sketch made of two points Type and Term for types and terms, two arrows type and
context for contert and type, and no distinguished cone:

type
Type S Term

context

The sketch Sg; is a sketch of graphs, in the sense that its category of realizations is isomorphic to the
category of graphs: Real(S;;) ~ Gr.

The sketch Sy, can be enriched in order to deal with consecutive terms. The resulting sketch S;, has a
point Cons for consecutive pairs (of terms), two arrows pr,,pr, : Cons — Term for the projections, and
a distinguished cone T'gons, which formalizes the definition of consecutive pairs:

Ceons - pr, Cons pry
ktyj\ P Term Term
< T
Type Term _ ~_ Cons \ /
~context T, comexty  Hiype
ype

Since the basis of T'cons is in Sgr, the inclusion of Sy, in Sg, is an equivalence. Hence, S, is another sketch
of graphs: Real(S;,) ~ Gr.

3In [8], this is called a “filling propagator”, and a “distributor” is a special kind of “filling propagator”; the name
“distributor” is inspired by [3].

40



In order to get a sketch of compositive graphs Scomp, let us enrich Sér with a point Comp for composable
pairs (of terms), a mono mon : Comp — Cons for the inclusion, and an arrow comp : Comp — Term for the
composition of composable terms, such that:

type o comp = type o pr; omon and context o comp = contexto pr, omon,

and also with a point IdType for types with identity, a mono mon' : IdType — Type for the inclusion, and
an arrow selid: IdType — Term for the selection of identity, such that:

type o selid = mon’ and contexto selid = mon'.

selid comp
mon < T P mon
IdType > Type Term Cons =———~ Comp
context pry

Then, Scomp is & sketch of compositive graphs: Real(Scomp) ~ Comp. Moreover, it is easy to check that
the inclusion of Sy in Scomp is a distributor.

Let us say that a compositive graph is saturated if each consecutive pair of terms can be composed and
each type has an identity. The saturated compositive graphs form a full subcategory SComp of Comp.
A sketch Scomp Of saturated compositive graphs is built by enriching Scomp With an inverse for the arrows
mon : Comp — Cons and mon’ : IdType — Type. This means that two arrows mon~! : Cons — Comp and

mon' ' : Type — IdType are added, such that:

mon ! o mon = idgens and mon omon ! = idcomp »

-1 . ! 1—1 .
mon’  omon’ = idr4rype and mon’ omon’' = idrype -

Then the arrow comp omon ! : Cons — Term stands for the composition of consecutive terms, and the
arrow selid omon' ' : Type — Term for the selection of identity of every type:

selid comp
m pry
mon - “—— mon
IdType >— Type -~ Term -~ Cons =——= Comp
== -1 context PTy -1
mon mon

The inclusion of Scomp in gcomp is a propagator, which is the starting point for all the propagators in
this paper.

This construction gives rise to an instance of the decomposition theorem: the sketch of compositive
graphs Scomp can be used in order to decompose the morphism Mcomp : Sgr = Scomp as a distributor
followed by a propagator:

propagator —
Scomp P comp
comp
distributor T Deomp _
Mcomp
Ser

A sketch Sg,¢ of categories can easily be obtained as an enrichment of gcomp with additional features,
in order to deal with the associativity and unitarity axioms. The inclusion of Sc¢omp in Scat is, up to
equivalence, a propagator.

41



A.4 The Yoneda morphism

Let S be a projective sketch. The Yoneda morphism associated to S relates the projective sketch S to
the category Real(S), in a contravariant way [19]. Basically, when S is a projective prototype (as in
definition A.8) its Yoneda morphism maps each point S of S to the set of arrows with source S in S. More
precisely, the definition and some of the properties of the Yoneda morphism are summarized below. Then,
some of its applications are reviewed. As above, the symbol “»— ” is used to denote contravariance.

Definition A.17 The Yoneda morphism of S is a contravariant morphism:
Yons : S 3 Real(S) .

Whenever S is a projective prototype (hence, a category), Yons is the contravariant functor such that,
for all point S of S:
Yons(S) = Homg(S, —)

and for all arrow s : S — 5" of S:
Yons(s) = Homg(s, —) : Yons(S') = Yong(S) .

