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1 Introduction

This paper deals with some kind of progressive constructions of freely generated structures. For instance,
in order to generate progressively the words on the alphabet X = {a, b}, we might first generate one word
ab, then add it to X, getting Xy = {a,b,ab}, and repeat a similar process from X;. However, for this
process to result in the construction of X*, we must be able to remember that the string ab in X; stands
for the concatenation of @ and b. This means that we have to consider X; not just as a set, but as a
partial monoid, with a partially defined concatenation operation which maps the pair (a,b) towards the
string ab. So, in this example, we have to deal with three different structures: the sets, the monoids, and
the partial monoids. Clearly, the sets are the partial monoids where the operation is nowhere defined,
and the monoids are the partial monoids where the operation is everywhere defined. Sets and monoids
are used to define X* from X, while partial monoids are needed for building progressively X* from X.

Freely generated structures play a fundamental role in mathematics and computer science: for instance,
words are freely generated from an alphabet, theorems from axioms, and programs from grammars. A
freely generated structure may be quite “large”, however it happens that only a “small” part of it is
needed: in order to prove a theorem from a given set of axioms, one does not prove all the theorems
first. ..

It is well known that the categorical notion of adjunction is a basic one for dealing with freely generated
structures [Mac Lane, 1971]. We are interested in adjunctions which allow some kind of progressive
construction of the freely generated structure. For instance, the direct definition of X* from X is an
adjunction between sets and monoids, whereas the progressive construction of X* from X needs the
adjunction between partial monoids and monoids.

In this paper, we present a general framework for such adjunctions, which includes abstract definitions of
syntactic entailment and semantic consequence. Our theory of diagrammatic specifications 1s derived, in
a natural and simple way, from the theory of projective sketches. Thanks to the use of projective sketches
at the meta level, for the “specification of specifications”, the theory of diagrammatic specifications is
quite homogeneous and effective.

Our motivation has its roots in the study of computer languages, mainly in the links between several
programming styles, including imperative and object paradigms; these applications will be considered in
subsequent, papers.



Adjunctions, categories and projective sketches.

An adjunction is a pair of functors (F : Ay — Ay, U : A2 — Ay) between two categories A; and A,
such that, for all A; in 4; and A in Ajg, the arrows from A; to U(A3) in A; are naturally in one-to-one
correspondence with the arrows from F(A1) to Ay in Aj:

HOI’I’IAE(F(Al), AQ) = HomAl(Al, U(AQ)) .

For instance, A; is the category of sets, A5 is the category of monoids, the functor U maps each monoid
to its underlying set, and the functor F' maps each set to its freely generated monoid.

In addition, we introduce a meta-level, which is based on projective sketches. Sketches were introduced
in [Ehresmann, 1966]. We assume that A; is the category of realizations (i.e. models) of a projective
sketch &, and that A4, is the category of realizations of a projective sketch &. Such categories are
known as locally presentable categories [Gabriel and Ulmer, 1971]. We also assume that U and F are the
underlying functor and the freely generating functor associated to a propagator (i.e. an homomorphism)
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./41 = Real(é'l) s ./42 = R@al(gz) s U= UP ZR@GZ(SQ) — Real(é’l) s F = Fp :Real(gl) — Real(gg) .

For instance, &; is a projective sketch of sets, which means that the realizations of & are the sets and
their morphisms are the maps, and &5 is a projective sketch of monoids, which means that the realizations
of £ are the monoids and their morphisms are the morphisms of monoids.

Decomposition.

In this context, the adjunctions which allow a progressive construction of the freely generating functor F'
are those with a full and faithful underlying functor U; then, we say that the propagator is fractioning.
On the other hand, we say that a propagator is filling whenever the freely generating functor F' is full
and faithful. Both words “fractioning” and “filling” stem from properties of these propagators which are
stated in the paper.

We prove that any propagator P : & — £ can be decomposed as P = K o J, with J : & — & filling and
K : £ — £ fractioning. In addition, J can be chosen in such a way that the construction of F is trivial.
A consequence of the decomposition P = K o J is that Fp(Ag) = Fr(F(Ag)) for all realization Aq of
&y. So, in order to build Fp(Ag), we may replace the propagator P and the realization Ag of & by the
fractioning propagator K and the realization Fy(Aq) of £.

For instance, when P is a propagator from a sketch & of sets to a sketch £ of monoids, then £ can
be a sketch of partial monoids. The partial monoid Fj(X) is still denoted X: it is the set X with the
nowhere-defined partial concatenation.

Specifications.

Let P : & —)_Z be a propagator together with a decomposition P = K o J, with J : & — & filling
and K : & — & fractioning, as above. In this context, let us give some basic definitions, followed by an
example.

The specifications are the realizations of £, the signatures are the realizations of &, and the domains are
the realizations of £. Then, the set of models of a specification S with values in a domain D is:

Modg (S, D) = HomReal(g)(FK(S)7 D),

so that, by adjunction:
Modg (S, D) = HomReal(g) (S, UK(D))

For example, let us look at simple equational specifications, where all the operators are unary. A com-
posttive graph is a directed graph together with a partial composition of arrows, so that a category is a
compositive graph with total composition of arrows. Then, a signature is a compositive graph, a speci-
fication is a signature together with a binary relation = on arrows (f = g is called an equation), and a



domain is a category together with a binary relation = on arrows which is a congruence, i.e. an equiva-
lence relation compatible with the composition. So, & is a projective sketch of compositive graphs, £ is
a projective sketch of compositive graphs with equations, and £ is a projective sketch of categories with
congruence. The propagators P, J and K are straightforward.

In order to specify the integers, we consider the signature S;n¢ 0 which is made of a point 7, four arrows
s,p,sopand pos: ] — I, and the partial composition which maps the pair (p,s) to the arrow sop
and the pair (s, p) to the arrow p o s. The signature S;n¢ o together with the equation pos =sopisa
specification Sin¢. The signature Uy (S;n¢) which is underlying Sin¢ is Sint,0. The domain F (S;n¢) which
is freely generated by S;n: is the category with one point I and all arrows composed from s and p (like
sosopoposopos), and with the congruence relation f = g if and only if the number of s’s minus the
number of p’s is the same one in f and in g. The arrows of Fk(S;,:) are the terms and its equations are
the theorems which are derived from the specification S;p;.

On the other hand, let D,.; be the realization of £ with the sets as points, the maps as arrows, and the
equality as congruence. A set-valued model of S;,; can be seen either as a morphism from Fg (Sint) to
Dyt in Real(€), or as a morphism from S;n¢ to Uk (Dser) in Real(€): it interprets each point of S, as
a set, each arrow of Sj,; as a map, and each equation of S;,; as an equality. For instance, there is a
set-valued model of the specification S;,; which maps the point I on the set of integers, the arrows s and

p on the successor and predecessor map respectively, and the arrows p o s and s o p on the identity.

Diagrammatic specifications are not restricted to equational ones. Actually, first-order and higher-order
specifications also can be considered as diagrammatic specifications.

Entailment and consequence.

Now let us focus on a fractioning propagator K : £ — £.

A morphism of specifications o : S — S’ is a syntactic entailment, which is denoted S il S’, whenever
the derived morphism Fk (o) : Fx(S) = Fk(S’) is an isomorphism:

S 28 ifand onlyif Fg(S) =5 Fx(S').
Fr (o)
In addition, a syntactic entailment can be obtained by a succession of deduction steps, using the deduction
rules which are given by the projective sketch £.

A morphism of specifications ¢ : S — S’ is a semantic consequence with respect to some domain D, which
g

is denoted S — p S’, whenever the derived morphism Modk (o, D) : Modg (S, D) — Modg (S, D) is an

isomorphism:

S Zwp S ifand onlyif Modg(S, D) Modg (', D) .

=
Modxk (0,D)
In addition, a semantic consequence can also be defined from a satisfaction relation between models
and specifications, which makes sense only when a filling propagator J : & — & 1s given, besides the
fractioning propagator K : £ — €.

With these definitions, the soundness property is satisfied, which means that syntactic entailment implies
semantic consequence:

if 5S4 then S —appS forall D.

Our diagrammatic specifications can be related to the institutions [Goguen and Burstall, 1992]. Then,
it is possible to compare our notions of entailment and consequence with the notions which occur in
logic with the same names and the symbols F and F, respectively. The fractioning propagator K can be
chosen in such a way that there is a K-domain “of sets” D,.; and a K-specification .S corresponds to a
conjunction of sentences @1, @3, . .., ¢x. Then a morphism o : S — S’ can correspond to adding a sentence
1, so that the K-specification S’ corresponds to the conjunction of the sentences 1, ¢s,..., 0k, %. In
such a situation: "
S —»S" ifand only if ¢1,09,...,08 1,

S Zep. S ifand only if @1, @0, .., 08 E .

sel



Organization of the paper.

This paper begins with a review of some useful definitions and results about categories (section 2). These
results are well known, they can be found in [Mac Lane, 1971] for example.

Then in section 3 are reviewed some definitions and results about projective sketches, which are not so well
known, although most of them can be found in [Coppey and Lair, 1984] and [Coppey and Lair, 1988], or
in [Duval and Lair, 2001].

Section 4 is devoted to the study of fractioning and filling propagators and to the decomposition theorem.

In section 5 are defined the notions of specification, domain and model, as well as syntactic entailment
and semantic consequence.

Finally, in section 6, we look at equational diagrammatic specifications and we outline some links between
diagrammatic specifications and institutions.

The applications of diagrammatic specifications to the study of computer languages will be the subject
of forthcoming papers.

From the point of view of terminology, we have made some choices: point rather than object, source and
target rather than domain and codomain, and so on. For technical issues, including the size issues, we
refer to the reference manual [Duval and Lair, 2001]. So, for instance, we speak without any care about
the category of categories.

Moreover, in order to keep distinct the specification level and the meta-specification level, we speak on
one side about morphisms and models of specifications, and on the other side about propagators and
realizations of projective sketches.

Acknowledgments. To Catherine Oriat and Jean-Claude Reynaud, and many others.

2 Categories, adjoints, limits

Here are a few basic facts about categories, adjunction and limits. All this is very well known, it goes back
to Eilenberg and Mac Lane in the 1940’s, and can be found in [Mac Lane, 1971] for instance. However, the
flavour of our definition of limits stems from the theory of sketches. In addition, some of our illustrations
will be given a precise status in section 4.

2.1 Directed graphs

Definition 2.1.1
A (directed) graph G is made of a set of points, a set of arrows, and two maps from arrows to points,
which assign to each arrow respectively its source and its target.

An arrow g with source G; and target G, i.e. an arrow from G to Gy, is denoted ¢ : G; — G or
Gy -L G5. The set of arrows from G to G5 in G is denoted Homg (G4, G3).

An arrow g is a loop if G -5 G.

Two arrows g, and gy are consecutive if G LN Gy LN Gs.

A triple of arrows (g1, g2,9) is a triangle if G4 I Gy 25 G5 and G - Gs.

The opposite of G is the directed graph G°P with the arrows in the opposite direction.

Definition 2.1.2

A graph homomorphism H : G — G’ is made of two maps, both denoted H, from the points (resp. the

arrows) of G towards the points (resp. the arrows) of G’ such that if g : G; = G4 then H(g) : H(G1) —
H(G9).



