
A Heterogeneous Pushout Approach to

Term-Graph Transformation�

Dominique Duval1, Rachid Echahed2, and Frédéric Prost2
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Abstract. We address the problem of cyclic termgraph rewriting. We
propose a new framework where rewrite rules are tuples of the form
(L, R, τ, σ) such that L and R are termgraphs representing the left-hand
and the right-hand sides of the rule, τ is a mapping from the nodes of
L to those of R and σ is a partial function from nodes of R to nodes
of L. The mapping τ describes how incident edges of the nodes in L
are connected in R, it is not required to be a graph morphism as in
classical algebraic approaches of graph transformation. The role of σ
is to indicate the parts of L to be cloned (copied). Furthermore, we
introduce a notion of heterogeneous pushout and define rewrite steps
as heterogeneous pushouts in a given category. Among the features of
the proposed rewrite systems, we quote the ability to perform local and
global redirection of pointers, addition and deletion of nodes as well as
cloning and collapsing substructures.

1 Introduction

Complex data-structures built by means of records and pointers, can formally be
represented by termgraphs [2,15,18]. Roughly speaking, a termgraph is a first-
order term with possible sharing and cycles. The unravelling of a termgraph
is a rational term. Termgraph rewrite systems constitute a high-level frame-
work which allows one to describe, at a very abstract level, algorithms over
data-structures with pointers. Thus avoiding, on the one hand, the cumbersome
encodings which are needed to translate graphs (data-structures) into trees in
the case of programming with first-order term rewrite systems and, on the other
hand, the many classical errors which may occur in imperative languages when
programming with pointers.

Transforming a termgraph is not an easy task in general. Many different
approaches have been proposed in the literature which tackle the problem of
termgraph transformation. The algorithmic approach such as [2,8] defines in de-
tail every step involved in the transformation of a termgraph by providing the
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corresponding algorithm; for our purpose, this approach is too close to imple-
mentation techniques. In [1], equational definition of termgraphs is exploited
to define termgraph transformation. These transformations are obtained up to
bisimilar structures (two termgraphs are bisimilar if they represent the same
rational term). Unfortunately, bisimilarity is not a congruence in general, e.g.,
the lengths of two bisimilar but different circular lists are not bisimilar.

A more abstract approach to graph transformation is the algebraic one, first
proposed in the seminal paper [10]. It defines a rewrite step using the notion
of pushouts. The algebraic approach is quite declarative. The details of graph
transformations are hidden thanks to pushout constructs. There are mainly two
different algebraic approaches, namely the double pushout (DPO) and the single
pushout (SPO) approaches, which can be illustrated as follows:

L

m
��

K
l��

d
��

r �� R

m′
��

G D
l′�� r′

�� H

L

m
��

l
�� R

m′
��

G
l′

�� H

Double pushout: a rewrite step Single pushout: a rewrite step

In the DPO approach [10,5], a rule is defined as a span, i.e., as a pair of graph
morphisms L← K → R. A graph G rewrites into a graph H if and only if there
exists a morphism (a matching) m : L → G, a graph D and graph morphisms
d, m′, l′, r′ such that the left and the right squares in the diagram above for a
DPO step are pushouts. In general, D is not unique, and sufficient conditions
may be given in order to ensure its existence, such as dangling and identification
conditions. Since graph morphisms are completely defined, the DPO approach is
easy to grasp, but in general this approach fails to specify rules with deletion of
nodes, as witnessed by the following example. Let us consider the reduction of
the term f(a) by means of the rule f(x)→ f(b). This rule can be translated into
a span f(x) ← K → f(b) for some graph K. When applied to f(a), because of
the pushout properties, the constant a must appear in D, hence in H , although
f(b) is the only desired result for H , in the context of term rewriting.

In the SPO approach [17,12,13,9], a rule is a partial graph morphism L→ R.
When a (total) graph morphism m : L→ G exists, G rewrites to H if and only
if the square in the diagram above for a SPO step is a pushout. This approach is
appropriate to specify deletion of nodes thanks to partial morphisms. However,
in the case of termgraphs, some care should be taken when a node is deleted.
Indeed, deletion of a node causes automatically the deletion of its incident edges.
This is not sound in the case of termgraphs since each function symbol should
have as many successors as its arity.

