
TERMGRAPH 2006 Preliminary Version

Modeling Pointer Redirection as Cyclic
Term-graph Rewriting 1

Dominique Duval 2 Rachid Echahed 3 Frédéric Prost 4

Abstract

We tackle the problem of data-structure rewriting including global and local pointer
redirections. Each basic rewrite step may perform three kinds of actions: (i) Local
redirection, the aim of which is to redirect specific pointers determined by means
of a pattern ; (ii) Replacement, that may add new information to data-structures ;
(iii) Global redirection, which is aimed at redirecting all pointers targeting a node
towards another one. We define a new framework, following the double-pushout
approach, where graph rewrite rules may mix these three kinds of actions in a row.
We define first the category of graphs we consider and then we define rewrite rules
as pairs of graph homomorphisms of the form L ← K → R. In our setting, graph
K is not arbitrary, it is used to encode pointer redirection. Furthermore, pushouts
do not always exist and complement pushouts, when they exist, are not unique.
Despite these concerns, our definition of rewriting steps is such that a rewrite rule
can always be fired, once a matching is found.

Key words: Graph rewriting, category theory, double pushout,
pointer redirection.

1 Introduction

Pointers allow one to design efficient implementations of algorithms. However,
it is well-known that pointer manipulation is error-prone. Due to their flexi-
bility and power, programs which handle pointers are more difficult to write
and to maintain. Actually, pointers are a source of different kinds of bugs such
as memory leaks (i.e. a memory cell can no longer be reached because there is
no pointer to it) or segmentation fault (i.e. one tries to access a cell which has
been deallocated). So, formal techniques to write and validate programs ma-
nipulating pointers are crucial to enhance the quality of software. Formally,

1 This work has been partly funded by the project ARROWS of the French Agence Na-
tionale de la Recherche.
2 Dominique.Duval@imag.fr ; Laboratoire LMC ; Grenoble, France
3 Rachid.Echahed@imag.fr ; Laboratoire Leibniz ; Grenoble, France
4 Frederic.Prost@imag.fr ; Laboratoire Leibniz ; Grenoble, France

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Duval, Echahed, Prost

data-structures are particular graphs and pointers are edges. General frame-
works of graph transformation are now well established, see e.g. [28,16,17].
On the other hand, rewriting techniques have been shown to be very useful
to establish formal bases of very high level programming languages as well as
theorem provers. These techniques have been widely investigated for strings
[10], trees or terms [3] and term graphs (or dags) [25,8].

In this paper we follow the double pushout approach [12,22] of graph trans-
formation and propose a new class of graph rewrite systems aiming at rewriting
(cyclic) data-structures with pointers such as circular lists, doubly-linked lists
etc. Our proposal focuses on pointer rewriting and thus departs from existing
ones such as [7,24,15,11](see related work section below for further discussion).
A rewrite rule is defined as a pair of graph (data-structure) homomorphisms
L← K → R. The graph K plays a key role in pointer rewriting.

Hereafter we illustrate our approach through an example. In Fig. 1, we
give an example of a rule introducing our approach. An application of this
rule is given in Fig. 2, where graph G1 is rewritten into G2. G2 is obtained
from G1 by (i) adding cell C ′, (ii) redirecting the pointer outgoing cell C1 to
point C ′ and finally, (iii) redirecting all pointers targeting cell C2, but the
one outgoing C1, to point to cell C1. To achieve such transformation, the
left-hand side L of the considered rewrite rule consists of two linked cells C1
and C2. The role of the considered rewrite rule consists in:

(i) Adding cell C ′

(ii) Redirecting the pointer outgoing C1 to point to a new cell C ′. Such
(local) redirection of pointer is achieved by disconnecting the considered
pointer (outgoing C1) in graph K and making it point to a new (variable)
unlabeled node p such that l(p) = C2 and r(p) = C ′.

(iii) Redirecting all pointers targeting cell C2, but the pointer outgoing C1,
to point to cell C1. To perform such (global) redirection of pointers, we
add a new (variable) unlabeled node, γ, in graph K such that l(γ) = C2
and r(γ) = C1. γ can be isolated in graph K, i.e. γ is not necessarily
target of any pointer in K. The role of γ can be better explained when
one considers the double-pushouts that define a rewrite step as in Fig 3.
Indeed, rewriting a graph G by using the considered rule, consists, in
particular, to disconnect, in graph D (Fig. 3), all pointers targeting the
image of cell C2 in G and redirect them to the image of γ in D. Details
of this construction are given in section 4.

In general, one may perform several local and global pointer redirections
in one step. For each redirection, new (variable) unlabeled node should be
added with the right definitions of morphisms l and r.

The considered homomorphisms of a rewrite rule (l, r,m in Fig. 3) are not
necessarily injective in our setting, unlike classical assumptions as in the re-
cent proposals dedicated to graph programs [26,23], and complement pushouts
(graph D in Fig. 3) are not unique.

2

Duval, Echahed, Prost

C1

C2

�
��

q : •

�
��

L

γ : •

C1

C2

A
AK

p : •

q:•

K

�
��

C1

C2

A
AK

C’

q : •

�
��

R

� -l r

Fig. 1. Rewrite rule example

C1 -

C4

6
C2

C3
?

6
G1

Γ

?

HHj
���

C1 AAK

C’ C2

C4

6

G2

Γ
���

�
���

C3
?

6

-

Fig. 2. Rewrite step example

L

m

��

K
loo

d
��

r //R

m′

��
G D

l′oo r′ //H

Fig. 3. Double pushout: a rewrite step (G→ H)

Global redirection is very often used in the implementation of functional
programming languages, for instance when changing roots of term graphs. As
for local redirection, it is useful to express classical imperative algorithms.

Related Work

Term graph rewriting [7,25,8] has been mainly motivated by implementation
issues of functional programming languages. These motivations impact clearly
their definition.

In [21,13] jungles, a representation of acyclic term graphs by means of
hyper-graphs, have been investigated. We share with these proposals the
use of the double-pushout approach of rewriting. However, we are rather
interested in cyclic graphs.