Hence, for all points G; and Gy in G, the map H on arrows restricts to a map:

HG17G2 : HOng (Gl, Gg) — HOIl’lg/(1‘11(611)7 H(Gg))

An inclusion G C G’ is a graph homomorphism H : § — G’ which is an inclusion both on the sets of
points and on the sets of arrows.

A contravariant graph homomorphism H : G — G’ is made of two maps, both denoted H, from the
points (resp. the arrows) of G towards the points (resp. the arrows) of G', such that if g : G; — G4 then
H(g) : H(G2) = H(Gh).

A contravariant graph homomorphism H : G =<+ G’ can be identified either to a graph homomorphism
G — G’ or to a graph homomorphism G — (G')°?.

A graph can be illustrated, as usual. For instance, here is an illustration of the graph made of a triangle:

/\]

Gy

g

2.2 Categories

Definition 2.2.1

A category A is made of a directed graph Supp(A), called the support of A, together with:

— for each point A, a loop 1ds : A — A which is called the identity at A,

— for each consecutive pair of arrows (a1, as), a triangle (a1, as, azoa;) where asoa is called the composite
of a1 and as,

which satisfies the following unitarity and associativity properties:

—aoidy,=a and ids, o a=a for all arrow A, 25 A,

— (a3 o0 as) o a3 = asg o (az o a;) (which is denoted as o as o a1) for all triple of consecutive arrows
Ay 2 Ay B A3 B Ay

The following definitions hold in any category A.

An isomorphism a : A —=3 A, is an arrow which has an inverse: there is an arrow a’ : Ay — A; such
that a’ ca=1ida, and aoa’ =id4,).

A monomorphism is an arrow a : A1 — A, such that, for all A and all a’,a” : A — Ay, ifaoa’ =aoad”
then @’ = a”.

A split monomorphism is an arrow a : A1 — As together with a left inverse, i.e. with an arrow @’ : A3 —
Aq such that a’ c a=id4,; then a is a monomorphism.

An epimorphism is an arrow a : A1 — As such that, for all A and all a’,a"” : Ay — A, ifd’ca=a"oa
then @’ = a”.

A split epimorphism is an arrow a : A1 — As together with a right inverse, i.e. with an arrow a’ : A5 — A3
such that a o @’ =id 4,; then a is an epimorphism.

Definition 2.2.2
Let A and A’ be two categories. A functor H : A — A’ is a graph homomorphism Supp(H) : Supp(A) —
Supp (A") which preserves identities and composites.

An inclusion A C A’ is a functor such that its support is an inclusion of graphs; then, A is a subcategory

of A’

A contravariant functor H : A - A’ is a contravariant graph homomorphism Supp(H) : Supp(A) -
Supp (A") which preserves identities and composites.

ot



Let A be a category.

For all point A of A, the functor Hom4 (A, —) : A — Set maps each point B of A to the set Hom 4 (A, B)
and each arrow b : By = Bj of A to the map Homu (A, b) : Homu (A, B1) — Homy (A, B2) such that
Hom (A, b)(c1) = boey.

For all point B of A, the contravariant functor Hom4(—, B) : A - Set maps each point A of A to the set
Homy (A, B) and each arrow a : A1 — Ay of A to the map Hom4 (a, B) : Homy4(As, B) — Homy (A1, B)
such that Hom4 (a, B)(c2) = ez o a.

c1 Bl Al co0a
7 lb l \B
=

bocy B2 Ag

Definition 2.2.3

Let H : A — A’ be a functor between two categories. For all points A; and A, in A, there is a map
Ha, a, :Homy (A1, As) - Homa: (H (A1), H(A)).

— The functor H is faithful if for all points A; and A, in A, the map H4, 4, is injective.

— The functor H is full if for all points A; and A in A, the map Ha, a, is surjective.

If a functor H : A — A’ is an inclusion and is full, then A is a full subcategory of A’.

Definition 2.2.4

Let A and A’ be two categories and Hi, Hy : A — A’ two functors. A natural transformation 7 :
Hy = Hy: A — A is made of an arrow 74 : H1(A) = Ha(A) of A’ for each point A of A, such that
Ta, 0 Hi(a)=Ha(a) o T4, in A’ for each arrow a : A1 — Ay of A.

2

TAy

Hl(Al) —_— H2(A1)
Hi(a)| O JHa(a)
H1 (AQ) T HQ(AQ)

This can be expressed as follows: for all A in A there is an arrow 74 : Hi(A) — H3(A) of A’ which is
natural in A.

A natural isomorphism 1s a natural transformation 7 : H; = Hs such that the arrow 74 is an isomorphism

in A’ for all point A of A.

For all functor H : A — A’| the identity idy : H = H is the natural transformation such that (idg)a=
idpr(a) for all point A of A.

For all pair of consecutive natural transformations Hy = H, = Hs, where Hy, Hy, H3 : A — A’, the
composite Hi 220 H, is the natural transformation such that (re0m)a=(m2)a o (m1)a for all point A

of A.

For all functor H : A — A’ and all natural transformation ' : H; = H} : A’ — A", the composite
T oH : HjloH = H,oH : A — A" is the natural transformation such that (7' o H)4 = TJ'LI(A) :
Hi{(H(A)) = H5(H(A)) for all point A of A;

For all natural transformation 7 : Hy = Hy : A — A’ and all functor H' : A" — A", the composite
Hor:H oHy = H o Hy : A — A" is the natural transformation such that (H' o 7)4 = H'(74) :
H'(H1(A)) = H'(Hz(A)) for all point A of A.

Example 2.2.5

Until now, up to some care about size issues, we may define the following categories:

— Set 1s the category of sets and maps. In this category, an isomorphism is a bijection, a monomorphism
is an njection, and an epimorphism is a surjection. A split monomorphism is an injection together with
a chosen retraction and a split epimorphism is a surjection together with a chosen section.



— Gr is the category of directed graphs and graph homomorphisms.

— Cat is the category of categories and functors.

— For all categories A to A, Func(A, A’) is the category of functors from A to A’ and natural transfor-
mations. Tt is easy to check that a natural isomorphism is an isomorphism of the category Func(A, A").

There are several functors between these categories.

— There is a functor Set — Gr, which maps a set X to the graph with X as its set of points and with no
arrow; this functor identifies Set with a full subcategory of Gr.

— The functor Pt : Gr — Set maps each graph to its set of points and each graph homomorphism to the
underlying map on points.

— The functor Ar : Gr — Set maps each graph to its set of arrows and each graph homomorphism to the
underlying map on arrows.

— The functor Supp : Cat — Gr maps each category to its underlying graph and each functor to its
underlying graph homomorphism.

2.3 Adjunction

Definition 2.3.1
Let A and A’ be categories. An adjunction from A to A’ is a pair of functors:

(A4 AL
together with, for all points A of A and A’ of A’, a bijection which is natural in A and A’:

Homu (A, U(A")) = Homu/ (F(A), A').

Then, F is a left adjoint for U, and U is a right adjoint for F. If a functor U has a left adjoint, it is
unique up to a natural isomorphism. If a functor F' has a right adjoint, it is unique up to a natural
isomorphism.

Theorem 2.3.2 (adjunction)
An adjunction (F,U) from A to A’ determines two natural transformations:

n:idg=>UoF:A—>A and ec:FoU=idygy A - A

such that for all points A of A and A’ of A', the bijection Hom4 (A, U(A')) = Homy: (F(A), A') maps
a:A— U(A") towards:
a* =¢ca0F(a): F(A) = A,

and maps a' : F(A) = A’ towards:
a, =U(a')ona: A= U(A).
In addition, both composed natural transformations below are identities:

U8 Vo FoU S and FEL Folio FEE R

This result is proven in [Mac Lane, 1971, p. 80]. The last assertion means that for all points A of A and
A’ of .A/, U(EA/) o nU(A’) = idU(A/) and EF(A) [¢) F(?]A) = ZdF(A)

It follows from this theorem that 4/ = (idU(A,))*

and 14 = (idp(a))x-

Definition 2.3.3

Let (F,U) be an adjunction from A to .A’.

— The natural transformation 5 : id4 = U o F : A — A is the unit of the adjunction.

— The natural transformation ¢ : F o U = id 4/ : A" — A’ is the counit of the adjunction.



— The functor M = U o F' : A — A together with the natural transformations n : id4g = M : A — A
and y =UocoF : M2 = M : A — A is the monad associated to the adjunction. The functor M
is the endofunctor of the monad, while 7 is its unit and p 1s its multiplication; it is made of the maps
pa =Ulera)) - U(F(U(F(A)))) = U(F(A)).

— A monad (M, n, ) is idempotent when yu is a natural isomorphism.

A monad (M,n, ) gives rise to natural transformations M on : M = M? and no M : M = M2
Generally, these natural transformations are distinct, however each of them is a right inverse for the
multiplication: this is known as the unitarity property of the monad M:

po(Momn)=1tdy and po(no M) = idy.

This means that pa o M(na) = ida and pa o nara) = id4 for all point A of A.
There is also an associativity property of the monad M, which we will not use.

Now, we focus on adjunctions (F,U) where either U or F, or both, is full and faithful. Let (F,U) be an
adjunction from A to A’, with unit n: id4 = U o F and counit ¢ : Fo U = id 4.

Theorem 2.3.4 (full and faithful functors in adjunctions)
— The functor U s full and faithful if and only if € s a natural isomorphism.
— The functor F s full and faithful if and only if n 1s a natural isomorphism.

The first part of this theorem is proven in [Mac Lane, 1971, p. 88], the second part can be proven in a
dual way.

Let A be a point of 4 and A’ a point of .A’. Theorem 2.3.4 proves that:
—if U is full and faithful and if it is an inclusion A’ C A, then F(A’) = A’ as soon as A’ is in A’.
—if F is full and faithful and if it is an inclusion A C A’, then U(A) = A as soon as A is in A.

Corollary 2.3.5 (full and faithful U or F)

If either U or F' s full and faithful, then the following natural transformations are natural isomorphisms:
anU:U::>UoFoU, with inverse U o g,

~¢oF :FolUoF =>F, with inverse F o,

~p: M? = M, with inverse no M = M o1: the monad (M, 7, y) is idempotent.

Definition 2.3.6
An equivalence A ~ A’ between two categories A and A’ is a pair of functors (H : A - A, H' : A’ — A)

~

and a pair of natural isomorphisms H' o H = id 4 and H o H' = id 4..

This definition can be considered as a weakened notion of isomorphism. Indeed, according to the general
definition of an isomorphism in a category, applied to the category Cat, an isomorphism A = A’ between
two categories A and A’ is a pair of functors (H : A - A", H' : A’ = A) such that H' o H = id 4 and
HoH =idy.

So, theorem 2.3.4 states that when both functors U and F in an adjunction (F,U) are full and faithful,
they determine an equivalence between the categories A and A’. It can be proven that in this way we
get all the equivalences of categories [Mac Lane, 1971, p.91].

2.4 Yoneda lemma

Let A be a category. Then Func(A, Set) is the category of functors from A to Set, with the natural
transformations as arrows. For all points A and B of A, the functors Homy(A,—) : A — Set and
Homy(—, B) : A = Set are defined in section 2.2.