In this paper, we investigate a new approach to the definition of rewrite steps
for cyclic termgraphs. We are interested in rewrite steps such that H is obtained
from G by performing one of the six following kinds of actions: (i) addition of
new nodes, (ii) redirection of particular edges, (iii) redirection of all incoming
edges of a particular node, (iv) deletion of nodes, (v) cloning of nodes, and (vi)
collapsing of nodes. In order to deal with these features in a single framework,
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we propose a new algebraic approach to define such rewrite steps. Our approach
departs from the SPO and the DPO approaches. A rewrite rule is defined as a
tuple (L, R, τ, σ) such that L and R are termgraphs, respectively the left-hand
side and the right-hand side of the rule, τ is a mapping from the nodes of L into
the nodes of R (τ needs not be a graph morphism) and σ is a partial function
from the nodes of R into the nodes of L. Roughly speaking, τ(p) = n indicates
that incoming edges of p are to be redirected towards n and σ(n) = p indicates
that node n should be instantiated as p (parameter passing). We show that
whenever a matching m : L → G exists, then the termgraph G rewrites into a
termgraph H . We define the termgraph H as an initial object of a given category,
generalizing the definition of a pushout. We call it a heterogeneous pushout.

The paper is organized as follows. In section 2 we introduce the basic defini-
tions of graphs and morphisms considered in the paper. In section 3, we give the
definition of rewriting, and we illustrate our approach through several examples
in section 4. A comparison with related work is done in section 5, and concluding
remarks are given in section 6.

2 Graphs

In this section are given some basic definitions. We assume the reader is familiar
with category theory. The missing definitions may be consulted in [14].

Throughout this paper, a signature Ω is fixed. Each operation symbol ω ∈ Ω
is endowed with an arity ar(ω) ∈ N. For each set X , the set of strings over X
is denoted X∗, and for each function f : X → Y , the function f∗ : X∗ → Y ∗

is defined by f∗(x1 . . . xn) = f(x1) . . . f(xn). In addition, we denote by Set the
category of sets.

Definition 1 (Graph). A termgraph, or simply a graph G = (N ,D,L,S) is
made of a set of nodes N and a subset of labeled nodes D ⊆ N , which is the
domain for a labeling function L : D → Ω and a successor function S : D → N ∗,
such that for each labeled node n, the length of the string S(n) is the arity of the
operation L(n). For each labeled node n the fact that ω = L(n) is written n :ω,
and each unlabeled node n may be written as n :•, so that the symbol • is a kind
of anonymous variable. A graph homomorphism, or simply a graph morphism
g : G → H, where G = (NG,DG,LG,SG) and H = (NH ,DH ,LH ,SH) are
graphs, is a function g : NG → NH which preserves the labeled nodes and the
labeling and successor functions. This means that g(DG) ⊆ DH , and for each
labeled node n, LH(g(n)) = LG(n) and SH(g(n)) = g∗(SG(n)) (the image of an
unlabeled node may be any node). This yields the category Gr of graphs.

Definition 2 (Node functor). The node functor | − | : Gr→ Set maps each
graph G = (N ,D,L,S) to its set of nodes |G| = N and each graph morphism
g : G → H to its underlying function |g| : |G| → |H |. In this paper, it is also
called the underlying functor.

We may denote g instead of |g| since the node functor is faithful, which means
that a graph morphism is determined by its underlying function on nodes. The
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faithfulness of the node functor implies that a diagram of graphs is commutative
if and only if its underlying diagram of sets is commutative.

The graphic functions and the strictly graphic functions, as defined now, can
be seen as “weak” graph morphisms. They will be used in section 3 to relate
graphs involved in a rewrite step.

Definition 3 (Graphic functions). Let G and H be graphs and γ : |G| → |H |
a function. For each node n of G, γ is graphic at n if either n is unlabeled or
both n and γ(n) are labeled, LH(γ(n)) = LG(n) and SH(γ(n)) = γ∗(SG(n)).
And γ is strictly graphic at n if either both n and γ(n) are unlabeled or both n
and γ(n) are labeled, LH(γ(n)) = LG(n) and SH(γ(n)) = γ∗(SG(n)). For each
set of nodes Γ of G, γ is graphic (resp. strictly graphic) on Γ if γ is graphic
(resp. strictly graphic) at every node in Γ .

Example 1. Let us consider the following graphs G1 and G2:

G1 : 1 : f

�����
��

�� �����
��

2 : • 3 : • 4 : nil

G2 : a : f

�����
��

�� �����
��

b : nil c : • d : •

Let γ : |G1| → |G2| be the function defined by γ = {1 �→ a, 2 �→ b, 3 �→ c, 4 �→ d}.
It is easy to check that γ is strictly graphic on {1, 3}, is graphic but not strictly
graphic on {1, 2, 3}, and is not graphic on {1, 2, 3, 4}.
It should be noted that the property of being graphic (resp. strictly graphic) on
Γ involves the successors of the nodes in Γ , which may be outside Γ . In addition,
it is clear that a function γ : |G| → |H | underlies a graph morphism g : G→ H
if and only if it is graphic on |G|. The next straightforward result will be useful.