When S is any projective sketch, it freely generates a projective prototype Proto(S), and the Yoneda
morphism Yongs is composed of the canonical morphism from S to Proto(S), followed by Yonp,ge(s)-

Example A.18 The sketch of graphs Sg;, from example A.16:

type
Type C Term

context
is mapped, via the Yoneda morphism, to the following diagram in the category of graphs:

X—=Y
O (Y
~_ ‘l’f
X—Z 7

The following theorem states some of the properties of the Yoneda morphism, it deserves some preliminary
remarks. The notion of a set-valued realization of a projective sketch, as given in definition A.4, is
generalized here in the obvious way. The density property, in this theorem, deals with a colimit indexed
by the compositive graph S\, where ¥ is a realization of a projective sketch S. The compositive graph
S\X is made of a point S, for all point S of S and all z € X(S), an arrow s, : S — Slz(s)(z) for all
arrow s : S — S' of S and all x € X(5), together with the identities ids, = (ids), when idg exists in S,
and the composites (s 0 5)s = sy, © Sz, when s’ o s exists in S. In addition, as usual, (S\X)°? is the
compositive graph opposite of (S\X), with all the arrows in the opposite direction.

Theorem A.19 (Yoneda theorem) The Yoneda morphism Yong is a contravariant realization of S,
which means that it maps each distinguished cone in S to a colimit cone in Real(S). In addition:

e Compatibity: Let M : S — S' be a morphism of projective sketches, then: FproYong ~ Yong oM .
e Yoneda property: For all realization ¥ of S: ¥ ~ Hompgea(s)(Yons(—), %) .

e Density property: For all realization ¥ of S: ¥ ~ colim(s\x)e» (Yons(S)) .

42



The Yoneda property means that for all point S of S there are “¥X(S)” ways to map Yong(S) to X.
The density property means that, up to isomorphism, ¥ can be recovered by gluing together “in the
right way” one copy of Yong(S) for each element of ¥(S). This gives rise, in the next corollary, to a
construction of the image of the freely generating functor F,; associated to M.

Corollary A.20 (construction of freely generated realizations) Let M : S — S’ be a morphism
of projective sketches, and X a realization of S. Let:

Wi = Yong: o M : S %~ Real(S') .

Then:
FM(E) ~ colim(s\z)op (WM(S)) .

Proof. From the compatibity property, Wy = Yong: o M ~ Fps o Yong, so that:
colim(g\x;)er (War(S)) ~ colims\yyer (Far 0 Yons) .
In addition, it is well-known that the left adjoint F»; commutes to colimits, so that:
colims\x)er (Far 0 Yons) ~ Fas(colimg e (Yons(S))) -
Moreover, from the density property:
F s (colims\syor (Yons(S))) ~ Fu (),

hence the result follows. O

A consequence of corollary A.20 is that, in order to build Fjs(X) for some realization ¥ of S, instead of
describing M : § — &', it can be more convenient to describe Wy = Yons: o M : S %= Real(S').

A.5 Propagators and logics

Diagrammatic logic associates, to each propagator, simple and coherent notions of specification, models
and deduction rules: that is, a syntax, a denotational semantics and an axiomatic semantics. For instance,
our basic logic is described as a diagrammatic logic in section 2. However, in general, a diagrammatic
logic can be quite “exotic”, for instance it may happen that there is no notion of terms or formulas in
such a logic. The notion of diagrammatic logic stems from Lair’s trames [18].

From now on, let us consider a propagator:
P:S—S.
A realization of a projective sketch now means a set-valued realization.

Definition A.21 The category of P-specifications is the category of realizations of S, and the category
of P-domains is the category of realizations of S:

Spec(P) = Real(S) and Dom(P) = Real(S) .

Definition A.22 The P-theory of a P-specification ¥ is the freely generated P-domain Fp(X).

43



Denotational semantics.

Definition A.23 Let ¥ be a P-specification and A a P-domain. The set of P-models of ¥ with values
in A is the set of morphisms of P-domains from Fp(X) to A:

Modp (Ea A) = HomDom(P) (FP (E)v A) .
Hence, the adjunction property yields:

Proposition A.24 (another definition of models) There is a natural bijection between the set of
P-models of ¥ with values in A and the set of morphisms of P-specifications from X to Gp(A):

MOdP (Ea A) = HomSpec(P)(Ea GP(A)) .