Definition 2.4.1
The Yoneda contravariant functor associated to A:

4 A 5o Fune(A, Set)

is such that:
~Y4(A) = Homy(A,—) : A — Set for all point A of A,
- Ya(a) = Homy (a, —) :Y4(A2) = Ya(A1) 1 A — Set for all arrow a : Ay — Ay of A.

Then, for all point A of A, the set (Y4(A))(A) = Homa (A, A) contains id4. So, for all functor H :
A — Set, there is a map Homrype(a,set) (Ya(A ) H) — H(A) which maps each natural transformation
7 :Y4(A) = H to the element TA(sz H(A)

Theorem 2.4.2 (Yoneda lemma) The Yoneda contravariant functor Y4 : A - Func(A, Set) is full
and faithful. In addition, for each point A of A and each functor H from A to Set, naturally in A and
in H, the map T — 74(id4) is a bijection:

Homfunc(A,Set) (Y.A (A)1 H) i> H(A) :

Let T denote a one-element set. Then X = Homg (T, X) for each set X, so that the bijection in the
Yoneda lemma can be stated as a the property of a freely generated structure:

HomSet(]L eUA(H)) = Homfunc(A,Set) (YA (A): H)7
naturally in H. So, Y4(A) is free over T, with respect to the functor ev4 [Ehresmann, 1965].

Example 2.4.3

Let us look at some functors from the examples in section 2.1.

— The functor Pt : Gr — Set has a left adjoint, which is the inclusion functor Set C Gr.

— The functor Ug, cat = Supp : Cat — Gr has a left adjoint Fg cqas : Gr — Cat, which maps a graph G to
the category Fgr cqt(G) with the same points as G, and with arrows the paths of G, which are obtained
by composing any number of consecutive arrows of G (considering that the identity arrows of Fg, cqt(G)
are composed of no arrow of G).

— The functor Pt : Gr — Set is neither full nor faithful; its left adjoint Set C Gr is full and faithful.

— The functor Ug, cq: and its left adjoint Fg, cq: are both faithful, but none is full.

2.5 Compositive graphs

In order to define limits in a category, in section 2.6, we will use graphs with “some” identities and
composites.

Definition 2.5.1
A compositive graph G is made of a directed graph Supp(G), called the support of G, together with:

— for some points A, a loop A 194 A which is called the wdentity at A,
— for some consecutive pairs of arrows (a1, as), a triangle (a1,as,as 0 a;) where as o ay is called the
composite of a1 and as.

The unitarity and associativity properties do not hold in a compositive graph.

Let G and G’ be two compositive graphs. A functor H : G — G’ is a graph homomorphism Supp(H) :
Supp(G) — Supp(G') which preserves identities and composites.

An inclusion G C G’ is a functor such that its support is an inclusion of graphs.

A contravariant functor H : G - G’ is a contravariant graph homomorphism Supp(H) : Supp(G) -
Supp(G’) which preserves identities and composites.



A compositive graph can be illustrated as its support together with the notations id¢ for identities, and
ga0g1 or O for composites. Some identities and composites may be omitted. For instance, here are three
illustrations of a compositive graph made of a commutative triangle:

205 ) ) [

A category A can be identified to a compositive graph where there is an identity at each point, a composite
for each consecutive pair of arrows, and which satisfies the unitarity and associativity properties. Then,
a functor between categories is a functor of compositive graphs.

The definition of natural transformations between functors from a compositive graph to a category is an
easy generalization of the definition of natural transformations in section 2.2.

This point of view upon categories can be illustrated by several functors of compositive graphs. Such
illustrations will get a precise meaning in section 4.
For instance, the property “each consecutive pair of arrows has a composite” can be illustrated by the

[/ \J Q/ \j

The associativity property can be illustrated by the following functor, which maps both (a3 o az)oa; and
az o (azo0ay) to agoagoa:

a30a20a1

In these illustrations, the first compositive graph represents the hypothesis H of the property, While the
second compositive graph represents its conclusion C. The functor represents the deduction rule & & le.

“9f H then C”.

Example 2.5.2
We have just defined the category Comp of compositive graphs and functors between compositive graphs.

The functor Ug, comp = Supp : Comp — Gr maps each compositive graph to its underlying graph and each
functor to its underlying graph homomorphism. It has a left adjoint, which is the inclusion Fgr comp :
Gr C Comp: it maps a graph G to the compositive graph with G as its underlying graph and with no
identity and no composite; this functor identifies Gr with a full subcategory of Comp. The functor Ug, comp
is faithful, but it is not full; its left adjoint Fg, comp 1s full and faithful.

There is an inclusion functor Ucomp,cat : Cat C Comp, since the category Cat has just been identified to
a full subcategory of Comp. It has a left adjoint Feomp cat : Comp — Cat: for all compositive graph G,
in order to get the category Feomp,cat(G), we have to add the missing identities and composites, and to
perform identifications, so that unitarity and associativity are satisfied. The functor Uc,mp cat 1s full and
faithful; its left adjoint Feomp cat is neither full nor faithful.
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ObViOHSly Ugr,Cat = Ugr,Comp o UComp,Cat and Fgr,Cat = FComp,Cat o Fgr,Comp~

Comp Cat

U F=

2.6 Limits

Let Z be a compositive graph. The typical Z-projective cone is the compositive graph C,, (Z) made of Z,
a point V', an arrow pr; : V — I for all point I of Z, such that i o pry=pr;, for all arrow i : I — I’ of Z.
The inclusion functor is denoted Bz : Z C Cpr (Z).

A T-projective cone in a compositive graph G is a functor C': Cpy (Z) — G. Then the functor B=Co Bz :
Z — G is the base of the projective cone C, the point C(V) is its vertez, and the arrows C(pr;) are its
projections.

Definition 2.6.1

A Z-projective cone L in a category A is a limit projective cone if for all C': Cp, (Z) — A there is a unique
projective factorisation arrow projfactc  : C(V) — L(V) in A such that L(pr;) o projfacts ;= C(pry)
for all point I of Z.

projfactc p

Lv)

All the limit projective cones in A with the same base B are isomorphic. When one of them is chosen,
it is denoted projlim(B) or projlim;.7(Ar) where Ar=B(I).

A category A is Z-complete if each base B : Z — A has a projective limit in A. A category A is with
chosen T-projective limits if each base B : 7 — A has a chosen projective limit in A.

When 7 is empty, then the vertex L(V)=T1 of L is a terminal point of A.

When Z is discrete (i.e. without any arrow), then I is the product of B in A, with vertex L(V) =
[I;ez B(I), or L(V)=B(I1) x ---x B(I,) when Z={I,...,I,}.

When 7 1s I AT LN I, then L is the pullback of B in A, with vertex L(V'), sometimes written
L(V):B(Il) XB(I) B(IQ)

Among pullbacks, let a : A; = A be an arrow in A, and let B(I;) = B(l2) = A1, B(I) = A and
B(i1) = B(i2) = a. Then, a is a monomorphism if and only if one of the projections L(V) — A; is an
isomorphism.

When 7 i1s I Z—1> I, I i} I, then L is the equalizer of i1 and i5 in A.

By reversing the direction of the arrows in the cones, we get the dual notions.

Let Z be a compositive graph. The typical Z-inductive cone is the compositive graph C;, (Z) made of Z,
a point V', an arrow iny : I — V for all point I of Z, such that iny=inj o for all arrow 1 : I — I’ of 7.
The inclusion functor is denoted Bz : Z — Ciy, (7).

A Z-inductive cone in G is a functor C : Cip (Z) — G, with its base B=C o By : T — G, its vertex C(V)
and its inductions C(ing):

Definition 2.6.2
A Z-inductive cone L in A is a limit inductive cone if for all C' : C;, (Z) — A there is a unique inductive

11



factorisation arrow indfact; o : L(V) — C(V) such that indfact; o L(iny)=C/(inr) for all point I of T.

ind
| indfacty, o ,(V)

All the limit inductive cones in .4 with the same base B are isomorphic. When one of them is chosen, it
is denoted indlim(B) or indlimrez(Ar) where Ar=B(I).

A category A is Z-cocomplete if each base B : Z — A has an inductive limit in A. A category A is with
chosen T-inductive limits if each base B : 7 — A has a chosen inductive limit in A.

The dual of a terminal point is an initial point, the dual of a product is a sum, the dual of a pullback 1s
pushout, and the dual of an equalizer is a coequalizer.

The first following result is obvious, the second one is proven in [Mac Lane, 1971, p. 114].

Proposition 2.6.3 (arrows on limits)

Let A be a category and A a point of A.

— The functor Homa (A, —) : A = Set maps projective limits to projective limits.

— The contravariant functor Hom4(—, A) : A > Set maps inductive limits to projective limits.

Proposition 2.6.4 (adjoints on limits)
Let (F,U) be an adjunction. Then the functor U preserves the projective limits, and the functor F
preserves the inductive limits.

Example 2.6.5

The category Set is Z-complete and Z-cocomplete for all (sufficiently small) Z. The usual way to build
projective and inductive limits via cartesian products, disjoint unions and quotients, yields a choice of
limits and colimits.

In the category Set, a terminal point is a one-element set, a product is a cartesian product, and a
monomorphism is an injection. The initial point is the empty set, a sum is a disjoint union, and an
epimorphism is a surjection.

3 Projective sketches, propagators, realizations

Basic notions about projective sketches are presented here. We define projective sketches and their
homomorphisms, which we call propagators, as well as the category of realizations of a projective sketch.
We state the fundamental theorem about the freely generated realization, which associates an adjunction
(Fp,Up) to each propagator P. These notions are rather well known, from Ehresmann’s pioneering work
in the 1960’s [Ehresmann, 1966]. Some of these notions can be found in [Coppey and Lair, 1984] and
[Coppey and Lair, 1988], others in [Duval and Lair, 2001]. The fundamental theorem 3.4.1 is known as
the associated sheaf theorem.

3.1 Projective sketches

Definition 3.1.1
A projective sketch £ is made of a compositive graph Supp(€), called the support of £, where some
projective cones are called distinguished projective cones (or dpcs).

Let £ be a projective sketch.
A (potential) isomorphism is an arrow ey : F1 — F5 with a (potential) inverse, i.e. such that there are
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an arrow es : By — Fj, two identities tdg, and idg,, and two composites €1 o ea =idp, and esoey =idg,.
A (potential) monomorphism is an arrow e; : F1 — E3 such that there is a distinguished projective cone
with base By =% Fy ¢ Ei, and one of the projections from the vertex of this cone to F; is a potential
isomorphic arrow.

A (potential) split monomorphism is an arrow e; : F1 — F5 with a (potential) left inverse, i.e. such that
there are an arrow es : B3 — FE5, an identity idg,, and a composite e2 0 e1 =idp; .

A (potential) split epimorphism is an arrow ey : F1 — F5 with a (potential) right inverse, i.e. such that
there are an arrow es : Fy — FE4, an identity idg,, and a composite €1 0o es=1dg,.

A (potential) factorization arrow is an arrow factc r, : C'— L where C and L are projective cones with the
same base B : Z — Supp(£), with L distinguished, together with the composites L(pr;)o facty, c=C(pry)
for all point I of 7.

A (potential) terminal point is a point U together with a distinguished projective cone with empty base
and vertex U; this is denoted U =1. Then, for each point E of £, there may be a potential factorization
arrow factpy : B —=U.