In [7,24,15] cyclic term graph rewriting is considered using the algorithmic
way. Pointer redirection is limited to global redirection of all edges pointing
to the root of a redex by redirecting them to point to the root of the instance
of the right-hand side. In [6], Banach, inspired by features found in implemen-
tations of declarative languages, proposed rewrite systems close to ours. We
share the same graphs and global redirection of pointers. However, Banach
did not discuss local redirections of pointers. We differ also in the way to
express rewriting. Rewriting steps in [6] are defined by using the notion of an
opfibration of a category while our approach is based on double-pushouts.

[11] is a work combining a categorical approach and cyclic term graphs. It
departs from our work in the fact that the explicit manipulation of edges is not

3

Duval, Echahed, Prost

handled. Actually there is an edge manipulation during the redirection phase
which corresponds to our notion of global redirection. But it is limited to the
root and cannot be handled by the programmer. In [14] cyclic graphs are also
studied using addressed term rewriting systems. In this case too the direct
manipulation of pointers is not addressed. The same remark can be done for
[9] that is an extension of ρ-calculus able to deal with cyclic structures. It
is not possible in these systems to express the update of a shared data. The
work of [1] considers an equational framework for cyclic graph rewriting, it
also cannot handle explicitly pointers.

The difference between our proposal to generalize term graph rewriting
and previous works comes from the motivation. Our aim is not the implemen-
tation of declarative programming languages. It is rather the investigation
of the elementary transformation rules of data-structures as occur in classical
algorithms. In such structures pointers play a key role that we tried to take
into account by proposing for instance redirections of specific edges within
rewrite rules.

In [23], Habel and Plump proposed a kernel language for graph transfor-
mation. This language has been improved recently in [26]. Basic rules in this
framework are of the form L ← K → R satisfying some conditions such as
the inclusion K ⊆ L. Unfortunately, our rewrite rules do not fulfill such con-
dition ; particularly when performing local edge redirections. Furthermore,
complement pushouts are not unique in our setting which is not the case in
[23,26].

Recently, in [5,4] the authors are also interested in classical data-structures
built by using pointers. Their work is complementary to ours; they proposed
Graph reduction specifications as a framework to recognize data-structure
shapes in order to check the type safety of pointer algorithms.

Last, but not least, there are some programming languages which provide
graph transformation features (see, e.g. [29,18,20,27]). Our purpose in this
paper is to focus on formal definition of basic data-structure transformation
steps rather than building an entire programming language with suitable visual
syntax and appropriate evaluation strategies.

The rest of the paper is organised as follows. The next section introduces
the category of graphs we consider. Section 3 states some technical results
that help defining rewrite steps. Section 4 introduces data-structure rewriting
(including global and local redirection of pointers) through a double-pushout
approach. Concluding remarks are given in section 5. Proofs may be found
in the appendix. We assume some familiarity with basic notions of category
theory (see e.g. [2] for an introduction).

2 Graphs

In this section we introduce the category of graphs we consider in the paper.
These graphs are supposed to represent data-structures and are the ones in-

4

Duval, Echahed, Prost

troduced in [7]. We define below such graphs in a mono-sorted setting. Lifting
our results to the many-sorted case is straightforward.

Definition 2.1 (Signature) A signature Ω is a set of operation symbols such
that each operation symbol in Ω, say f , is provided with a natural number, n,
representing its arity. We write ar(f) = n.

In the sequel, we use the following notations. Let A be a set. We note A∗

the set of strings made of elements in A. Let f : A → B be a function. We
note f ∗ : A∗ → B∗ the unique extension of f over strings defined by f ∗(ε) = ε
where ε is the empty string and f ∗(a1 . . . an) = f(a1) . . . f(an).

We assume that Ω is fixed throughout the rest of the paper.

Definition 2.2 (Graph) A graph G is made of:

• a set of nodes NG,

• a subset of labeled nodes N Ω
G ⊆ NG,

• a labeling function LG : N Ω
G → Ω,

• a successor function SG : N Ω
G → N

∗

G,

such that for each labeled node n, the length of the string SG(n) is the arity of
the operation LG(n),

We can remark the following fact: the arity of a node n is defined as the
arity of its label, the i-th successor of a node n is denoted succG(n, i), the
edges of a graph G are the pairs (n, i) where n ∈ NΩ

G and i ∈ {1, . . . , ar(n)},
the source of an edge (n, i) is the node n, and its target is the node succG(n, i),
f = LG(n) is written as n :f , the set of unlabeled nodes of G is denoted N X

G ,
so that: NG = N Ω

G + 5N X

G .

Example 2.3 Let G be the graph defined by NG = {m;n; o; p; q; r; s; t},
N Ω
G = {m; o; p; s; t}, N X

G = {n; q; r}, LG is defined by: [m 7→ f ; o 7→ g; p 7→
h; s 7→ i; t 7→ j], SG is defined by: [m 7→ no; o 7→ np; p 7→ qrm; s 7→ m; t 7→
tsn].

Graphically we represent this graph as:

s : i //m : f

yyttt
tt

t

��
n : • o : goo // p : h

��yyttttt

tt

t : j

::

OO

44 q : • r : •

We use • to denote lack of label. Informally, one may think of • as anony-
mous variables.

Definition 2.4 (Graph homomorphism) A graph homomorphism ϕ : G→
H is a map ϕ : NG → NH such that for each labeled node n, LH(ϕ(n)) =
LG(n) and SH(ϕ(n)) = ϕ∗(SG(n)).

5 + stands for disjoint union.

5

Duval, Echahed, Prost

The image ϕ(n, i) of an edge (n, i) of G is defined as the edge (ϕ(n), i) of H .

Example 2.5 Consider the following graph H :

v : i // a : f

zzttt
tt

��
b : • c : goo

��

e : •

t : j

::

OO

33 d : •

Let ϕ : NH → NG, where G is the graph defined in Example 2.3, be defined
as: [a 7→ m; b 7→ n; c 7→ o; d 7→ p; e 7→ p; v 7→ s; t 7→ t]. Map ϕ is a graph
homomorphism from H to G. Notice that the nodes without labels act as
placeholders for any graph.