Let A denote a P-domain. For each morphism ¢ : ¥ — ¥’ the map Modp(g,A) : Modp(X',A) —
Modp(X%, A) is defined as M' — M' o Fp(o). So, Modp(—,A) is a contravariant functor from the
category of P-specifications to the category Set of sets:

Modp(—, A) : Spec(P) »%— Set .

Definition A.25 A P-consequence with respect to A is a morphism of P-specifications ¢ such that
Modp(o, A) is a bijection.

In addition, it can happen, and it does happen in many usual cases, that there is a natural notion of
morphisms of P-models, such that the P-models form a category. Then, the functor Modp(—, A) is a
contravariant functor from the category of P-specifications to the category Cat of categories:

Modp(—,A) : Spec(P) »— Cat .

Axiomatic semantics.

Definition A.26 An P-entailment is a morphism of P-specifications o such that Fp(o) is an isomor-
phism of P-domains. Two P-specifications are equivalent when there is a zig-zag of entailments between
them.

Elementary P-entailments are the P-deduction steps, as described now from active P-deduction rules.
Roughly speaking, a P-deduction rule is a property of P-domains; it is called passive if it is, more
generally, a property of all P-specifications, otherwise it is called active. The active P-deduction rules
are used for generating a P-domain from a P-specification.

Definition A.27 A P-deduction rule is an arrow in S. It is passive if it is the image, via P, of an arrow
in S, otherwise it is active.

It follows from this definition that the P-deduction rules can easily be composed, as arrows in the
prototype of S.

From the inversion theorem A.11, up to equivalence, an active deduction rule is the inverse of an arrow
in S.

The Yoneda morphism can be used for visualizing the active deduction rules. Let s : C — H be an arrow
in & which gets invertible in S:

nS: H u C inS: H

44



1

The points H and C stand respectively for “hypotheses” and “conclusion”, while the arrow s~ can be

seen as a property which has to be satisfied by any P-domain A. This rule is illustrated:

-1
r=

@

—
-

Ny
either as (r=s"") o oras ~—C .
Moreover, the arrow s of S gives rise, in a contravariant way, to a morphism Yong(s) in Real(S).
According to the compatibility of the Yoneda morphism, the functor Fp maps Yons(s) to Yong(s) in
Real(S). Since s gets invertible in S, the morphism Yong(s) has an inverse Yong(s)™' = Yong(s™').

~

@ |

Yong(r)=Yong(s) ™!

Yons(s) — Yongz(s)
_

in Real(S): Yons(H) ——— Yong(C) in Real(S): Yong(H) Yong(C)

In the spirit of D-algebras [5], this is represented by a dashed arrow Yons(s)~! which is added to Real(S),
although it does not correspond to any actual morphism in Real(S):

Yong (s) 7!

— ~

~ 1,
Yongs(H) _ Yonsle) Yons(C)

Example A.28 With respect to the propagator Peomp, from example A.16, the rule mon~! : Cons —
Comp, which states that each pair of consecutive terms can be composed, can be illustrated as:

Yon(Cons) £ Yon(Comp)

which is:

From the Yoneda property, £ € X(H) means z : Yon(H) — ¥. This results in a simple definition of a
P-deduction step (simpler than the one in [8]):

Definition A.29 Let ¥ be a P-specification. The P-deduction step associated to an active deduction
rule r = 57! : H — C, applied to an element z € X(H), is the following morphism 7,(z) in the pushout
of Yon(s) and z:

Yon(s)

Yon(H) Yon(C)
lw lcs (z)
£ —" 5, ()

Proposition A.30 The P-deduction step 75(x) is a P-entailment.
Proof. This is easily derived from the fact that Yon(s) is a P-entailment. OJ

The P-deduction step 7s(z), for a fixed active deduction rule s~! : H — C, is polymorphic: it can be

applied to each P-specification ¥ and each element x € X(H). Let us check that there is some compat-
ibility between the various applications of this deduction rule, which can be expressed as a naturality

property.

45



The elements of X.(H) are identified, thanks to the Yoneda property, with the morphisms from Yon(H) to
Y. Hence, the elements z € X(H), for all the P-specifications X, are the arrows of Spec(P) with source
Yon(H). They are the objects of the category of objects under Yon(H), denoted Yon(H) | Spec(P), as
in [20]. The deduction step applied to z : Yon(H) — ¥ yields a morphism:

Rs(z) = cs(z) o Yon(s) = 75(z) oz : Yon(H) — Xys(x) .