By adding distinguished inductive cones, in a dual way, we get the (mized) sketches, which will not play
any important role in this paper. In mixed sketches, we could define a (potential) epimorphism and a
(potential) initial point.

The generalization of this paper to mixed sketches would be far from trivial. It should use results from
[Guitart and Lair, 1980] in order to generalize the freely generated realization theorem 3.4.1.

In this paper, we illustrate a projective sketch as its underlying compositive graph, together with the
symbols > for the projection arrows and >—— for potential monomorphisms. There is a lot
of ambiguity in such an illustration, which has to come with some additional information about the
distinguished projective cones. The representation of composite projections may be omitted.

Example 3.1.2
Here are two projective sketches Es.t and £g. without any distinguished projective cone. As will be seen
in section 3.3, the names Pt, Ar, sce and tgt stand respectively for points, arrows, source and target.

sce
——
Eset Eor - Pt Ar
tgt

Here is a projective sketch &5, with three distinguished projective cones. As will be seen in section 3.3,
the names Lo, Co and Tr stand respectively for loops, consecutive arrows and triangles.

Eér : __Lo dpes: Lo Co __Tr_
e ¥ v ¥ 4 ¥ 4
Pt\;/Ay‘:;-._..____“ Ar Ar Ar Co igtoga Ar
tgt L sce
L as sce( )tgt tg\ %ce scquMgt
g1 . . .
Co < Tr Pt Pt Pt Pt

3.2 Propagators

Definition 3.2.1
Let £ and &' be two projective sketches. A propagator P : £ — £ is a functor Supp(P) : Supp(€) —
Supp(E') which preserves the distinguished projective cones.

Obviously, up to size issues, the projective sketches and their propagators form a category Sketch.

An inclusion of projective sketches £ C £’ is a propagator P : £ — &£’ such that Supp(P) is an inclusion
of compositive graphs.
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Example 3.2.2
Eset C Egr C gér.

3.3 Realizations

Definition 3.3.1

Let £ be a projective sketch and A a category. A realization S : £ — A of £ with values in A is a functor
Supp(S) : Supp(€) — A which maps each distinguished projective cone in &£ to a limit projective cone
in A.

So, a realization of £ maps a potential isomorphism (resp. monomorphism, split monomorphism, split epi-
morphism) of &€ to a (real) isomorphism (resp. monomorphism, split monomorphism, split epimorphism)

of A.

The category A can be considered as a projective sketch: its support is the underlying compositive graph,
and its dpes are all its projective limit cones (with some care about the size of the indexations of the
cones). Then, a realization of £ with values in A is a propagator from & to the projective sketch A.

Definition 3.3.2
Let S; and S; be two realizations of £ with values in A. A morphism o : S; — Sy is a natural
transformation between the underlying functors.

Obviously, the realizations of £ with values in A and their morphisms form a category Real(€,.A). In
addition, for each point F of £, there is a functor evp : Real(€, A) — A, called the evaluation at E, such
that evg(S) = S(F) for all realization and evg (o) = o(E) for all morphism of realizations.

In addition, for all propagator P : & — £’ there is a functor Real(P, A) : Real (£', A) — Real (£, A), which
maps all realization S’ of £’ to the realization S’ o P of £, and all morphism of realizations ¢’ : S| — S},
of & to the morphism of realizations ¢/ o P : S o P — 5, o P of £. Altogether, we get a contravariant
functor:

Real(—, A) : Sketch - Cat.

Proposition 3.3.3
The functor Real(—, A) maps inductive limits to projective limits.

A contravariant realization 7 : £ —x> A of £ with values in a category A is a contravariant functor
Supp(7) : Supp(€) — A which maps each distinguished projective cone in £ to a limit inductive cone
in A.

Example 3.3.4

A realization S of &g is a set S(Pt), and a morphism ¢ : S; — Sy is a map o(Pt) : S1(Pt) = S2(Pt).
So, there is an isomorphim Real (Eset) = Set.

A realization S of &g, is made of two sets S(Pt) and S(Ar), and two maps S(sce), S(tgt) : S(Ar) — S(Pt):
it is a directed graph. And indeed, there is an isomorphim Real(Eg,) = Gr.

There is an equivalence Real(£5,) ~ Gr. Indeed, a realization S of &, is a directed graph, together with
sets S(Lo), S(Co) and S(Tr) which are, because of the distinguished projective cones, isomorphic to,
respectively, the set of loops, the set of consecutive arrows, and the set of triangles, of this directed graph.

3.4 Adjunction

The category of set-valued realizations of £ is Real(£) = Real (€, Set). Up to some care about size issues,
the category Real(£) is both complete and cocomplete.
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To each propagator P : £ — £’ is associated the underlying functor:

Up=TReal(P) : Real (') — Real (£).

The following result is a fundamental one, it 1s known as the associated sheaf theorem. A proof can be
found in [Duval and Lair, 2001]. The generalization of this result to mixed sketches, which is far from
trivial, is done in [Guitart and Lair, 1980].

Theorem 3.4.1 (freely generated realization)
Let P : & — &' be a propagator. The functor Up : Real(£') = Real (£) has a left adjoint:

Fp : Real (£) — Real (£').

The functor Fp is the freely generating functor associated to P.

From the definition of an adjunction, it follows that, for all realizations .S of £ and S’ of &', there is a
bijection, which is natural in S and in S’:

Hompeae)(S,Up(S")) = Hompeqery(Fp(S),S").

The corresponding monad and counit are respectively denoted (the subscript P may be omitted):
(Mp Real(é') — Real(é') , Np . idReal(E) = Mp, up: MI% = Mp) and ¢p : FpoUp = idReal(81)~

Proposition 3.4.2
Let Py : &1 — &1, Py : & — &), Ty : 6 — &5 and Ty : & — &) be a commutative square in the category
of projective sketches. Then, there is a natural transformation:

(Fp2 OETy)* : Fp, o UTy = UTy/ o Fp, :Real(&) — Real(é’{).

This natural transformations is not, in general, a natural isomorphism.

Proof. From the counit e, : F o Ur = idRea(e,), We get the natural transformation Fp, o e, :
Fp, o F, o U = Fp, : Real(&y) — Real(&)). Since Py o L = L' o Py, the previous result can be written
as Fp,oep : Frro Fp, oUr, = Fp,. So, by adjunction, we get the proposition. O

It follows that, for all realization Sy of &5, there is a morphism Fp, (Ur,(S2)) = Ur:(Fp,(Sz2)) in Real (&7).

£ —— ¢ Sy ———=>Fp,(52)

L O r I

Ur/(Fp,(52))

&1 T‘% UL(SQ)|—>FP1(UL(SQ))>

Example 3.4.3

Let P denote the inclusion P : Es.t C &g-. The underlying functor Up : Real(Egr) — Real(Eset) is
the functor Pt : Gr — Set, from section 2.2, which forgets the arrows. The freely generating functor
Fp : Real(Eset) — Real(Egr) is the inclusion functor Set C Gr from section 2.2.

3.5 Equivalence of sketches.

The following definition of conservative propagators is semantic: it is relative to the set-valued realizations
of the sketches involved.

Definition 3.5.1
A propagator @ : £ — &' is conservative if both functors Fg and Ug are full and faithful.



From theorem 2.3.4, () is conservative if and only if the unit g and the counit ¢g are natural isomor-
phisms.

Definition 3.5.2
The equivalence of projective sketches is the equivalence relation generated by:
— £ = £’ as soon as there is a conservative propagator from £ to &’.

A zig-zag of propagators (P1,..., P,) from & to £ is made of projective sketches £y, &1, ..., &, such that
Eo =& and &, = &, and of propagators Py, ..., P, with, for each k from 1 to n, either Py : &x_1 — &
or Py : & — Ek—1. Then, clearly, two projective sketches £ and £’ are equivalent if there is a zig-zag of
conservative propagators from & to &’.

From theorem 2.3.4, if two projective sketches £ and &’ are equivalent then the categories Real(£) and
Real(£') are equivalent: if £ = &’ then Real(£) ~ Real (£').

In the following result are listed some families of conservative propagators, which can be composed or
used 1n zig-zag in order to get equivalences of projective sketches. There are many other ways to get
conservative propagators and equivalences of projective sketches.

Proposition 3.5.3 (construction of conservative propagators)

Let @ : & — &' be a propagator such that, either:

- ) adds an identity loop at a point of £,

- @Q adds a composite for a pair of consecutive arrows of £,

- Q adds a distinguished projective cone for a base in &,

- @ adds a potential factorization arrow, or identifies two potential factorisation arrows, between a
projective cone and a distinguished projective cone with the same base, both in &,

— @ states that an wnvertible arrow or an identity arrow ts a monomorphic arrow.

- @Q adds a new point E', the identities idg (if it is not yet in £) and idg/, two arrows ¢} : E — E' and
eb 1 E' — E with the composites e, o ¢} = idg and €} o ey, = idp:.

- @ maps an invertible arrow e : F1 — FEy, with E1 # Es, towards an identity arrow.

Then @ s a conservative propagator.

Proof. 'This result is easily derived from the properties of the complete category Set: for instance the
image of a point of £ i1s a point in Set, so that it has one identity arrow, and so on. O

On the contrary, a propagator which maps an invertible arrow e : £ — F towards an identity arrow is
not conservative, in general. Indeed, let £ be made of one point E, the identity idg, and two arrows
e1,es : B — E with the composites ¢35 o e; = idg and e1 o e5 = idg. Let £ be made of one point E’ and
the identity idg:, and let P : £ — £’ be the unique propagator from & to £’. Now, let S be a realization of
& such that S(F) has two elements z and y, and S(e1) = S(e2) permutes z and y. Then Fp(S) identifies
z and y, so that Mp(S)(E) is made of only one element, and 7p ¢ cannot be an isomorphism.

Definition 3.5.4

The equivalence of propagators is the equivalence relation P = P’ (where P : &1 — & and P’ : &) — &)
generated by:

— P = P’ as soon as & =&, and there is a conservative propagator @1 : &1 — &; such that P’ o Q1 =P,
— P = P’ as soon as & =&/ and there is a conservative propagator @ : & — &) such that Q0 P=P'.

If P = P’ then clearly & = & and & = &5

Example 3.5.5

The inclusion of &g, in & (from section 3.1) is a conservative propagator: indeed, it may easily be
decomposed in several steps, which are either the addition of a distinguished projective cone for a given
base, or the addition of a composite for a pair of consecutive arrows. In this way, from the isomorphism
Real(Egr) = Gr, we get another proof of the equivalence Real (£,) ~ Gr.
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3.6 Prototypes and types

Definition 3.6.1
A projective prototype is a projective sketch such that its support is a category and its distinguished
projective cones are limit cones.

It can be proven that each projective sketch & freely generates a projective prototype Pr(€). The unit
propagator £ — Pr(£) maps each distinguished projective cone of £ to a distinguished limit projective
cone of Pr(£). Tt follows that Real (Pr(£)) = Real (£).

Definition 3.6.2
With respect to some family of compositive graphs for indexations, a projective type is a category with
with chosen projective limit cones (as defined in section 2.6).

A projective type can be considered as a projective prototype, by distinguishing all its chosen projective
cones.