Lemma 1. Let G, H, H ′ be graphs and let γ : |G| → |H |, γ′ : |G| → |H ′|,
η : |H | → |H ′| be functions such that γ′ = η ◦ γ. Let Γ be a set of nodes of G. If
γ is strictly graphic on Γ and γ′ is graphic on Γ , then η is graphic on γ(Γ ).

3 Rewriting

Roughly speaking, in the context of graph rewriting, a rewrite rule has a left-
hand side graph L and a right-hand side graph R, and a rewrite step applied to
a graph G with an occurrence of L returns a graph H with an occurrence of R,
by replacing L by R in G. The meaning of this “replacement” is quite clear for
the nodes, as well as for the edges of G that connect two nodes outside L. When
a labeled node p in G outside L has its i-th successor p′ inside L, then p must
have some i-th successor n′ in H . For this purpose, we introduce a function τ (τ
for “target”) from the nodes of L to the nodes of R, and we decide that n′ must
be τ(p′). On the other hand, when a labeled node p in G inside L has an i-th
successor p′, then we may require that some node n′ in H has the same label as
p and has as its i-th successor either p′, if it is outside L, or τ(p′) otherwise; then
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n′ is called a τ -clone of p. Since each node in L may have an arbitrary number of
clones (maybe no clone at all), and a node in R cannot be a clone of more than
one node in L, this is specified thanks to a partial function σ (σ for “source”)
from the nodes of R to the nodes of L, which maps the clones of p to p. Partial
functions are denoted with the symbol “⇀”, the domain of a partial function σ
is denoted Dom(σ), and the composition of partial functions is defined as usual.
The main result is theorem 1: under relevant definitions and assumptions, for
each rewrite rule T and matching m there is a heterogeneous pushout of T and
m, which can be built explicitly from a pushout of sets.

Definition 4 (Clones). Let G and H be graphs and τ : |G| → |H | a function.
Then p∈|H | is a τ -clone of q∈|G| when: p is labeled if and only if q is labeled, and
then LH(p) = LG(q) and SH(p) = τ∗(SG(q)). It is not required that p = τ(q).

Definition 5 (Rewrite rule). A rewrite rule is a tuple (L, R, τ, σ) made of two
graphs L and R, a function τ : |L| → |R| and a partial function σ : |R| ⇀ |L|
such that each node n in the domain of σ is unlabeled or is a τ-clone of σ(n).
A morphism of rewrite rules, from T = (L, R, τ, σ) to T1 = (L1, R1, τ1, σ1) is
a pair of graph morphisms (m, d) with m : L → L1 and d : R → R1 such that
|d| ◦ τ = τ1 ◦ |m|, d(Dom(σ)) ⊆ Dom(σ1) and |m| ◦ σ = σ1 ◦ |d| on Dom(σ).

In this paper, the illustrations take place either in the category Set of sets or in
a heterogeneous framework where the points stand for graphs, the solid arrows
for graph morphisms and the dashed arrows for functions on nodes. So, a rewrite
rule T = (L, R, τ, σ) will be illustrated as:

L τ
���������� R

σ

	 ��	�
��

In order to ease the reading of the examples, a rule is depicted as L R . In
addition, each node n in R in the image of τ is named n = x, y, . . . |w where
x, y, . . . are the names of the nodes in L such that τ(x) = τ(y) = . . . = n and
where σ(n) = w. Whenever n is not in the image of τ then it is named n = x|w
where the name x is new (i.e., x does not appear in L) and where σ(n) = w. In
both cases, the “|w” part is omitted when n is not in the domain of σ.

Example 2 (if-then-else). The following rewrite rules define the “if-then-else”
operator as it behaves in classical imperative languages. We assume that the
three arguments of an “if-then-else” expression may be shared.

2 : true 1 : if
��

��

	







3 : • 4 : •

2|2 : true

1, 3|3 : • 4|4 : •

2 : false 1 : if
��

��

	







3 : • 4 : •

2|2 : false

3|3 : • 1, 4|4 : •

The definition of τ ensures that the “if-then-else” expression is replaced by its
value τ(3) = 1, 3|3 (resp. τ(4) = 1, 4|4). The definition of σ indicates that
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the value of the “if-then-else” is its second (resp. third) argument specified by
σ(1, 3|3) = 3 (resp. σ(1, 4|4) = 4). Notice that if σ were defined as the empty
function, the “if-then-else” expression would evaluate to an unlabeled node. In
addition, in both rules, we have σ(2|2) = 2 which ensures, in case node 2 is
shared, that its incident edges remain unchanged after a rewrite step. Finally,
the reader may verify that these two rules are sufficient to handle all possible
cases, even when the arguments of an “if-then-else” expression are shared, thanks
to the conditions on matching substitutions given later in definition 8.