It is easy to check that the graphs (as objects) together with the graph
homomorphisms (as arrows) form a category, which is called the category of
graphs and noted Gr .

3 Disconnections

This section is dedicated to some technical definitions, in order to simplify the
definition of rewrite rules in the next section.

First, we define a disconnection of a graph L, it is made of a graph K
and a graph homomorphism l : K → L; roughly speaking, the graph K is
obtained by redirecting some edges of L towards new, unlabeled targets, and
the homomorphism l reconnects all the disconnected nodes.

Definition 3.1 (Disconnection of a graph) A disconnection of a graph L

is made of a graph K and a graph homomorphism: L K
loo such that

l is surjective on the nodes and bijective on the labeled nodes.

The next result builds some kinds of disconnections of graphs.

Proposition 3.2 Let L be a graph, E a set of edges and N a set of nodes of
L. Let K be the graph defined by:

• NK = NL + NE + NN , where NE is made of one new node n[i] for each
edge (n, i) ∈ E and NN is made of one new node n[0] for each node n ∈ N ,

• N Ω
K = N Ω

L ,

• for each n ∈ NΩ
L : LK(n) = LL(n),

• for each n ∈ NΩ
L and i ∈ {1, . . . , ar(n)}:

· if (n, i) 6∈ E then succK(n, i) = succL(n, i),
· if (n, i) ∈ E then succK(n, i) = n[i],

Let l : K → L be the graph homomorphism defined by: l(n) = n if n ∈ NL ,
l(n[i]) = succL(n, i) if n[i] ∈ NE, l(n[0]) = n if n[0] ∈ NN .

Then, l : K → L is a disconnection of L.

6

Duval, Echahed, Prost

Definition 3.3 The disconnection defined in proposition 3.2 is called the dis-
connection of L with respect to E and N .

Now, the notion of disconnection is extended, from a graph L to a graph
homomorphism m : L→ G.

Definition 3.4 (Disconnection of a graph homomorphism) A disconnec-
tion of a graph homomorphism m : L→ G is a commutative square:

L

m

��

K
loo

d

��
G D

l′oo

where l and l′ are disconnections.

The next result builds some kinds of disconnections of graph homomor-
phisms.

Proposition 3.5 Let L be a graph, E a set of edges and N a set of nodes
of L, and l : K → L the disconnection of L with respect to E and N . Let
m : L → G be a graph homomorphism such that the restriction of m to
(N Ω

L ∪ N) is injective. Let E ′ = m(E) and N ′ = m(N). Let D be the graph
defined by:

• ND = NG +NE′ +NN ′, where NE′ is made of one new node p[i] for each
edge (p, i) ∈ E ′ and NN ′ is made of one new node p[0] for each node p ∈ N ′,

• N Ω
D = N Ω

G ,

• for each p ∈ NΩ
G : LD(p) = LG(p),

• for each p ∈ NΩ
G and i ∈ {1, . . . , ar(p)}:

· if p ∈ m(N Ω
L) and (p, i) 6∈ E ′ then succD(p, i) = succG(p, i),

· if p ∈ m(N Ω
L) and (p, i) ∈ E ′ then succD(p, i) = p[i],

· if p 6∈ m(N Ω
L) and succG(p, i) 6∈ N ′ then succD(p, i) = succG(p, i),

· if p 6∈ m(N Ω
L) and succG(p, i) ∈ N ′ then succD(p, i) = succG(p, i)[0],

Let l′ : D → G be the graph homomorphism defined by: l′(p) = p if p ∈ NG,
l′(p[i]) = succG(p, i) if p[i] ∈ NE′, l′(p[0]) = p if p[0] ∈ NN ′.

Let d : K → D be the graph homomorphism defined by: d(n) = m(n) if
n ∈ NL, d(n[i]) = m(n)[i] if n[i] ∈ NE, d(n[0]) = m(n)[0] if n[0] ∈ NN .

Then, we get a disconnection of m : L→ G.

Proof. The fact that l′ is a disconnection is easy to check. For the commu-
tativity, let n be a node of K, then:

• if n ∈ NL then l′(d(n)) = l′(m(n)) = m(n) = m(l(n)),

• if n[i] ∈ NE then l′(d(n)) = l′(m(n)[i]) = succG(m(n), i) = m(succL(n, i)) =
m(l(n[i])),

• if n[0] ∈ NN then l′(d(n[0])) = l′(m(n)[0]) = m(n) = m(l(n[0])),

so that l′ ◦ d = m ◦ l, as required. �

7

Duval, Echahed, Prost

Definition 3.6 The disconnection defined in proposition 3.5 is called the dis-
connection of m with respect to E and N , or the disconnection of m extend-
ing l.

Remark 3.7 With above notations, the map d : NK → ND can be described
as the sum of three maps: d = dL + dE + dN with: dL = m : NL → NG,
dE : NE → NE′ such that n[i] 7→ m(n)[i], dN : NN → NN ′ such that n[0] 7→
m(n)[0]. If, in addition, the restriction of m to (N Ω

L ∪ N) is injective, then
both dE and dN are bijections.

Theorem 3.8 (A pushout square) Let m : L → G be a graph homomor-
phism, E a set of edges and N a set of nodes of L, such that the restriction
of m to (N Ω

L ∪ N) is injective. Then, the disconnection of m with respect to
E and N is a pushout in the category of graphs.