It can be proven that each projective sketch &£ freely generates a projective type Ty(£). The unit
propagator £ — Ty(£) maps each distinguished projective cone of £ to a chosen (hence distinguished)
limit projective cone of Ty(E). It follows that Real (Ty(E)) = Real ().

Usually, the same notation is used for the points and arrows of £ and their images in Pr(€) and in Ty(&),
although the unit propagators £ = Pr(£) and £ — Ty(€) need not be inclusions.

3.7 Yoneda lemma for projective sketches

Let £ be a projective sketch, then from section 2.4, there is a Yoneda contravariant functor:
Yer(e) : Pr(&) == Func(Pr(E), Set).

From proposition 2.6.3, the functor Hompg) (£, —) : Pr(€) — Set maps projective limits to projective
limits. So, the functor Yp,(g)(E) : Pr(€) — Set preserves the projective limit cones, which means that
the image of Yp,(¢) is contained in Real (Pr(£)):

Yer(e) : Pr(€) == Real(Pr(£)).

In addition, since Real (Pr(£)) is isomorphic to Real(£), by composition of Yp,(g) with the unit propagator
& — Pr(€), we get a contravariant functor:

Ye 1 £ 5o Real (£).

From proposition 2.6.3, the contravariant functor Hompeqe)(—, S) : Real(€) —<+ Set maps inductive
limits to projective limits. So, the functor Yz maps distinguished projective cones to limit inductive
cones, which means that it is a contravariant realization of £.

Theorem 3.7.1 (Yoneda lemma for projective sketches)
The Yoneda contravariant realization Y : £ —¢ Real(€) is such that, for each point E of £ and each
realization S of £, naturally in E and in S, the map o — og(idg) is a bijection:

Hompeaye) (Ve (E), S) = S(E).

A consequence of theorem 3.7.1 is the density result of corollary 3.7.3 below: any set-valued realization
of & is the vertex of an inductive limit cone which has its base in Yg(&). The description of this cone
makes use of a blow-up of Supp(&).
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Definition 3.7.2

Let G be a directed graph and H : G — Set a functor. The blow-up G\ H of G by H is the directed graph
with:

— a point [G, z] for all point G of G and all z € H(G),

—an arrow [¢,z] : [G,z] = [G',2'] for all arrow g : G = G of G and all z € H(G), where ' = H(g)(z),
- an identity id[q ;) = [idg, z] for all identity idg of G and all x € H(G),

— a composite [g2 © g1, 1] = [g2, Z2] o [g1, z1] for all composite g2 0 g1 of G and all 21 € sce(g1), where
zy=H(g1)(w1).

Let us write Y for Yz. Let S be a set-valued realization of £, and Z = (Supp(&)\Supp(S))°?. Let Cs
denote the Z-inductive cone in Real(&) with:

— vertex S,

— base B : T — Real(&) such that B([E,z]) =Y (E) for all point [E, 2] of Z and B([e,z]) =Y (e) for all
arrow [e, z] of Z.

—inductions in[g ;1 : Y (E) — S such that for each point E’ in £ the map injg ;1(E’) : Hompye)(E, E') —
S(E'") maps e towards S(e)(z).

It is easy to check that this is indeed an inductive cone. The density of Yoneda realization states that it
is an inductive limit cone.

Corollary 3.7.3 (density of Yoneda realization)
Let S be a realization of £. Then the inductive cone Cs in Real(E) is a limit cone, which is written:

Proposition 3.7.4
Let P : & — &' be a propagator. Then there is an isomorphism of contravariant models of £ with values

mn Real(é”) FP OYg = Yg/ o P.

Proof. Let E be a point of &£, and S’ a realization of £’. Then, from Yoneda lemma applied to &,
Homgeai(ey(Ye (E), Up(S")) = Up(S')(E) = S'(P(F)). On the other hand, from Yoneda lemma applied
to &', Hompea(ery(Yer (P(E)), S') = S'(P(F)). So that:

Hompea(e)(Ye (E), Up(S")) = Hompeqyey(Yer 0 P(E), S'), naturally in E and 5,

which means that Ye o P is isomorphic to Fpo Ye. O

4 Fractioning and filling propagators

In this section, we focus on two families of propagators. A fractioning propagator K is such that Uk
is full and faithful, while a filling propagator J is such that Fj is full and faithful. We prove that any
propagator P can be decomposed as P = K oJ with K fractioning and J filling. The words “fractioning”
and “filling” stem from theorems 4.2.2 and 4.3.2, respectively.

4.1 A basic example

Directed graphs.

As in section 3.1, let &g, be the following projective sketch (without any distinguished projective cone),
such that Real(&gr) = Gr:

Eor: Pt Ar

Let &, denote the projective sketch described in section 3.1, together with the composite p’=sce o p=
tgt op : Lo — Pt. The precise description of its distinguished projective cones is given in section 3.1.
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The inclusion of &, in &, is conservative, so that &, = &, and Real (£5,) ~ Gr.

s
ggr.

Categories.

Let us add to &g,

— two identities id ¢, and id p; (not represented in the picture),

— two arrows s : Co — Tr and s’ : Pt — Lo such that ry o s=id¢, and p' o s’ =idp;,

— and whatever is needed to express the unitarity and associativity of categories.

It is easy to check that the resulting projective sketch &g is such that Real(Ecqt) ~ Cat.

Let us add to Ecgs:

— two dpes such that the identity arrows itd ¢, and idp; are potential monomorphisms,

— two composite arrows comp =r3 o s : Co — Ar, for the composition, and selid=po s’ : Pt — Ar, for
the selection of identities.

Then the inclusion of &gy in Ef,, is conservative, so that &g = &f,, and Real (€f,,) ~ Cat.

The following illustration does not represent the identities, nor the unitarity and associativity properties.

/ .
gCat .

Cid:pOS' pIOSI:idpi comp=rg0s rlos:idcoJ

Let P : Egr — Ecqat be the inclusion. Let G be a graph, then the graph Up(Fp(G)) is not isomorphic to
G. Indeed, the freely generating functor Fp adds the required identities and composites, which are not
removed by the underlying functor Up. So, the unit ng : G — Up(Fp(G)) is far from an isomorphism.
For instance:

Let A be a category, then the category Fp(Up(A)) is not isomorphic to A. Indeed, the underlying functor
Up forgets that some arrows are identities or composites. Then, the freely generating functor Fp adds
to the graph Up(A) a new copy of these identities or composites. So, the counit 4 : F(U(A)) — A is
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far from an isomorphism. For instance:

Ta=ida,
ida,

L, 2"

) A
Z-IQAI/ z \A 20 Al/ \As

2
R ey 3 | 3 a=azoa,

| . U O
ZdAl ZdAa ilzidAl i3:idA3

Compositive graphs.

Let us add to &,

— two points, Comp for the consecutive arrows with a composite, and Pt:d for the points with an identity,
together with arrows m’ : Ptid — Pt and m : Comp — Co which are potential monomorphisms,

— two arrows s : Comp — Tr and s’ : Ptid — Lo such that ry o s=m and p' o ' =m/,

— two composite arrows comp =75 o s : Comp — Ar, for the composition, and selid=po s’ : Ptid — Ar,

2

for the selection of identities.
It is easy to check that the resulting projective sketch Ecomp is such that Real(Ecomp) ~ Comp.

gComp :

. 1 1 1 1
k selid=pos p'os'=m comp=rg0s r108=m J

The propagator P : £g — Ecat 1s equivalent to P’ : Egr — &f,;, which can be decomposed as P'=K' o J
where J : g — Ecomp 18 the inclusion and K’ : Ecomp — &,y 18 such that m and m’ are mapped to id ¢,
and id p;, respectively.

Decomposition of P.

Let G be a graph, then the graph Uy (F;(G)) is isomorphic to G, because the compositive graph F(G)
has neither identities nor composites.

Let A be a category, then clearly the category Fx/(Uk:(A)) is isomorphic to A.

Now, let us come back to the propagator P : £ — &cqt and to the construction of the category Fp(G)
which is freely generated by some given graph G. Up to equivalence, we can rather consider the propagator
P’ : &g — &L, and build the category Fp:/(G). The intermediate sketch Ecomp can be used in order to
get a progressive construction of Fp/(G). First, Fp:(G) = Fr(F5(G)), where F;(G) is easily obtained: it
is G together with no identity and no composite. So, we can assume that G is a compositive graph, and
look for a progressive construction of Fg/(G). If G is a point in G without an identity, we can build a
compositive graph by adding idg : G = G. If g1 : G1 = G5 and g2 : G3 = G3 are successive arrows in G
without a composite, we can build a compositive graph by adding g2 o g1 : G; — G3. In both cases, the
resulting compositive graph G’ is such that Fk:(G)= Fk:(G'), so that the construction may start again
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from G'.

So, the composites and identities can be built little by little, from a directed graph (where they are
nowhere defined) to a category (where they are everywhere defined), thanks to intermediate compositive
graphs (where they are partially defined).

In the following, we prove that this property of P : £ — Ecar can be generalized to any propagator.

4.2 Fractioning propagators

Definition 4.2.1 _
A propagator K : £ — & is fractioning if the underlying functor Uk 1s full and faithful.

From theorem 2.3.4, K is fractioning if and only if the counit ex is a natural isomorphism:

ek : Fi o Uk = idp 5

Then, the multiplication pg is a natural isomorphism, i.e. the monad associated to K is idempotent:
HEK MI2( ::> MK.

Obviously, a conservative propagator is fractioning, the composite of fractioning propagators is fraction-
ing, and a propagator which is equivalent to a fractioning one is also fractioning.

On the other hand, we say that a propagator K : £ — £ adds an inverse to an arrow e : By — Fy of £
if it adds an arrow e~! : Ey — E, two identities tdp, and idg, if they are needed, and two composites

e~ loe= 1dp, and eoe ! = dp, .

Theorem 4.2.2 (fractioning propagators)
A propagator s fractioning if and only if, up to equivalence, it adds inverses to arrows.

Proof (partial). We only prove here the easy part of this result. Similar results can be found in
[Gabriel and Zisman, 1967] and in [Hebert, Adamek and Rosicky, 2001].

Let us assume that K adds an inverse to an arrow e : F1 — Es of €. Let D be a realization of &, so
that the map D(e™!) is the inverse of D(e). In U(D), the map U(D)(e) is equal to D(e), so that it is
invertible. Then, F(U(D)) only gives a name to the inverse of U(D)(e), so that (D) : FoU(D) = D is
an isomorphism. It follows that K is fractioning, so that any propagator which adds inverses to arrows
is fractioning. O

Theorem 4.2.3
A propagator is fractioning if and only if, up to equivalence, it consists in the distinction of projective
cones.

Proof. By theorem 4.2.2, we have to prove that, up to equivalence, a propagator K adds inverses to
arrows if and only if it distinguishes projective cones.

Let e : By — E5 be an arrow in &, and let us distinguish the projective cone with vertex Fq, base Fs and
projection e. Then, up to equivalence, we can add the factorization arrow f= fact(idg,,e) : F2 — E;.
The property of factorization arrows states that e o f =idg,. Tt follows that eo (foe)=(eo f) oe=e,
which means that f o e = fact(e,e), but clearly fact(e,e) = idg,, so that the unicity of factorization
arrows proves that foe=1dg,. So, f is an inverse of e.