So, R, is a map from the set of objects of Yon(H) | Spec(P) to itself. Moreover, since 75(x) o x = Rs(x),
the morphism 7, (z) is an arrow from z to Rs(z) in the category Yon(H) | Spec(P).

Theorem A.31 (naturality of deduction) The map R, gives rise to an endofunctor of Yon(H) |
Spec(P), and 75 is a natural transformation from the identity endofunctor to Rs.

Proof. Let z1 : Yon(H) — %1, 2 : Yon(H) — ¥, and let o : z1 — x2 be an arrow in the category
Yon(H) | Spec(P), that is, o : £¥; — X, in Spec(P) such that o0 o zy = x2. Then the property of the
pushout with vertex ¥ ;(x1) proves that there is a unique arrow R;(0) : £ 5(21) = X2 5(22) in Spec(P)
such that:

Rs(0) o cs(1) = cs(x2) and Rg(o) o 75(x1) = 75(22) 00 .

Yon( Yon(s) Yon(C)

H)
1 2o cs(z1) cs(z2)
/ ” \ / R.(0) \
b Y1,5(21) Yo,s(x2)

W

-rs(zl) Ts(mg)

From Ry(0) o ¢s(21) = cs(22), it follows that Ry(o) is an arrow in Yon(H) | Spec(P), so that Ry is
an endofunctor of Yon(H) | Spec(P). From Ry(0) o 75(x1) = 75(x2) 0 o, it follows that 7, is a natural
transformation:

2

Ts :IdYon(H)¢Spec(P) =R .
O

Soundness of the diagrammatic logics.

The following result derives immediately from the definitions; it means that each diagrammatic logic is
sound.

Theorem A.32 (soundness theorem) FEvery P-entailment is a P-consequence with respect to A, for
every P-domain A.

Example A.33 The morphism of projective sketches Peomp : Scomp —* Scomp, from example A.16, is a
propagator. The Pyomp-specifications are the compositive graphs. For instance, the graph:

8

A

Z"nat = Nat
is a Peomp-specification such that:
Yhat(Type) = {Nat} , Tnat(Term) = {s} , Tpnat(Comp) =0 .

The Peomp-domains are the saturated compositive graphs, hence each category is a Peomp-domain. For
instance, the category of sets is a Pomp-domain Set. One of the models of ¥,,; with values in Set
interprets the sort Nat as the set N of natural numbers and the operation s as the successor map.

46



A.6 Morphisms of propagators and links between logics

Let o : P, — P, be a morphism of propagators, as in definition A.12. Then each Ps-specification
¥, determines by omission a P;-specification G,(X2), and each P;-specification ¥; generates a Ps-
specification Fy(X;), and similarly for morphisms of specifications. This holds also for domains.

Denotational semantics.

The denotational semantics of P; and P, are related by the following result, which is an easy consequence
of adjunction.

Proposition A.34 (links between denotational semantics) Let 31 be a P;-specification and A; a
P,-domain. Then there is a natural bijection:

1\/[0(21131 (Zl,Ga(Ag)) ~ N[Odp2 (Fa(El),AQ) .

Proof. On the one hand, from the definition of P;-models:

Modp, (31, Ga(A2)) = Hompom(p,) (Fp, (£1), Ga(A2))
On the other hand, from the definition of Ps-models:

Modp, (Fo(21), A2) = Hompom(p,) (Fp,(Fa(X1)), A2) ,

and from ao Py = Py o a:
Fp,(Fa(Z1)) ~ Fa(Fp (21)),

hence:
1\/[Odp2 (Fa(zl); AQ) ~ HOIIlDom(p2) (Fa (FP1 (21)), AQ) .

Now, the adjunction with respect to a concludes the proof. O

Axiomatic semantics.
The axomatic semantics of P, and P, are related by the following result.

Proposition A.35 (links between axiomatic semantics) Let 0 : ¥ — X' be a morphism of P;-
specifications. If o is a Pi-entailment, then F, (o) is a Py-entailment.

Proof. The assumption means that Fp, (o) is an isomorphism of P;-domains, from which it follows that
Fo(Fp,(0)) is an isomorphism of P>-domains. But from oo Py = P, o , it follows that:

Fa OFP1 NFP2OFa .

Hence Fp, (F,(0)) is an isomorphism of Py-domains, which means that F, (o) is a Py-entailment. O

47