Proof. This result is an easy corollary of Theorem A.3 (cf. the appendix). �

Example 3.9 Consider the graph H of Example 2.5. Then the disconnected
graph, Hd, associated to H and the set of edges {(a, 2); (c, 1)} is the following
graph:

v : i // a : f

%%LLLLL

��

c : g //

%%KK
KK

KK d : •

t : j33

OO

// b : • a[2] : • e : • c[1] : •

Now if we consider the graph homomorphism ϕ : H → G defined in Ex-
ample 2.5, the disconnection of a graph homomorphism leads to the following
homomorphism : Dϕ : Hd → Gd, where Gd is the disconnection of G rel-
atively to edges {(ϕ(a), 2); (ϕ(c), 1)}, is the mapping [a 7→ m; b 7→ n; c 7→
o; d 7→ p; e 7→ p; a[2] 7→ m[2]; c[1] 7→ o[1]; v 7→ s; t 7→ t]

4 Data-structure rewriting

A rewrite step is defined from a rewrite rule and a matching. A rewrite rule is
a kind of span of graphs (a span is a pair of homomorphisms with a common

source): L K
loo r //R . A matching is a kind of morphism of graphs:

L
m //G . The role of a rewrite step consists in:

• adding to G an instance of the right-hand side R,

• performing some local redirections of edges in G: some edges, in the image
of the matching, are redirected to other target nodes,

• performing some global redirections of edges in G: all incoming edges of
some nodes, except those in the image of the matching, are redirected to
other target nodes,

8

Duval, Echahed, Prost

�

�

�

�
Gr

$$I
II

II
// u : f //

��

v : c

w : a

�

�

�

�

�

Gr

##F
FFFF
// u : f //

%%KK
KK

K v : c

w : a u[1] : •

-

�

�

�

�

Gr

##G
GG

GG
// u : f //

$$II
II

I v : c

w : a x : b

? ? ?

�

�

�

�

u : f //

��

v : •

w : •

�

�

�

�

�

u : f //

%%KK
KK

K v : •

w : • u[1] : •
-

�

�

�

�

u : f //

$$II
II

I v : •

w : • x : b

Fig. 4. Local Redirection

We use the double-pushout approach to define a rewrite step. We do not
deal with deletion of items in this paper ; this could easily be performed by
means of the notion of rooted graphs and the use of garbage collection.

Definition 4.1 (Rewrite rule) A rewrite rule, or production, is a span of

graph homomorphisms of the form: L K
loo r //R where l : K →

L is the disconnection of L with respect to a set of edges E and a set of nodes
N of L and where the restriction of r to N X

L is injective and has its values
in N X

R . The locally redirected edges of p are the edges in E, and its globally
redirected nodes are the nodes in N .

The reader may notice that the rewrite rules we consider are different from
disconnected productions of [19]. Actually, we do not use the same notion
of disconnected graphs. In general, disconnected graphs according to our
definition do not fulfill the disconnection conditions given in [19].

We now give two toy examples to illustrate this definition. We start by
the local redirection mechanism.

Example 4.2 Let us observe on the following double pushout how local redi-
rection works. Consider the double pushout given in Fig. 4. We would like to
redirect the first argument (pointer) of the function f to a new one, say x : b.
This is done by the introduction in K of an unlabeled node u[1]. This node is
mapped to the actual argument in L (w) and to the new target x : b (with b
some 0-ary operator) in R by morphisms. Notice also that edges coming from
other parts of the graph (symbolized by Gr) are not modified by this (local)
redirection.

Example 4.3 In this example we show how global redirection works. A
Global redirection is intended to redirect in a row, all pointers in the en-
vironment, but those in the left-hand side, which point a particular node, to
point to a new node. In the example given in figure 5, we want to redirect
all edges with target n, but (n, 1), towards o. For this purpose, we define a
rewrite rule (i.e. a span) . We introduce a node n[0] in K. n[0] is associated
by morphisms to n in L and to o in R.

Definition 4.4 (Matching) Let p be a rewrite rule L K
loo r //R . A

9

Duval, Echahed, Prost

�

�

�

�

p : h //

**TTTTTTTTTTT

��

m : f //

$$JJ
JJ

J o : a

q : g // n : b
�

�

�

�

�

p : h //

%%KK
KK

K

��

m : f //

%%J
JJJJ o : a

q : g // n[0] : • n : b
-

�

�

�

�

p : h // ++

��

m : f //

$$JJ
JJ

J o : a

q : g

44jjjjjjjjjjj
n : b

? ? ?

�

�

�

�
m : f //

��

o : •

n : •
�

�

�

�

�

m : f //

��

o : •

n : • n[0] : •

-

�

�

�

�
m : f //

��

o : •

n : •

Fig. 5. Global Redirection

matching with respect to p is a graph homomorphism m : L → G such that
the restriction of m to (N Ω

L ∪ N) is injective, where N is the set of globally
redirected nodes of p.

Definition 4.5 (Rewrite step) Let p be the rewrite rule L K
loo r //R

and m : L→ G a matching with respect to p. Let:

L

m

��

K
loo

d

��
G D

l′oo

be the disconnection of m extending l. Then G rewrites to H using rule p if
there are graph homomorphisms m′ : R → H and r′ : D → H such that the
following square is a pushout in the category of graphs:

K

d
��

r //R

m′

��
D

r′ //H

According to theorem 3.8 and to the definition of a matching, the discon-
nection of m extending l is a pushout. So, a rewrite step corresponds to a
double pushout in the category of graphs. However, the reader can easily verify
that, in general, double pushouts do not always exist whenever the matching m
is non injective on (N Ω

L ∪N) (see Definition 4.4) and the complement pushout
D is not unique :

L

m

��

K
loo

d

��

r //R

m′

��
G D

l′oo r′ //H

Theorem 4.6 (Rewrite step is feasible) Let p be a rewrite rule and m :
L → G a matching with respect to p. Then G can be rewritten using rule p.

10

Duval, Echahed, Prost

More precisely, the required pushout can be built as follows, with the notations
from definition 4.5:

• the set of nodes of H is NH = (NR +ND)/ ∼, where ∼ is the equivalence
relation generated by d(n) ∼ r(n) for each node n of K,

• the maps m′ and r′, on the sets of nodes, are the inclusions of NR and ND
in NR +ND, respectively, followed by the quotient map with respect to ∼,

• N Ω
H is made of the classes modulo ∼ which contain at least one labeled node

(let ρ : N Ω
H → N

Ω
R +N Ω

D be a section of the quotient map, which means that
the class of ρ(n) is n, for each n ∈ NΩ

H),

• for each n ∈ NΩ
H , the label of n is the label of ρ(n),

• for each n ∈ NΩ
H , the successors of n are the classes of the successors of

ρ(n),

Moreover, the resulting pushout does not depend on the choice of the section
ρ.