Let C' be a projective cone in £ with base B and vertex F;. Then, up to equivalence, we can add a
distinguished projective cone C’ with the same base B and some vertex E5, and the factorization arrow
e=fact(C,C") : E; — FE5. Let us add an inverse e~! to e. Then, up to equivalence, we can distinguish
the cone C'. O
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Proposition 4.2.4
A propagator which maps an arrow to an identity is fractioning.

Proof. Let us assume that K : £ — & maps an arrow ¢ : E; — F5 of £ to an identity idp : B/ — E’ of €.
Let D be a realization of £, so that the map D(K (e)) is the identity of D(E’). In U(D), the sets U(D)(F1)
and U(D)(FE3) are both equal to D(E’), and the map U(D)(e) is the identity. So, ¢(D) : FoU(D) — D
is an isomorphism. It follows that K is fractioning. O

Let e : E; — E5 be an arrow in a projective sketch £. A propagator P : £ — £’ adds a restriction to e

with respect to m; and msy, where my : E{ — Ey and my : E}, y . E, are arrows of £ and my is a
potential monomorphism, if it adds an arrow e’ : B} — E) with a commutative square e o m; =mgyoe’.

Proposition 4.2.5
A propagator which adds a restriction to an arrow s fractioning.

Proof. Let us assume that K : £ — £ adds a restriction ¢’ : Ef — E! to an arrow ¢ : By — Ey with
respect to my and my. Let D be a realization of &, so that the map D(K(¢')) : D(K(E}) — D(K(E%)) is
the restriction of D(K (e)). In U(D), it remains true that U(D)(e) o U(D)(m1)=U(D)(mz) o f for some
map f. Since the map U(D)(ms) is injective, the map f is characterized by this equality. So, F(U(D))
only gives the name F(U(D))(e’) to the map f, hence (D) : FoU (D) — D is an isomorphism. Tt follows
that K is fractioning. O

Definition 4.2.6 .,
Let K : £ — & and K’ : £ — £ be two fractioning propagators. A morphism from K to K’ is a pair
(L, L) of propagators L. : £ = &', L : £ = & such that ToK = K'o L.

Example 4.2.7
In section 4.1, the propagator P : £g. — &£cq: 1s not fractioning, whereas the propagator K : Ecomp —+ Ecat
is fractioning.

4.3 Filling propagators

Definition 4.3.1
A propagator J : & — & is filling if the freely generating functor Fy is full and faithful. Then the
underlying functor Uy is the support functor with respect to J.

From theorem 2.3.4, J is a filling propagator if and only if the unit 5 is a natural isomorphism:

nr: idReal(Eu) ::> UJOFJ (: MJ).

Obviously, a conservative propagator is filling, the composite of filling propagators is filling, and a prop-
agator which is equivalent to a filling one is also filling.

The next result gives a characterization of filling propagators in terms of their types, as defined in
section 3.6. This result will not be used in this paper, and it is not proven either.

Theorem 4.3.2 (filling propagators)
A propagator J is filling if and only if the functor which underlies the morphism of projective types Ty(J)
s full and faithful.

We now define a notion of distributor, which is a variant of the notion of distributor defined originally in

[Bénabou, 1973].
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Definition 4.3.3

In this paper, a distributor is a propagator J : & — £, which is an inclusion and which adds to &:

— a copy of a projective sketch £ which has no distinguished projective cone with empty base,

— some transition arrows from &; to &, i.e. some arrows with their source in & and their target in &g,
— some transverse commutative squares, I.e. some commutative squares tr' o ey =eq o tr, where tr and
tr’ are transition arrows, ey is in & and eg in &g,

— and some distinguished transverse projective cones, where a transverse projective cone has its vertex
in &1, at least a point of its base in &1, and at least a point of its base in &;.

Proposition 4.3.4
A propagator which 1s equivalent to a distributor is filling.

Proof. Let J: & — & be a filling propagator. For each realization S of &y, the realization Fj(S) of £
is easy to compute: it coincides with S on &, and F;(S)(E) = @ for all point E not in &. It follows

immediately that U7 o F;(S) =+ S, so that Fj is full and faithful.
This proves that a distributor is a filling propagator, hence the proposition follows. O

. " ¢ t "
In a distributor, the base of a transverse projective cone can be By — Ey +— FE; for some transition
arrow tr, so that it is possible to state that some transition arrows are monomorphic.

Proposition 4.3.5
Let J be a distributor with at least one potential monomorphic transition arrow with source E1 for each

point E1 of &. Then the underlying functor Uy : Real(£) — Real (&) is faithful.

Proof. Let 01,02 : S = S’ be two morphisms of realizations of £ such that U(oy) =U(e3) : U(S) —
U(S"). We have to prove that o1 (F)=03(F) for all point F of £.

If E=Fjy is a point of &, then o;(Ey) =U(o;)(Eo) for i=1 and 2, so that o1(Fy) =0c2(Eo).

Otherwise, F=FE is a point of £, and there 1s a monomorphic transition arrow tr : £y — Ey. For i=1
and 2, from the naturality of o; we get S'(¢r) o 0;(E1) = 0;(Ep) o S(tr). Since o1(Fq) =03(Fq), we get
S'(tr) o o1(E1)=5"(tr) o o2(FE1). Since S’ (¢r) is a monomorphism, we get o1(F1)=02(F1). O

Example 4.3.6

In section 4.1, the propagator P : & — &car 1s not filling, whereas the propagator J : &g = Ecomp is
filling. Indeed, it is equivalent to J' : £ — Ecomp (see section 4.1), and it is easily checked that J' is a
distributor.

4.4 Decomposition of propagators

A propagator is, in general, neither fractioning nor filling. The following result proves that, up to
equivalence, 1t can be decomposed as a filling propagator followed by a fractioning one. Actually, there
are several ways to achieve such a decomposition. One systematic way stems from the proof which is
given below.

Theorem 4.4.1 (decomposition of propagators)
Let P : & — & be a propagator. There are a projective sketch £, a fractioning propagator K : £ — & and
a filling propagator J : &g — & such that:

P=KolJ

In addition, it can be assumed that J s a distributor.
Proof. Let J:& — & be the distribu_tor Wllich adds to &g:
— a copy of the support & = Supp(€) of € (so, & is a projective sketch without any distinguished

projective cone),
— the transition arrows trg, g, : E1 — Ep for all points Eq of & and Ej of & such that P(Ey)=Ej,
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— the transverse commutative squares trp: g o e;1 —eg o trg, g, for all arrows e; : E1 — F{ of & and
10 1,4&0 1
eo : Fg — E} of & such that P(eg)=e1. There is no distinguished transverse projective cone.

Now, let € be made of & together with one identity for each point, so that the inclusion £ C g s an
equivalence. Let K : £ — €' be the propagator such that:

—on &y, it coincides with P,

— on &, it coincides with the inclusion Supp(£) C € C E/,

— all transition arrow ¢rg, g, : E1 — Eg is mapped to idg, : E1 — E: indeed K(Ey)=P(Ey)=E; and
K(FEy,)=Fj.

Then all transverse commutative square trg; g1 o €1 =¢€g o lrp, B, is preserved, since both trep; By o€l
and eg o trg, g, are mapped to e;: indeed K(eg)=P(eg) =€ and K(e1)=e1.

Then obviously P= K o J.

Finally, K can be decomposed as K = K3 o K1, where K; maps the transition arrows to identities and
K3 1s the distinction of the projective cones of £. From proposition 4.2.4 and theorem 4.2.3, both K;
and K, are fractioning, so that K itself is fractioning.

Uk (f.f)

on

Real (€) = Real (€)

g
= 1=

/E Us||Fi(f.f) Real(f)
Fp
P /

& Real () v

O

As a basic application of this decomposition theorem, let us consider the inclusion P : & C £ where &

is made of two points Fy and Ejj and P adds an arrow e : Eg — E{. Neither U nor F' is full and faithful.

According to the proof of theorem 4.4.1, the intermediate sketch £ is made of four points Ey, Ef, F1 and
1, an arrow e : By — F{ and two transition arrows tr : F1 — FEg and ¢’ : E{ — E{. Then P=K o J

where J is the inclusion & C £ and K maps tr and tr' to identity loops.

In this example, we could use the following variant. The intermediate sketch £ is made of three points

Ey, Ej and E4, two arrows e : By — E{ and ¢r : Ey — Ey. Then P = K o J where J is the inclusion

&y C € and K maps tr to an identity loop.

In addition, the arrow tr could be a potential monomorphism. This would mean that in £ the operation

e is partial, and then in & it becomes total.

These three variants can be illustrated as follows:

Fy £> idg,

[ )

Ey  Ej Eq 5 E)
JT

Ey Ey

Example 4.4.2

In section 4.1, the propagator P : £ — Ecat has been decomposed as P = K’ o J with J : £g — Ecomp
filling and K’ : Ecomp — Ef,, fractioning. This decomposition of P corresponds to the last variant above:
both operations comp and selid, which do not occur in &g, are introduced as partial operations in Ecomp,
then they are made total in &/ ,,.
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5 Diagrammatic specifications

In this section we define some basic notions related to logic, like syntactic entailment and semantic
consequence, in the general framework of fractioning propagators.

5.1 Specifications and domains

Definition 5.1.1

Let P : & — & be a propagator. The category of (diagrammatic) specifications with respect to P, or
P-specifications, is the category of realizations of &y, and the category of (diagrammatic) domains with
respect to P, or P-domains, is the category of realizations of &£:

Spec(P) = Real(€y) and  Dom(P) = Real (€).

Of course, this definition can be used when the propagator is fractioning. On the other hand, from
the decomposition theorem 4.4.1, all propagator P : & — & can be decomposed as P = K o J, with
K : & — & fractioning and J : & — & filling. Then, the K-domains are the P-domains, and each
P-specification Sy freely generates a K-specification S = F;(Sp), which is such that Fp(Sy) = Fk(5).
In addition, from the proof of theorem 4.4.1, J can be chosen in such a way that S is essentially the same
as Sq.

Hence, from now on, K : £ — £ is a fractioning propagator.

Definition 5.1.2
A K-specification S is saturated if the morphism ng g : S — Mg (S) is an isomorphism.

Proposition 5.1.3 (saturated specifications)
Let S be a K -specification. Then the K -specification Mk (S) is saturated.

Proof. Since no M is a natural isomorphism, the morphism n o M(S) = nar(s) : M(S) = M(M(S)) is
an isomorphism. O

5.2 Syntactic entailment

Definition 5.2.1
A morphism o : S — S’ of K-specifications is a syntactic entailment if the morphism of K-domains
Fk (o) is an isomorphism:

S 24 S ifandonly if  Fi (o) : Fx(S) = Fx(S').

Proposition 5.2.2
g
Let o : S — S be a morphism of K -specifications. Then S —+ S’ if and only if Mk (o) is an isomorphism.

Proof. 1f F(o) is an isomorphism, then clearly M (o) is an isomorphism, because M = U o F' (and this
is true for any propagator K).

On the other hand, since K is fractioning, the functor U is full and faithful. So, if a morphism § : D — D’
is such that U(J) is an isomorphism, then d itself is an isomorphism. This can be applied to d=F(o): if
M (o) is an isomorphism, then F(o) is an isomorphism. O

Theorem 5.2.3 "

Let 0 : S — S’ be a morphism of K-specifications. Then S —+ S’ if and only if there is a morphism
of K-specifications o : S — Mg/(S) such that a0 0 = ng g and Mg (o) oo = ni 5. In such a case,
a= (Mg(e))™" ons.