It can be noted that each graph morphism t : L→ R determines a rewrite rule
where τ = |t| and σ is defined nowhere. In this case, for each graph morphism
m : L→ G the pushout of t and m in the category Gr, when it exists, is the
initial object in the category of cones over t and m. Let us adapt this definition
to any rewrite rule T =(L, R, τ, σ) and any graph morphism m :L→G.

Definition 6 (Heterogeneous cone). Let T = (L, R, τ, σ) be a rewrite rule
and m : L→ G a graph morphism. A heterogeneous cone over T and m is a tuple
(H, τ1, d, σ1) made of a graph H, a function τ1 : |G| → |H |, a graph morphism
d : R→ H and a partial function σ1 : |H |⇀ |G| such that T1 = (G, H, τ1, σ1) is
a rewrite rule, (m, d) : T → T1 is a morphism of rewrite rules, τ1 is graphic on
|G| − |m(L)| and n1 is a τ1-clone of σ1(n1) for each n1 in the domain of σ1.

L τ
����������

m

��

R

d

��

σ

� ��	�
��

G τ1
���������� H

σ1

� ��	�
��

A morphism of heterogeneous cones over T and m, say h : (H, τ1, d, σ1) →
(H ′, τ ′

1, d
′, σ′

1), is a graph morphism h : H → H ′ such that |h|◦τ1 = τ ′
1, h◦d = d′,

h(Dom(σ1)) ⊆ Dom(σ′
1) and σ′

1 ◦ |h| = σ1 on Dom(σ1).
This yields the category CT,m of heterogeneous cones over T and m.

Definition 7 (Heterogeneous pushout). Let T = (L, R, τ, σ) be a rewrite
rule and m : L → G a graph morphism. A heterogeneous pushout of T and m
is an initial object in the category CT,m of heterogeneous cones over T and m.

When a heterogeneous pushout exists, its initiality implies that it is unique up
to an isomorphism of heterogeneous cones. In theorem 1 we prove the existence
of a heterogeneous pushout of T and m under some injectivity assumption on m.

Definition 8 (Matching). A matching with respect to a rewrite rule T =
(L, R, τ, σ) is a graph morphism m : L → G such that if m(p) = m(p′) for dis-
tinct nodes p and p′ in L then τ(p) and τ(p′) are in Dom(σ) and m(σ(τ(p))) =
m(σ(τ(p′))) in G.
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Proposition 1. Let T = (L, R, τ, σ) be a rewrite rule and m : L→ G a match-
ing with respect to T . Then the pushout of τ and |m| in Set:

|L| τ
��

|m|
��

|R|
δ
��

|G| τ1
�� H

satisfies H = τ1(Γ ) + δ(Δ) + δ(Σ) where Γ = |G| − |m(L)|, Σ = Dom(σ),
Δ = |R| − Σ and: the restriction of τ1 : Γ → τ1(Γ ) is bijective, the restriction
of δ : Δ→ δ(Δ) is bijective, and the restriction of δ : Σ → δ(Σ) is such that if
δ(n) = δ(n′) for distinct nodes n and n′ in Σ then m(σ(n)) = m(σ(n′)) in G.
In addition, there is a unique partial function σ1 : H ⇀ |G| with domain δ(Σ)
such that |m| ◦ σ = σ1 ◦ δ.

Proof. Clearly H = τ1(Γ ) + δ(|R|) and the restriction of τ1 : Γ → τ1(Γ ) is
bijective. If δ(n) = δ(n′) for distinct nodes n and n′ in R, then there is a chain
from n to n′ made of pieces like this one:

ñ p�τ�� � |m|
�� p1 p′�|m|

�� � τ �� ñ′

with ñ, ñ′ ∈ |R|, p, p′ ∈ |L|, p1 ∈ |G|, and it can be assumed that ñ �= ñ′ and
p �= p′. Since m is a matching, ñ and ñ′ are in Σ and m(σ(ñ)) = m(σ(ñ′)). The
decomposition of H follows. Now, let n1 ∈ δ(Σ) and let us choose some n ∈ Σ
such that n1 = δ(n). If σ1 exists, then σ1(n1) = σ1(δ(n)) = m(σ(n)). On the
other hand, if n′ ∈ Σ is another node such that n1 = δ(n), then we have just
proved that m(σ(n)) = m(σ(n′)), so that m(σ(n)) does not depend on the choice
of n, it depends only on n1. So, there is a unique σ1 : H⇀ |G| as required, it is
defined by σ1(n1) = m(σ(n)) for any n ∈ Σ such that n1 = δ(n).