Corollary 4.7 (A description of the nodes) With the notations and as-
sumptions of Theorem 4.6, the representatives of the equivalence classes of
nodes of NR +ND can be chosen in such a way that:

N Ω
H = (N Ω

G −m(N Ω
L)) +N Ω

R and N X

H = N X

G + (N X

R − r(N
X

L)) .

Proof. Both Theorem 4.6 and Corollary 4.7 are derived from Theorem A.5,
their proofs are given at the end of the appendix. �

5 Conclusion

We proposed a new framework for cyclic data-structure rewriting, including
pointer redirections. The rewrite relationships induced by our rewrite rules are
trickier than the classical ones over terms (trees). There was no room in the
present paper to discuss classical properties of the rewrite relationship induced
by the above definitions such as confluence and termination or its extension
to narrowing. However, our preliminary investigation shows that confluence
is not guaranteed even for non-overlapping rewrite systems, and thus user-
definable strategies are necessary when using all the power of data-structure
rewriting.

On the other hand, data-structures are better represented by means of
graphics (e.g. [27]). Our purpose in this paper was rather the definition of the
basic rewrite steps for data-structures. We intend to consider syntactic issues
in a future work.

11

Duval, Echahed, Prost

References

[1] Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamentae
Informaticae, 26(3/4):207–240, 1996.

[2] A. Asperti and G. Longo. Categories, Types and Structures. An introduction
to Category Theory for the working computer scientist. M.I.T. Press, 1991.
http://www.di.ens.fr/users/longo/download.html.

[3] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

[4] A. Bakewell, D. Plump, and C. Runciman. Checking the shape safety of pointer
manipulations. In RelMiCS, pages 48–61, 2003.

[5] A. Bakewell, D. Plump, and C. Runciman. Specifying pointer structures by
graph reduction. In AGTIVE, pages 30–44, 2003.

[6] R. Banach. Term graph rewriting and garbage collection using opfibrations.
Theoretical Computer Science, 131:29–94, 1994.

[7] H. Barendregt, M. van Eekelen, J. Glauert, R. Kenneway, M. J. Plasmeijer,
and M. Sleep. Term graph rewriting. In PARLE’87, pages 141–158. LNCS 259,
1987.

[8] E. Barendsen and S. Smetsers. Graph rewriting
aspects of functional programming. In H. Ehrig, G. Engels, H. J. Kreowski,
and G. Rozenberg, editors, Handbook of Graph Grammars and Computing by
Graph Transformation, volume 2, pages 63–102. World Scientific, 1999.

[9] C. Bertolissi, P. Baldan, H. Cirstea, and C. Kirchner. A rewriting calculus for
cyclic higher-order term graphs. Electr. Notes Theor. Comput. Sci., 127(5):21–
41, 2005.

[10] R. V. Book and F. Otto. String-rewriting systems. Springer-Verlag, 1993.

[11] A. Corradini and F. Gadducci. Rewriting on cyclic structures: Equivalence
between the operational and the categorical description. ITA, 33(4/5):467–493,
1999.

[12] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.
Algebraic approaches to graph transformation - part I: Basic concepts and
double pushout approach. In Handbook of Graph Grammars, pages 163–246,
1997.

[13] A. Corradini and F. Rossi. Hyperedge replacement jungle rewriting for term-
rewriting systems and programming. Theor. Comput. Sci., 109(1&2):7–48,
1993.

[14] D. J. Dougherty, P. Lescanne, L. Liquori, and F. Lang. Addressed term
rewriting systems: Syntax, semantics, and pragmatics: Extended abstract.
Electr. Notes Theor. Comput. Sci., 127(5):57–82, 2005.

12

Duval, Echahed, Prost

[15] R. Echahed and J. C. Janodet. Admissible graph rewriting and narrowing. In
Proc. of Joint International Conference and Symposium on Logic Programming
(JICSLP’98), pages 325–340. MIT Press, June 1998.

[16] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformations, Volume 2:
Applications, Languages and Tools. World Scientific, 1999.

[17] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformations, Volume 3:
Concurrency, Parallelism and Distribution. World Scientific, 1999.

[18] C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: language
and environment. In Handbook of graph grammars and computing by graph
transformation: vol. 2: applications, languages, and tools, pages 551–603. World
Scientific Publishing Co., Inc., 1999.

[19] F. Gadducci, R. Heckel, and M. Llabrés. A bi-categorical axiomatisation of
concurent graph rewriting. Electronic Notes in Theoretical Computer Science,
29, 1999.

[20] J. R. W. Glauert, R. Kennaway, and M. R. Sleep. Dactl: An experimental graph
rewriting language. In Graph-Grammars and Their Application to Computer
Science, LNCS 532, pages 378–395, 1990.

[21] A. Habel, H. J. Kreowski, and D. Plump. Jungle evaluation. Fundamenta
Informaticae, 15(1):37–60, 1991.

[22] A. Habel, J. Muller, and D. Plump. Double-pushout graph transformation
revisited. Mathematical Structures in Computer Science, 11, 2001.

[23] A. Habel and D. Plump. Computational completeness of programming
languages based on graph transformation. In FoSSaCS LNCS 2030, pages 230–
245, 2001.

[24] J. R. Kennaway, J. K. Klop, M. R. Sleep, and F. J. D. Vries. On the
adequacy of graph rewriting for simulating term rewriting. ACM Transactions
on Programming Languages and Systems, 16(3):493–523, 1994.

[25] D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H. J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation, volume 2, pages 3–61. World Scientific, 1999.

[26] D. Plump and S. Steinert. Towards graph programs for graph algorithms. In
ICGT, LNCS 3256, pages 128–143, 2004.

[27] P. Rodgers. A Graph Rewriting Programming Language for Graph Drawing.
In Proceedings of the 14th IEEE Symposium on Visual Languages. IEEE, IEEE
Computer Society Press, September 1998.