The condition in the theorem means that the commutative square ng g 0 0 = Mg (0) o 9k s is splitted:

5 —25% M(S)

O
ol e lM(U)
O

5 M(S)

Proof. Let S s S’ so that M (o) is an isomorphism, by proposition 5.2.2. Let a = (M (c))~! o ng :
S" — M(S). Then aoo = (M(co)) L onsioo = (M(c))™' o M(c) ons = ns, and M(c) o a =
M(O') [e] (M(O'))_l omngr = Mngr.

Now, let o : S* — Mg(S) be such that @ o 0 = ng g and Mg(c) o @ = 7k s'. Let us prove that
ps o M(a): M(S') = M(S) is an inverse of M (). Since K is fractioning, the monad M is idempotent,
which means that y is a natural isomorphism, with inverse M o 5. (see corollary 2.3.5).
On one hand, from a o 0 = g, we get:

psoM(a)oM(o) = psoM(aoa)=psoM(ns)= idys).
On the other hand, from M(c) o a = ns/, we get M%(c) o M(a) = M(ns:), so that (thanks to the
naturality of u):

M(c) o ps o M(a) = psi o M*(0) o M(a) = pisr o M(ns:) = idpr(sv).-
So, M (o) is an isomorphism, with inverse pg o M (). O

5.3 Syntactic deduction steps

Definition 5.3.1 _
A deduction rule with respect to K is an arrow r : H — C' in £. The point H is the hypothesis and the
point C' is the conclusion of the rule r.

A deduction rule r : H — (' can be written as % (r), or simply as %

From theorem 4.2.2, up to equivalence of sketches, the hypothesis and conclusion of a rule are points of
&, and there are two kind of rules:

— a deduction rule r: H — C'is passwe if r is an arrow of £,

— a deduction rule r: H — C'is actwve if r is the inverse of an arrow e : C' = H of £.

Deduction rules can be composed, as arrows in £.

The Yoneda contravariant realization Yg of £ yields illustrations for active deduction rules. Indeed, let
e :C — H be an arrow of £, and let r = ¢~ : H — C be the corresponding active deduction rule. The
image of e : C' = H by Y 1s a morphism of realizations of &:

Yg(e) ZYg(H) — Yg(C)

Since the Yoneda realization is contravariant, the source and target of the morphism Yg (e) are respectively
(the images of) the hypothesis and the conclusion of the rule r. The morphism Yg(e) becomes an

isomorphism in S(£). In this way, Yz (e) illustrates the deduction rule » : H — C'. For instance, this is
the way the definition of categories is illustrated by functors of compositive graphs in section 2.2.

Now, let r=e¢~! : H = C be an active deduction rule.

Let S be a K-specification and # € S(H). The inverse image of by S(e) can be any subset (S(e))~! ()
of S(C):
(S(e)) ™" () € S(O).

When S is saturated, (S(e))~!(z) is made of exactly one element y of S(C).

We now define the “simplest” morphism o : S — S’ with source S such that, if 2’ =c(H)(z), the inverse
image of 2’ by S’(e) is made of exactly one element y' of S'(C):

(S"(e) ™M) ={¥'}-
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For this purpose, let ® : £ — &; be the inclusion propagator which adds points H; and C4, arrows
h:Hy— H,c:(C; — C and e : C; — Hip, and two distinguished projective cones: the first one with

vertex H; and empty base, the second one with vertex Cy, base C' —» H & H; and projections ¢ and
€1.

The set-valued realizations of & are, up to isomorphisms, the pairs S; = (S, z) where S is a set-valued
realization of £ and z is an element of S(H). Then clearly S = Ug(S1).

When & contains only C' - H, then & is as follows:

& with 2 dpes: Hy Ch
(empty base) C—H~<—H

Let @ : £ — &; be obtained by a similar construction from €. Then the inclusion K; : & — & is a
fractioning propagator and the following square is a pushout:

f—r

g
3 K gva
1

1
S ———

Let S be a set-valued realization of £ and z € S(H). Let Z denote the image of z in Mg (S)(H) by the
map Nk s(H) : S(H) = Mg (S)(H). Since K is an inclusion, € Fi(S)(H). The next result is easy to
prove.

Lemma 5.3.2 _
With the above notations, if S1=(S,z) then Fk,(S1) =2 (Fk(S), %), naturally in Syin Real(E1).
Now, let ¥ : & — &; denote the fractioning propagator which adds an inverse ry : H; — C to e;.

When & contains only C —= H, then & is as follows:

&y with 2 dpcs and with 2 composites:

(like &) rioen = ide,

erory =dp,

Let ¥ : £; — &, be obtained by a similar construction from £;. Then the inclusion Ky : & — € is a
fractioning propagator and the following square is a pushout:

K _
&5 ———F,
Ty K VT

O

Eyg ——— 2

Let S; = (S,z) be a Kj-specification, so that S = Ug(S1), and let S] = Mk, (S1) and S’ = Us(S}).
Then, from 7k, g, : S1 — S, we get a morphism of K-specifications:

o= U<I>(7]K1,Sl) S = 5.
Let 2’ = o(H)(z) € S'(H), then the inverse image of z’ by S’(e) is made of one point: namely,

(S'(e))~H(z") = {y'} where y = S'(r1)(2') € S’(C). On the other hand, if (S(e))~!(z) is made of
one point, then c=idg : S — S.
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Definition 5.3.3

Let 7 : H — C be a deduction rule with respect to K, and let z be an element in S(H). The deduction
step with respect to K associated to r and z is a morphism of K-specifications with source S. If r is a
passive deduction rule, it is the identity morphism ids : S — S. If r=e~! is an active deduction rule, it
is the morphism ¢ : S — S’ as defined above.

Proposition 5.3.4 (syntactic deduction step)
g
Let 0: S — S’ be a deduction step. Then it is a syntactic entailment: S — S'.

Proof. Let o:5 — S be the deduction step associated to the rule r: H — C and to € S(H). Let us
prove that Fi (o) : Fx(S) = Fk(S’) is an isomorphism.
If r is passive then o is the identity, so that Fx (o) is the identity.

~

If r is active, lemma 5.3.2 proves that Fk (o) = Ug(Fk,(c1)). Since T is conservative, it follows that,
up to isomorphism, Fk (o) is the deduction step associated to the rule » : H — C and to € Fg (S)(H).
Since Fk(S) is saturated, this deduction step is the identity. O

It follows that any finite composition of deduction steps is a syntactic entailment.

In the opposite direction, it can be proven that all syntactic entailment (for instance nx s : S —p Mgk (5))
can be obtained from syntactic deduction steps by nested inductive limits of various types.

5.4 Models

Definition 5.4.1
Let D be a K-domain. The contravariant functor of models Modg (—, D) : Spec(K) - Set is:

MOdK(_7 D) :HomReal(E) (FK(_)’ D)

It follows from the generated realization theorem 3.4.1 that:

MOdK(—, D) = HomReal(g) (—, UK(D))

So, for each K-specification S, the models of S with values in D are the morphisms from Fk(S) to D in

Real(£), and they can be identified with the morphisms from S to Ug (D) in Real(£):
Modg (S, D) = HomReal(g)(FK(S), D) = HomReal(g)(S, Uk (D)).

From the definition of morphisms in section 3.3, a model w of S with values in D can be identified
with a natural transformation between the functors underlying S and Ug(D): it is made of a map
wg : S(E) = D(K(F)) for each point F of £, naturally in E.

In this paper, a model w of S with values in D is illustrated as w : S --» D, so that (Kleisli categories
could be invoked here, see [Mac Lane, 1971, p.143]):

(w:S-—-+»D) = (w: Fg(S)— D).
Let o : S — S’ be a morphism of K-specifications. The map Modg (o, D) : Modg (S', D) = Modg (S, D)
maps w' : S =+ D, ie. w': Fg(S') = D, tow' o Fg(0) : Fx(S) — D, which is denoted, in this paper,
w' ®o:S5 - D, so that:
(Ww®a:85-- D) = (woFk(o): Fk(S) = D).

Proposition 5.4.2
The map Modg (nk,s, D) is a bijection: Modg (Mg (S), D) = Modg (S, D).
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So, the models of a K-specification S can be identified with the models of Mg ().

Proof. From theorem 2.3.4, since U is full and faithful, F o 5 is a natural isomorphism Fon : F =
FolUoF. So, the map HomReal(g)(FK(nS), D), i.e. the map Modg (ns, D), is a bijection. O

In such a general setting, there is no canonical notion of morphism of models, hence no category of models
of S with values in D. However, in many important special cases, there is such a category of models;
then the contravariant functor of models is:

Modg (—, D) : Spec(K) = Cat.

5.5 Semantic consequence

Definition 5.5.1
Let D be a K-domain. A morphism o : S — S’ of K-specifications is a semantic consequence with respect
to D if the map Mod(e, D) is a bijection:

S Zwp S ifand only if Mod(s, D) : Mod(S', D) =5 Mod(S, D).

5.6 Soundness

Entailment and consequence are related by the soundness property, which is easily derived from the
properties of adjunction.

Theorem 5.6.1 (soundness)
Let D be a K-domain. For all morphism of K -specifications o : S — S', if 0 is a syntactic entailment,
then it 1s a semantic consequence with respect to D:

if S28S then S -JwpS.

This means that all fractioning propagators are sound.

Proof. Let o :S — S’ be a morphism of K-specifications. Since 5 is a natural transformation, we have
ns' 0 0 = M, ong. Hence Mod(o, D) o Mod(ns:, D) = Mod(ns, D) o Mod(M,, D). On one hand, since o
is a conservative morphism, M, is an isomorphism, and Mod(M,, D) is a bijection. On the other hand,
from proposition 5.4.2, both Mod(ns, D) and Mod(ng:, D) are bijections. Tt follows that Mod(o, D) is
also a bijection. O

Proposition 5.6.2
Let 0 : S — S’ be a morphism of K -specifications. If o is a semantic consequence with respect to all
K-domain D, then it is a syntactic entailment:

if S SepS foralD then S -ZwS.

Proof. The assumption means that the map Mod(o, D) : Mod(S’, D) — Mod(S, D) is a bijection for all
domain D. From the definition of models, this means that the map Hom(F (o), D) : Hom(F(S'), D) —
Hom(F(S), D) is a bijection for all domain D.

So, when D = F(S), the map § + § o F(o) is a bijection Hom(F (o), F(S)) : Hom(F(5'), F(S)) =
Hom(F'(S), F(S)); hence, there is a unique morphism 7 : F(S') = F(S) such that 7o F(c)=idp(s).
Now, when D=F(S’), the map § — & o F(o) is a bijection Hom(F (¢), F(S")) : Hom(F(S'), F(S5')) =
Hom(F(S), F(S’)). This map is such that F(o) o7 +— F(c) o 7o F(r), which is equal to F (o), since
7o F(0)=1dp(s). But clearly idp(s/y — F(c), so that F/(c) o T=1idp(s).

So, F (o) is an isomorphism, with inverse 7. O
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5.7 Satisfaction

Here it is proven that the relation of semantic consequence, between two specifications, can also be
obtained from a relation of satisfaction, between a model and a specification. The satisfaction only
makes sense when there is some notion of signature of a specification. In our context, the signatures are
the set-valued realizations of a projective sketch &, such that there is a propagator J : &g — £.