Proposition 2. Let m : L → G be a matching with respect to a rewrite rule
T = (L, R, τ, σ). The pushout of τ and |m| in Set, with σ1 as in proposition 1,
underlies a heterogeneous cone over T and m.

Proof. First, let us define a graph H with set of nodes H. By exploiting proposi-
tion 1, and with the same notations, a graph H with set of nodes H is defined by
imposing that τ1 is strictly graphic on Γ , that δ is strictly graphic on Δ, and that
each node n1 ∈ δ(Σ) is a τ1-clone of q1, where q1 = σ1(n1). Now, let us prove that
δ underlies a graph morphism d : R → H . Since δ is graphic on Δ, we have to
prove that δ is also graphic on Σ. Let n ∈ Σ and n1 = δ(n). If n is unlabeled there
is nothing to prove, otherwise let q = σ(n), then q is labeled, LR(n) = LL(q) and
SR(n) = τ∗(SL(q)). Then m(q) = m(σ(n)) = σ1(δ(n)) = q1, and from the fact
that m is a graph morphism we get LL(q) = LG(q1) and |m|∗(SL(q)) = SG(q1).
The definition of H imposes LG(q1) = LH(n1) and τ∗

1 (SG(q1)) = SH(n1). Al-
together, LR(n) = LH(n1) and SH(n1) = (τ∗

1 (|m|∗(SG(q))) = δ∗(τ∗(SG(q))) =
δ∗(SR(n)), so that indeed δ is also graphic on Σ. Finally, it is easy to check that
this yields a heterogeneous cone over T and m.
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Theorem 1. Given a rewrite rule T = (L, R, τ, σ) and a matching m : L → G
with respect to T , the heterogeneous cone (m, d) : T → T1 over T and m defined
in proposition 2 is a heterogeneous pushout of T and m.

Proof. As in proposition 2, let T1 = (G, H, τ1, σ1). Let us consider any hetero-
geneous cone (m, d′) : T → T ′

1 over T and m, with T ′
1 = (G′, H ′, τ ′

1, σ
′
1). Since

(m, d) underlies a pushout of sets, there is a unique function η : |H | → |H ′|
such that η ◦ |d| = |d′| and η ◦ τ1 = τ ′

1. Let Σ = Dom(σ) and Σ1 = Dom(σ1).
Because the node functor is faithful, the result will follow if we can prove that
η(Σ1) ⊆ Σ′

1 and σ′
1 ◦ η = σ1 on Σ1, and that η underlies a graph morphism.

We have η(Σ1) = η(d(Σ)) = d′(Σ) ⊆ Σ′
1, and for each n1 ∈ Σ1, let n ∈ Σ

such that n1 = d(n), then on one hand σ′
1(η(n1)) = σ′

1(η(d(n))) = σ′
1(d

′(n)) =
m(σ(n)) and on the other hand σ1(n1) = σ1(d(n)) = m(σ(n)), hence as re-
quired σ′

1(η(n1)) = σ1(n1). In order to check that η underlies a graph mor-
phism h : H → H ′, we use the decomposition of H from proposition 1 and
the construction of the heterogeneous cone (m, d) in proposition 2. It follows
immediately from lemma 1 that η is graphic on τ1(Γ ) and also on d(Δ). Let
us prove that η is graphic on Σ1. Let n1 ∈ Σ1, q1 = σ1(n1) and n′

1 = η(n1).
Then q1 = σ′

1(n
′
1) because σ′

1 ◦ η = σ1. So, n1 is a τ1-clone of q1 and n′
1 is a

τ ′
1-clone of the same node q1. This means that LH′ (n′

1) = LG(q1) = LH(n1) and
that SH′(n′

1) = (τ ′
1)

∗(SG(q1)) = η∗(τ∗
1 (SG(q1))) = η∗(n1). So, η is graphic on

Σ1, and since d(Σ) ⊆ Σ1, it follows that η is graphic on d(Σ). Altogether, η is
graphic on the whole of |H |, which means that η = |h| for a graph morphism
h : H → H ′. This concludes the proof.

Definition 9 (Rewrite step). Given a rewrite rule T = (L, R, τ, σ) and a
matching m :L→G with respect to T , the corresponding rewrite step builds the
graph morphism d :R→H, obtained from the heterogeneous pushout of T and m.

Example 3 (Cloning data-structures). Here are two rules for cloning natural
numbers, encoded with succ and zero. These rules can be generalized to any
data-structure as presented in section 5.