[28] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

13

Duval, Echahed, Prost

[29] A. Schürr, A. J. Winter, and A. Zündorf. The PROGRES approach: language
and environment. In Handbook of graph grammars and computing by graph
transformation: vol. 2: applications, languages, and tools, pages 487–550. World
Scientific Publishing Co., Inc., 1999.

A Pushouts of graphs

Let Gr denote the category of graphs and Set the category of sets. The
node functor N : Gr → Set maps each graph G to its set of nodes NG,
and each graph homomorphism ϕ : G → H to its underlying map on nodes
ϕ : NG → NH . As in the rest of the paper, this map is simply denoted ϕ, and
this is not ambiguous: indeed, if two graph homomorphisms ϕ, ψ : G→ H are
such that their underlying maps are equal ϕ = ψ : NG → NH , then it follows
directly from the definition of graph homomorphisms that ϕ = ψ : G → H .
In categorical terms [2], this is expressed by the following result.

Proposition A.1 (Faithfulness) The functor N : Gr→ Set is faithful.

It is worth noting that this property does not hold for the “usual” directed
multigraphs, where the set of successors of a node is unordered.

It is well-known that the category Set has pushouts, which can be built
as follows. For each span of sets:

N0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

N1 N2

let ∼ denote the equivalence relation on the disjoint union N1 +N2 generated
by:

ϕ1(n0) ∼ ϕ2(n0) for all n0 ∈ N0 ,

let N3 be the quotient N3 = (N1+N2)/ ∼, and ψ : N1 +N2 → N3 the quotient
map. Two nodes n, n′ in N1+N2 are called equivalent if n ∼ n′. For i ∈ {1, 2},
let ψi : Ni → N3 be made of the inclusion of Ni in N1 + N2 followed by ψ.
Then, it is well-known that the following square of sets is a pushout, which
will be called canonical :

N0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

N1

ψ1
!!C

CC
C N2

ψ2
}}{{

{{

N3

The next lemma will be used in the proofs of Theorem 4.6 and Corollary 4.7.

14

Duval, Echahed, Prost

Lemma A.2 Let us consider a canonical pushout of sets:

N0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

N1

ψ1
!!C

CC
C N2

ψ2
}}{{

{{

N3

Let n, n′ ∈ N1 + N2 be distinct equivalent nodes. From the definition of the
equivalence relation ∼, there is a chain of relations:

p18

{{xx
xx

x z

��:
::

:
p2D

����
��

{

��;
;;

;
. pk=

~~}}
}}

�
##HH

HH
H

n = n0 n1 n2 . . . nk−1 nk = n′

with length 2k for some k ≥ 1, where each pi is in N0, each ni in N1 +N2,
and the mappings are either φ1 or φ2. Let us assume that this chain has
minimal length, among similar chains from n to n′. Then:

• all the pi’s are distinct;

• two consecutive ni’s cannot be both in N1, nor both in N2, so that ni =
φj(i)(pi) = φj(i)(pi+1) for each i, where j(i) is alternatively 1 and 2;

• if Ñ is a subset of N0 such that the restriction of φj(i) to Ñ is injective,

then pi and pi+1 cannot be both in Ñ .

Proof.

If pi = pj for some i < j, the part of the chain between pi and pj can
be dropped, giving rise to a shorter chain from n to n′: hence all the pi’s
are distinct. If ni−1 and ni are both in the same Nj (for j = 1 or 2), then
ni−1 = φj(pi) = ni, and the part of the chain between ni−1 and ni can be
dropped, giving rise to a shorter chain from n to n′: hence ni−1 and ni cannot
be both in Nj. If ni = φj(i)(pi) = φj(i)(pi+1) with both pi and pi+1 in Ñ and

the restriction of ψj(i) to Ñ is injective, then pi = pi+1, in contradiction with
the first point. �

In contrast with Set, the category Gr does not have pushouts. For in-
stance, let us consider a span of graphs:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1 G2

where G0, G1 and G2 are made of only one node: n0 in G0 is unlabeled, n1 :a1

in G1 and n2 :a2 in G2, where a1 and a2 are distinct constants. This span has
no pushout, because there cannot be any commutative square of graphs based
on it.

15

Duval, Echahed, Prost

Theorem A.3 below states a sufficient condition for a commutative square
of graphs to be a pushout, and Theorem A.5 states a sufficient condition for a
span of graphs to have a pushout, together with a construction of this pushout.

In the following, when Gi occurs as an index, it is replaced by i.

Theorem A.3 (Pushout of graphs from pushout of sets) If a square Γ
of the following form in the category of graphs:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1

ψ1
!!C

CC
C G2

ψ2
}}{{

{{

G3

is such that:

(i) Γ is a commutative square in Gr,

(ii) N (Γ) is a pushout in Set,

(iii) and each n ∈ NΩ
3 is in ψi(N Ω

i) for i = 1 or i = 2,

then Γ is a pushout in Gr.

Point (2) implies that each n ∈ N3 is the image of at least a node in G1 or
in G2, and point (3) adds that, if n is labeled, then it is the image of at least
a labeled node in G1 or in G2.

Proof. Let us consider a commutative square Γ′ in Gr of the form:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1

θ1 !!C
CC

C G2

θ2}}{{
{{

G4

Then N (Γ′) is a commutative square in Set, and since N (Γ) is a pushout in
Set, there is a unique map θ : N3 → N4 such that θ ◦ ψi = θi, for i = 1, 2.

N0
ϕ1

vvmmmmmmmmmm ϕ2

((QQQQQQQQQQ

N1

ψ1
!!D

DD
D θ1

**VVVVVVVVVVVVVVVV N2ψ2

tthhhhhhhhhhhhhhhh

θ2}}zz
zz

N3 θ
//N4

Let us now prove that θ actually is a graph homomorphism. According to
Definition 2.4, we have to prove that, for each labeled node n of G3, its image
n′ = θ(n) is a labeled node of G4, and that L4(n

′) = L3(n) and S4(n
′) =

θ∗(S3(n)).