More precisely, let Kq : & — o be a fractioning propagator, together with a homomorphism J= (J,J):
Kqg— K.

f—F—

3

't
Ko —

&g ———>&

Let Sy be a Kg-specification and Dy a Kg-domain.

For all K-specification S such that Uy (S) =Sy and all K-domain D such that U3(D) = Dy, the underlying
functor Uy : Real (£) — Real (&) determines a map:

(U1)s,0x (D) : Hompeque) (S, Uk (D)) — Hompear(ey)(So, Us (Ur (D)),

and since Uy o Ug = Ug, o U5 this map is:

(Us)s,ux (D) : Hompeqye) (S, Uk (D)) = Homgeai(e,)(So, Ur, (Do))-
So, by adjunction, we get a map:
(Us)s,p : Modk (S, D) = Modk, (So, Do),
such that:
w = (Ug(wye)).
This map is natural both in S and in D.

Definition 5.7.1 For all K-specification S such that U;(S) =Sy and all K-domain D such that U5(D) =
Dy, the underlying model map with respect to .J is the map w — (Uy(wy))*:

(Uj)S,D : MOdK(S, D) — MOdKO(So, Do).

Definition 5.7.2 Let S be a K-specification such that Uj(S) = Sy, and D a K-domain such that
Uj(D) = Dy. A model wg of Sy with values in Dq satisfies S with respect to D if wq 1s in the image of
Mod(S, D) by (Uz)s,p. This is denoted:

Wy —tp S.

Let us now make the following assumption (IN.J):
The map (Us)s,p is injective, for all K-specification S and all K-domain D.

This happens when J is a filling propagator which satisfies the condition of proposition 4.3.5.

Under this assumption (IN.J), the map (U5)s p can be used for identifying Mod(S, D) and its image in
Mod(U;(S), Uz(D)). Then, we can say that wg : Sg -—+ Dy satisfies S with respect to D if and only if it

“1s” a model of S with values in D.

Theorem 5.7.3
Under assumption (INJ), let o : S — S’ be a morphism of K -specifications such that Uz (S)=U;(S") =5
and Uj(o)=1ids,, and let D be a K-domain such that Us(D)=Dy.

Then S —UH-)D S’ if and only if, for all wg : Sg ——» Dy, if wg —p S then wg —p S'.
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Proof.  Because of the naturality of the map (Uy)s p with respect to S, the following triangle T is
commutative:

Mod(S, D)

(U5)s.p
Mod(,D) Mod(U;(S), Uz(D))
el
MOd(S/,D) (UJ)S’,D

Let us assume that S —UH-)D S’ i.e. that Mod(e, D) is bijective. Let wq : So --+ Dy be such that
wo —p S, which means that wg is in the image of the map (Uz)sp. Then, since Mod(c, D) is
surjective, wp is in the image of the map (Uz)s p o Mod(o, D), which is equal to (U5)s/ p because of
the commutativity of T, so that wg —p S’.

On the other hand, the commutativity of T' together with the assumption (INJ) proves that the map
Mod(eo, D) is injective. Now, let us assume that for all wg : Sg -——+ Dg, if wg —#p S then wg —wp 5.
Forall w : S —» D, let wo = (U5)s,p(w), so that wog —p S. Then wy —p S’, hence there is some
W' 8" - D such that o' : S’ —» D, ie. such that wo = (U5)s/ p(w'). Because of the assumption
(INJ), this w' is uniquely determined. So, we get a map f : Mod(S, D) — Mod(S’, D), and because
of the assumption (IN.J), f is an inverse to Mod(c, D). Tt follows that Mod(e, D) is bijective, so that

S ep SO

6 About logic

In this last section, we outline some basic links between our diagrammatic specification techniques and
issues in logic. First, we look at equational diagrammatic specifications, and then, more generally, at
institutions.

6.1 About equational logic

In the context of algebraic specifications, as for instance in [Goguen, Thatcher and Wagner, 1976], an
equational specification is defined in three steps: first a set of sorts, then a signature (i.e. a structured set
of operators) on this set of sorts, and finally a set of equations on this signature. Some strings of sorts are
used for introducing the operators, and some terms (composed from operators) are used for introducing
the equations.

For example, an equational specification of naturals S,4;: can be defined as follows:

— sorts: N,

— operators: s: N > N, z: A= N,a: NN — N, with the strings of sorts NN and A (empty string),
—equations: a(z,z) = z and a(z, s(y)) = s(a(z,y)) where z and y are variables of sort N. These equations
can be written without variables, as relations between composed arrows. For instance, the second equation
can be written as a o fact(idy,s) = soa : NN — N, with one identity arrow idy : N — N, one
factorization arrow fact(idy,s) : N = NN and two composed arrows.

The construction of an equational specification makes use of three successive propagators: Ps for sorts,
P, for operators, and P, for equations.

Sorts.

The propagator P : &, — &, is the usual one from a projective sketch of sets to projective sketch of
monoids.

The projective sketch & s is the simplest sketch of sets: it is made of one point Sort (similar to Pt). So,
a Ps-specification Sy is a set of sorts.

The projective sketch &, is a sketch of monoids: it contains the points Sort®, Sort, Sort*, two arrows
p1,pa : Sort? — Sort and two dpe’s: one with vertex Sort’ and empty base, another one with vertex
Sort?, with two-points base {Sort, Sort} (discrete, i.e. without any arrow) and projections pi, ps. The
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point Sort will be interpreted as the set of strings of sorts, Sort’ as a one-element set, and Sort? as the
set of pairs of strings of sorts. In &, two more arrows A : Sort® — Sort and k : Sort> — Sort stand
respectively for the empty string of sorts and the concatenation of strings of sorts. There are additional
features in £, in order to ensure that & will be interpreted as an associative operation and A as its unit.
So, the functor Fp, freely generates the strings of sorts.

The propagator Ps is decomposed, according to theorem 4.4.1, as P; = K, o Js, with an intermediate
projective sketch & of partial monoids.

Operators.

The propagator P, : &, — &, is similar to the propagator which has been considered in the previous
sections, from a projective sketch of directed graphs to a projective sketch of categories. There is a point
Op (similar to Ar) which stands for the set of operators in &; , and for the set of terms in &,. However,
because of arities, P, is somewhat larger than that.

The sketch & , contains &, not only & ,, in order to allow the definition of multivariate operators and
constant operators. So, a P,-specification S, is a signature, in the equational meaning.

The inclusion propagator J;, : & — &y, is filling. Let S; be a Py-specification. Then S, is a S;-
sorted signature if Uy, ,(S,) can be deduced from Ss, more precisely if Fj (S5) —# Uy, ,(S,), as K,-
specifications.

The sketch &,, besides identity and composed arrows, also takes care of projection and factorization
arrows. So, the functor Fp, freely generates the terms, in their categorical version, i.e. without variables.
The propagator P, is decomposed, according to theorem 4.4.1, as P, = K, o J,, with an intermediate
projective sketch &, which contains the sketch of compositive graphs.

Equations.

The propagator P, : £ . — &. is the propagator for equational specifications.

The sketch & . contains &, and a point Eg for equations, with a potential monomorphism from FEg to a
point Sst which stands (thanks to a dpe) for the set of pairs of terms with the same source and target.
So, a P.-specification S, is an equational specification.

The inclusion propagator J, . : &, — &y ¢ is filling. Let S, be a P,-specification. Then the signature of S,
is S, if Uz, (Se) can be deduced from S,, more precisely if Fj,(S,) —# Uy, (Se), as K.-specifications.
The sketch £, adds deduction rules, in such a way that the interpretation of Eq in a realization of £,
is a congruence, i.e. an equivalence relation which is compatible with the composition of terms. So, the
functor Fp, freely generates the congruence from the equations, i.e. the theorems from the axioms.

The propagator P. is decomposed, according to theorem 4.4.1, as P, = K. o J,, with an intermediate
projective sketch &, for derived equational specifications.

To sum up, the definition of equational specifications makes use of the following commutative diagram
of projective sketches and propagators:

J

(‘:076 — &, —— Ee
To,c Pe _
Jo,e
o Ko, —
5070 — &, ——=¢,
Is,0 Po d
5,0
Js K _
gOys \i/ 55
P

The domain of values is the realization D, of €. which interprets the sorts as sets, the operations as
maps, and the equations as identities between maps.
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6.2 About institutions

The theory of institutions [Goguen and Burstall, 1992] defines some notions of logic in a very general
setting. Diagrammatic specifications are quite different: they are restricted to projectively sketchable
structures, in order to gain some effectiveness; and they do not assume any notion of formula or sentence,
because diagrammatic specifications have been made for applications to computer languages which do
not involve such notions. However, diagrammatic specifications can easily be related to institutions, more
precisely to chartered institutions.

The idea is to consider a fractioning propagator Ko : & — &, together with a point Sen in & and
with a Kg-domain Dy, such that the interpretation of the point Ky(Sen) by Dg is the set {true, false}
of booleans. Then a filling propagator J : & — & is built by adding to & a point Az and a potential
monomorphism m : Az — Sen. This can be completed by a fractioning propagator K : & — € and a
filling propagator J such that J : Ky — K is a homomorphism of fractioning propagators, together with
a K-domain D such that Dy = U5(D).

The point Ko(Sen) of &y stands for the set of sentences, the point Az of £ for the set of azioms, and the
point K (Az) of £ for the set of valid sentences.

Let S be a K-specification and Sg = Uj(S) its support. Then S(Sen) is equal to Sy(Sen), and the image
of S(Az) by S(m) is a subset of Sy(Sen). Clearly, in this way, the category of K-specifications (up to
isomorphisms) can be identified to the category of pairs (Sp, V) where Sy is a Kg-specification, V is a
subset of Sy(Sen), and the morphisms are straightforward.

This gives rise to an institution 7 in the following way:

— Real (&) is the category of signatures of I,

— Mod : Real (£y) »¢> Set is the contravariant functor of models of I,

— €Vgen © Fi, : Real(€y) — Set is the functor of sentences of I,

— and for all signature Sp, all model 7 of Sy with values in Dy and all sentence s of Sy, the satisfaction
relation between 7 and s holds if and only if 7 satisfies (in the sense of diagrammatic specifications) the
K-specification S with support Sy and with s as its unique axiom.

Then the required satisfaction condition is easily checked.

In addition, such an institution, together with the notion of syntactic entailment (in the sense of dia-
grammatic specifications) gives rise to a logic in the sense of [Marti-Oliet and Meseguer, 1994].

In this context, we can clarify the relations between the diagrammatic notions of entailment —s and
consequence —>, and the usual logical notions of entailment - and consequence F.

Let Sy be some fixed signature, and let 1, s, ..., ¢, and ¥ be sentences of Sy. Let S be the specification
with signature Sp such that S(Az) = {¢1, ¢2,...,¢x}. Let S’ be the specification with signature Sy such
that S"(Az) = {¢1,¢2,..., ¢k ¢}. Let 0 : S — 5 be the inclusion. Then clearly:

S 2y s if and only if  ¢1,99,..., 06 F ¢,

S Zep S ifand only if  @1,09,... 08 Et .
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