1 :clone �� 2:zero 1 :zero 2 :zero
1 :clone �� 2:succ

��

3:•
1:succ

��

2:succ
��

4:clone �� 3|3:•

The first rule takes care of the cloning of zero. Given a matching m : L → G,
since τ(1) = 1 this rule redirects all edges in G with target m(1 : clone) to
edges in H with target d(1 : zero), and since τ(2) = 2 the edges in G with
target m(2 : zero) remain “unchanged” in H , in the sense that their target is
d(2 : zero). The second rule takes care of the cloning of the non-zero naturals.
Since σ(3|3) = 3, the label and successors of the node m(3) in G will be “the
same as” the label and successors of the node d(3|3) in H . Notice that, in this
case, it would not be allowed to define σ(4) = 2 because node 4 in R is labeled
by clone and node 2 in L is labeled by succ, thus breaking the τ -clone condition.
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Let us represent a rewrite step from G to H performed by a rewrite
rule (L, R, τ, σ) as in the figure opposite, with the same notations as
above regarding node names in the right-hand side of the rule. When
the matching, m, is injective on nodes we denote m(p) = p.

L R
G H

Example 4. Let us consider the “rule” f(x) → g(x, x). In our framework, this
rule may be translated to several different rules according to the way g(x, x) is
represented as a termgraph and to the way the functions τ and σ are defined.
For instance, here are two different rules and their application to the termgraph
1 : f(2 : a), with the matching preserving the names of the nodes. The second
rule provides two clones 2|2 : a and 3|2 : a in H to the node 2 : a in G.

1 : f

��

2 : •

1 : g


��


2|2 : •
1 : f

��

2 : a

1 : g


��


2|2 : a

1 : f

��

2 : •

1 : g

�� �������

2|2 : • 3|2 : •
1 : f

��

2 : a

1 : g

�� �������

2|2 : a 3|2 : a

Since the rewriting of termgraphs with heterogeneous pushouts relies on a
pushout on the underlying nodes (proposition 1), and also because of the condi-
tion on matching (definition 8), there is an obvious relation between the size of
the rewritten termgraph and the size of the original termgraph, for each rewrite
step. Moreover, this relation can be inferred at the level of rules. So, one can
analyze memory usage of a program simply by inspecting its rules. Proposi-
tion 3, where 
 denotes the cardinal, states this formally. Therefore, if the size
of a termgraph is considered as the measure of the memory used (thus putting
aside unreachability issues), then it is possible to statically compute, for each
rule separately, the amount of memory needed, or freed, by a rewriting step.

Proposition 3. Let T = (L, R, τ, σ) be a rewrite rule, m : L → G a matching
and d : R→ H the result of the rewrite step. Then 
|H | − 
|G| = 
|R| − 
|L|.

4 Examples

In this section, we provide several examples illustrating our framework. For bet-
ter readability, when rewriting a termgraph G into H , the description of σ1 in
the graph H will now be omitted.

Example 5 (Insertion in a circular list). Here is a rule for the insertion of an
element at the head of a circular list of size greater than one. In the left-hand
side of this rule, node 2 is the head of the list, and node 4 is the last element of
the list. The pointer from node 4 to the head of the list is moved from 2 (in L)
to a new node 1, 2 (in R). The definition of τ is such that all pointers to the
head of the list are moved from 2 to 1, 2. We apply the rule on a circular list of
four items. We note c and i for cons and insert, respectively.
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1: i
��

�� 2:c
��

�� 3:• 4:c
��

�	

1′ :• 2′ :• 4′ :•
1, 2:c

��

�� 5:c
��

�� 3|3:• 4|4:c
��


�

1′|1′ :• 2′|2′ :• 4′|4′ :•
0:h

�� �����

1: i
��

�� 2:c
��

�� 3:c
��

�� 6:c
��

�� 4:c
��

��

1′ :e 2′ :a 3′ :b 6′ :c 4′ :d

0:h
�� ��

1, 2:c
��

�� 5:c
��

�� 3:c
��

�� 6:c
��

�� 4:c
��

��

1′ :e 2′ :a 3′ :b 6′ :c 4′ :d

Example 6 (Appending linked lists). We now consider two rules for the opera-
tion “+” which appends, in place, two linked lists. The lists are built with the
constructors cons and nil.

1 :+
��

�� 3:•

2:nil

1, 2, 3|3:•
1:+

��

�� 5:•
2:cons

��

�� 3:•
4:•

1:+′

�� �������
�� 5|5:•

2|2:cons
��

�� 3|3:•

4|4:•

The first rule above takes care of the base case, when the first argument is nil.
The second rule says that when the first argument of + is a non-empty list, then
an auxiliary function “+′” of arity 3 is called. The role of this function is to go
through the first list until its end and to concatenate the two lists by pointer
redirection. The following three rules define the operation +′.