So, let n ∈ NΩ
3 , and let n′ = θ(n) ∈ N4. ¿From our third assumption,

without loss of generality, n = ψ1(n1) for some n1 ∈ N
Ω
1 . It follows that

16

Duval, Echahed, Prost

θ1(n1) = θ(ψ1(n1)) = θ(n) = n′:

n = ψ1(n1) and n′ = θ1(n1) .

Since n1 is labeled and θ1 is a graph homomorphism, the node n′ is labeled.

Since ψ1 and θ1 are graph homomorphisms, L3(n) = L1(n1) and L4(n
′) =

L1(n1), thus L3(n) = L4(n
′), as required for labels.

Since ψ1 and θ1 are graph homomorphisms, S3(n) = ψ∗

1(S1(n1)) and S4(n
′) =

θ1
∗(S1(n1)). So, θ∗(S3(n)) = θ∗(ψ∗

1(S1(n1))) = θ1
∗(S1(n1) = S4(n

′), as re-
quired for successors.

This proves that θ : G3 → G4 is a graph homomorphism. Then, from
the faithfulness of the functor N (Proposition A.1), for i ∈ {1, 2}, the equal-
ity of the underlying maps θ ◦ ψi = θi : Ni → N4 is an equality of graph
homomorphisms: θ ◦ ψi = θi : Gi → G4.

Now, let θ′ : G3 → G4 be a graph homomorphism such that θ′ ◦ψi = θi for
i ∈ {1, 2}. Since N (Γ) is a pushout in Set, the underlying maps are equal:
θ = θ′ : N3 → N4. Then, it follows from the faithfulness of the functor N
that the graph homomorphisms are equal: θ = θ′ : G3 → G4. �

Definition A.4 (Strongly labeled span of graphs) Let us consider a span
of graphs Σ:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1 G2

and the canonical pushout of sets:

N0
ϕ1

}}zz
zz ϕ2

!!D
DD

D

N1

ψ1
!!D

DD
D N2

ψ2
}}zz

zz

N3

Then Σ is strongly labeled if for each n3 ∈ N3, i.e., each n3 ∈ (N1 +N2)/ ∼:

• all the labeled nodes in the class n3 have the same label,

• and all the labeled nodes in the class n3 have equivalent successors.

Theorem A.5 (Pushout of a strongly labeled span of graphs) A strongly
labeled span of graphs has a pushout:

G0
ϕ1

}}{{
{{ ϕ2

!!C
CC

C

G1

ψ1
!!C

CC
C G2

ψ2
}}{{

{{

G3

which can be built as follows:

17

Duval, Echahed, Prost

• the underlying pushout of sets is the canonical pushout, so that N3 = (N1 +
N2)/ ∼,

• N Ω
3 is made of the classes of N1 + N2 (modulo ∼) which contain at least

one labeled node,

• for each n3 ∈ NΩ
3 , the label of n3 is the label of any labeled node in the class

n3,

• for each n3 ∈ NΩ
3 , the successors of n3 are the classes of the successors of

any labeled node in the class n3.

Proof. It follows easily from Theorem A.3 that this square is a pushout of
graphs. �

Proof of Theorem 4.6. Let us prove that the following span of graphs is
strongly labeled:

K
d
~~||

|| r
 A

AA
A

D R
Then, Theorem 4.6 derives easily from Theorem A.5.

Let n, n′ ∈ NΩ
R +N Ω

D be distinct equivalent nodes. We have to prove that
n and n′ have the same label and that their successors are pairwise equivalent.
Let us consider a chain of relations:

p18

{{xx
xx

x z

��:
::

:
p2D

����
��

{

��;
;;

;
. pk=

~~}}
}}

�
##H

HH
HH

n = n0 n1 n2 . . . nk−1 nk = n′

of minimal length 2k, with each pi in NK , each ni in ND or in NR, and
mappings either d or r, so that lemma A.2 can be applied to this chain. In
particular, since d = m + dE + dN with m : NL → NG, dE : NE → NE′,
dN : NN → NN ′, and dE, dN are bijections, and since pi 6= pi+1, we get:

If i < k, it cannot happen that pi ∈ NE +NN and ni = d(pi).(A.1)

If all the nodes in this chain are labeled, then, since d and r are graph
homomorphisms, all nodes in the chain have the same label and have pairwise
equivalent successors, so that the result follows: n and n′ have the same label.

We now prove that all the nodes in the chain are labeled, by contradiction.
Let us assume that at least one node in the chain is unlabeled. Since r and d
are graph homomorphisms, the first unlabeled node (starting from n) is some
pi. Let us focus on such a situation, where ni−1 is labeled and pi is unlabeled:

pi7

{{www
ww �

 B
BB

B

ni−1 ni

So, pi ∈ N
X

K = N X

L +NE +NN .

(R.) Let ni−1 be a node of R, i.e., ni−1 ∈ NΩ
R . Then ni−1 = r(pi) and

ni = d(pi). If pi ∈ N
X

L then ni−1 ∈ N
X

R , a contradiction to ni−1 ∈ N
Ω
R . If

18

Duval, Echahed, Prost

pi ∈ NE +NN then ni = d(pi) is unlabeled, so that i < k; from remark (A.1),
this situation cannot occur.

(D.) Let ni−1 be a node of D, i.e., ni−1 ∈ NΩ
D , or equivalently ni−1 ∈ NΩ

G .
Then ni−1 = d(pi) and ni = r(pi). If pi ∈ NE + NN then ni−1 = d(pi) is
unlabeled, a contradiction to our assumption. If pi ∈ N X

L then ni = r(pi) is
unlabeled, so that i < k; then pi+1 is an unlabeled node of D, which means
that pi+1 ∈ N

X

L + NE + NN . If pi+1 ∈ N
X

L , since the restriction of r to N X

L

is injective, a contradiction follows from lemma A.2. If pi+1 ∈ NE +NN then
ni+1 = d(pi+1) is unlabeled, so that i+1 < k; from remark (A.1), this situation
cannot occur.

Finally, it has been proved that all the nodes in this chain are labeled,
which concludes the proof. �

Proof of Corollary 4.7. Let n ∈ NH , we have to choose a representative ρ(n)
of n. We know that there is either a node nD ∈ ND such that n = r′(nD), or
a node nR ∈ NR such that n = m′(nR), or both. We use the notations from
theorem 4.6 and its proof.

(Ω.) First, in order to prove that N Ω
H = (N Ω

G −m(N Ω
L))+N Ω

R , let n ∈ NΩ
H .

(Ω, R.) If there is a node nR ∈ NΩ
R such that n = m′(nR), let us prove

that it is unique. Let n′

R ∈ N
Ω
R be another node such that n = m′(n′

R), then
nR ∼ n′

R. Let us consider a chain with minimal length 2k from nR to n′

R;
we know from the proof of theorem 4.6 that all the nodes in this chain are
labeled. ¿From lemma A.2, n0 and n1 cannot be both in NR, so that n1 ∈ NΩ

G ,
subsequently k ≥ 2 and p1, p2 ∈ NΩ

L with n1 = m(p1) = m(p2). Since m is
injective on N Ω

L , from lemma A.2 this cannot occur. So, we have proved that
m′Ω : N Ω

R → N
Ω
H is injective, and we define ρ(n) = nR.

(Ω, G.) If there is no node nR ∈ NΩ
R such that n = m′(nR), then there

is a node nD ∈ NΩ
D (i.e., nD ∈ NΩ

G) such that n = r′(nD). Let us prove
that it is unique. Let n′

D ∈ N
Ω
G be another node such that n = r′(n′

D), then
nD ∼ n′

D. Let us consider a chain with minimal length from nD to n′

D; we
know from the proof of theorem 4.6 that all the nodes in this chain are labeled.
¿From lemma A.2, n0 and n1 cannot be both in ND, so that n1 ∈ NΩ

R , which
contradicts our assumption: there is no node nR ∈ NΩ

R such that n = m′(nR).

Let Ñ Ω
G denote the subset of N Ω

G made of the nodes which are not equivalent
to any node in N Ω

R . We have proved that the restriction of r′Ω : N Ω
D → N

Ω
H

to Ñ Ω
G is injective, and we define ρ(n) = nD.

(Ω, L.) We still have to prove that Ñ Ω
G = N Ω

G −m(N Ω
L), i.e., that a node

nG ∈ NΩ
G is equivalent to a node nR ∈ NΩ

R if and only if there is node p ∈ NΩ
L

such that nG = m(p). Clearly, if p ∈ NΩ
L and nG = m(p), then nG ∼ r(p)

with r(p) ∈ NΩ
R . Now, let nG ∼ nR for some nG ∈ NΩ

G and nR ∈ NΩ
R . Let

us consider a chain with minimal length 2k from nR to nG; we know that
all the nodes in this chain are labeled. If k > 1 then n1 = d(p1) = d(p2)
with p1, p2 ∈ NΩ

L ; since the restriction of d to N Ω
L is injective, a contradiction

19

Duval, Echahed, Prost

follows from lemma A.2. Hence k = 1, which means the node p1 ∈ NΩ
L is such

that nR = r(p1) and nG = m(p1).

This concludes the proof that N Ω
H = (N Ω

G −m(N Ω
L)) +N Ω

R .

(X .) Now, in order to prove that N X

H = N X

G +(N X

R −r(N
X

L)), let n ∈ N X

H .

(X , G.) If there is a node nD ∈ ND such that n = r′(nD), then nD is
unlabeled, i.e., nD ∈ N X

G +NE′ +NN ′ .
– If nD ∈ N X

G , let us prove that it is unique. Let n′

D ∈ N
X

G be another
node such that n = r′(n′

D), then nD ∼ n′

D. Let us consider a chain with
minimal length 2k from nD to n′

D, with k ≥ 2 since both nD and n′

D are
in D. Then p1 ∈ N X

L , and n1 = r(p1) ∈ N X

R because r maps N X

L to N X

R ,
and n1 = r(p2) with p2 ∈ N X

K = N X

L + NE + NN . If p2 ∈ N X

L , since r is
injective on N X

L , a contradiction follows from lemma A.2. If p2 ∈ NE +NN
then n2 = d(p2) ∈ NE′ +NN ′ , it is different from n′

D since N X

G is disjoint from
NE′ +NN ′. So, 2 < k, and from remark (A.1) this is impossible. So, we have
proved that the restriction of r′ : ND → NH to N X

G is injective, and we define
ρ(n) = nD.
– If nD ∈ NE′ + NN ′, let us prove that there is a node nR ∈ N X

R such that
n = m′(nR). Let p ∈ NE+NN be such that nD = d(p), and nR ∈ NR such that
nR = r(p). Then n = r′(d(p)) = m′(r(p)). Since n is unlabeled, nR ∈ N X

R , as
required. This case is considered below.

(X , R.) It has been proved above that, for every n ∈ N X

H , if there is no
node nD ∈ N X

G such that n = r′(nG), then there is a node nR ∈ N X

R such that
n = m′(nR).
– Such a node nR cannot be in r(NL): otherwise, let p ∈ NL be such that
nR = r(p), then n = m′(r(p)) = r′(d(p)) = r′(nG) where nG = d(p) ∈ N X

G .
So, nR ∈ (N X

R − r(n
X

L)).
– Let us prove that such a node nR is unique. Let n′

R ∈ (N X

R − r(N
X

L)) be
another node such that n = m′(n′

R), then nR ∼ n′

R. Let us consider a chain
with minimal length 2k from nR to n′

R, with k ≥ 2 since both nR and n′

R are
in R. Then nR = r(p1) with p1 ∈ N X

K = N X

L +NE + NN . If p1 ∈ N X

L then
nR ∈ r(N X

L), in contradiction with our assumption. If p1 ∈ NE + NN then
n1 = d(p1) and 1 < k, which is impossible from remark (A.1).
So, we have proved that the restriction of m′ : NR → NH to N X

R − r(N
X

L) is
injective, and we define ρ(n) = nR.

This concludes the proof that N X

H = N X

G + (N X

R − r(N
X

L)).

�

20

	Introduction
	Graphs
	Disconnections
	Data-structure rewriting
	Conclusion
	References
	Pushouts of graphs