1 :+′

��

��

�����
��

4:•

2:cons
��

�� 3 : nil

5 :•

1, 2|2:cons
��

�� 3, 4|4:•

5|5:•

1:+′

�� �����
�

�� 6:•

2:• 3:cons
�����

�
��

5:• 4:nil

3 :cons ��

��

4, 6|6:•

5|5:• 1, 2|2:•

1:+′

�� �����
��

�� 8:•

2:• 3:cons ��

��

4:cons ��

��

5:•

6:• 7:•

1:+′

�� ��������������� �� 8|8:•

2|2:• 3:cons
��

�� 4:cons
��

�� 5|5:•

6|6:• 7|7:•
The first rule considers the case when the first list consists of one element. The
second rule defines the case when the last element of the first list is reached. In
this case, the edge 3→ 4 in L is redirected as 3→ 4, 6|6 in R, which is the head
of the second list to append. The overall result of the operation +′ is the node
τ(1) = 1, 2|2, which is the head of first list. The third rule performs the traversal
of the first list.

Example 7 (Memory freeing). In this example we show how we can free the
memory used by the “cons” nodes of a circular list. As we are concerned with
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termgraphs where every function symbol has a fixed arity, it is not allowed
to create dangling pointers nor to remove useless pointers. This constraint is
expressed by the fact that every node in a left-hand side L must have an image
in the right-hand side R by τ . The operation free has two arguments. The first
one is a particular node labeled by a constant null, it is dedicated to be the target
of the edges which were pointing to the freed nodes. The second argument of
free is the list of cells to be freed. Here is a rule for defining the operation free
in the case of a list with at least two elements. We illustrate its application on a
list of length two. Notice that pointers incoming to nodes 3 and 5 are redirected
towards node 2 in H .

1 : free
��

�� 3:cons
��

�� 4:•

2:null 5 :•

1: free
��

�� 4|4:•

2, 3:null 5|5:•
0:h ��

��

������������������������� 1: free
��

�� 3:cons
��

�� 4:cons
��

��

2:null 5 :a 6:b

0:h ��

�����
��

���������������� 1: free
��

�� 4:cons
��	
���

���

5:a 2:null 6 :b

For lists with one element, there are two cases to be considered. The first rule
specifies the case where the last element of the list is obtained after freeing other
elements of the list. We illustrate the rewrite step on the graph obtained earlier
(up to renaming of nodes). The second rule deals with the special case of circular
lists of size one.

1 : free
��

�� 3:cons
�������

��

2:null 4 :•

1, 2, 3:null

4|4:•
0:h ��

�����
��

��������������� 1: free
��

�� 3:cons

��	







2:null 4 :b

0:h

��
�� ��

4:b 2:null

1 : free ��

��

3:cons

��

��

2:null 4 :•

1, 2, 3:null

4|4:•

Example 8 (Memory usage analysis). Predicting memory usage of an algorithm
can be of great interest for many applications, especially those involved within
embedded systems. There exist several methods to analyse memory usage. For
example, in [11], a very powerful method based on a type system enriched with
resource annotations has been proposed. The authors succeeded in analysing
several examples, but failed to tackle a program which flattens a list of lists.
As an application of proposition 3, we show how our framework can be used
to analyse the memory usage of such an algorithm. The program which flattens
a list of lists, consists of the following rules, the first one is for the base case
(the empty list) and the second rule deals with a non-empty list of lists. Here +
stands for the append operator and +′ for its auxiliary operator, as in example 6.

1 :flat
��

2:nil

1, 2:nil 1 :flat
��

3:•

2:cons ��

������
4:•

1, 2:+
��

�� 5:flat
��

3|3:• 4|4:•
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Thus, memory usage by flattening a list can be analyzed considering seven rules:
two for flat, two for + and three for +′. Inspection of the recursion rules for the
three functions shows that the number of nodes is unchanged. The halt case rule
for flat frees one memory cell. The halt case rules, both for + and +′, free two
memory cells. Now, simple reasoning on the rules involved in the evaluation of
flat shows that flat(�) frees exactly 2|�|+ 1 memory cells, where |�| is the size of
the list �. Indeed, there is one halt case for flat, and for each element of � there
is one halt case for + or another one for +′.

5 Related Work

Cloning is also one of the features of the sesqui-pushout approach to graph
transformation [4]. In this approach, a rule is a span L ← K → R and the
application of a rule to a graph G can be illustrated by the same figure as for
a DPO step (as in the introduction), where the right-hand side is a pushout
as in the DPO approach but the left-hand side is a pullback, and moreover
it is a final pullback complement. The graphs considered in [4] are defined as
G = (V, E, src : E → V, tgt : E → V ) where V and E are the sets of vertices
and edges respectively, and the connections of edges are defined by the functions
src (source) and tgt (target). Nodes are not endowed with arities and thus they
may have an arbitrary amount of outgoing edges. This fact, together with the
use of final pullback complements, makes the sesqui-pushout approach different
from our framework. We illustrate this difference through the cloning of nodes.
According to the sesqui-pushout approach, the cloning of a node is, roughly
speaking, performed by copying a node together with all its incident edges (in-
coming and outgoing edges). In our framework, a node is copied only with its
outgoing edges. Let us consider for instance the termgraph h(f(2 :a), 2) in which
the subgraph f(2 : a) is supposed to be transformed into g(2, 3) where nodes 2
and 3 are clones of 2 :a. Then according to our framework, this transformation
can be achieved by means of the following rule. The application of this rule to
h(f(2 :a), 2) yields the graph h(g(2 :a, 3:a), 2).

2 :• 1:f�� 2|2:• 1:g�� �� 3|2:•

Using the sesqui-pushout approach, we get a rule of the following shape.

2 : • 1 : f�� �� K �� 2 : • 1 : g�� �� 3 : •
Indeed, K should encode the cloning of the instance of node 2 as well as the
replacement of f by g, thus K should include at least three unlabeled nodes.
The application of this rule to h(f(2 :a), 2) yields the graph h(g(2 :a, 3:a), 2, 3),
where the operation h has three arguments, because each of the clones 2 :a and
3:a requires the cloning of all incoming edges.

Cloning has also been subject of interest in [6]. The authors considered rewrite
rules of the form S := R where S is a star, i.e., S is a (nonterminal) node
surrounded by its adjacent nodes together with the edges that connect them.
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Rewrite rules which perform the cloning of a node have been given in [6, Def. 6].
These rules show how a star can be removed, kept identical to itself or copied
(cloned) more than once. Here again, unlike our framework, the cloning does
not care about the arity of the nodes and, as in the case of the sesqui-pushout
approach, a node is copied together with all its incoming and outgoing edges.
If we consider the termgraph h(f(2 :a), 2) again and clone twice the node 2 :a,
then according to [6] we get the graph h(f(2 :a, 3 :a), 2, 3) where both h and f
have augmented their arity when copying the incoming edges to the clone 3:a.

A categorical framework dedicated to cyclic termgraph transformation can be
found in [3] where the authors propose, following [16], a 2-categorical presenta-
tion of termgraph rewriting. They almost succeed in representing the full opera-
tional view of termgraph rewriting as defined in [2], but they differ on rewriting
circular redexes. For example, the application of the rewrite rule f(x) → x on
the termgraph n : f(n) yields the same termgraph (i.e., n : f(n)) according to
[2] but yields an unlabeled node, say p :•, according to [3]. With our definition
of rewrite rules, it is possible to encode exactly the algorithmic approach [2] by
simply stating that node n, m|m is a clone of node m in the rule:

n :f �� m :• n, m|m :•

In general, term rewriting and termgraph rewriting do not coincide [15]. How-
ever, thanks to its cloning facilities, our framework can simulate term rewriting
in the case of left linear term rewrite systems. Indeed, a term rewrite rule l → r
where l is a linear term (i.e., variables in l occur only once in l), can be trans-
formed into a rule (L, R, τ, σ) where L = l2L(l) and R = r2R(r) are termgraphs
corresponding respectively to l and r, by the transformations l2L and r2R defined
below. Notice that the transformation of the right-hand side takes into account
the cloning of variable instances, this happens when a right-hand side is not
linear. The aim of τ , when simulating term rewriting, consists in indicating the
replacement of the root of L by that of R, i.e., τ(root(L)) = root(R). The im-
ages via τ of the remaining nodes are not significant, so that τ(|L|) = root(R) is
a possible choice for τ . The function σ indicates the parts that should be cloned,
it plays an important role in encoding the use of variables in the right-hand
side. Every occurrence of a variable x in r corresponds to a non labeled node
p : • in R. In this case, by definition of rewrite rules, x appears in l and thus
a corresponding non labeled node px : • appears in L, thus we state that p is a
clone of px by σ(p) = px. Now we define the transformation functions l2L and
r2R.

– If c is a constant then l2L(c) = p :c and r2R(c) = p :c where node p is new.
– If f is an operation and the ti’s are terms then l2L(f(t1, . . . , tn) = p :

f(l2L(t1), . . . , l2L(tn)) and r2R(f(t1, . . . , tn) = p : f(r2R(t1), . . . , r2R(tn))
where node p is new.

– If x is a variable then
• l2L(x) = px :• where node px is new
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• r2R(x) = p :• for the first occurrence of x in r where node p is new and
σ(p) = px, while r2R(x) = q : clone(p :•) otherwise, where nodes p and q
are new and σ(p) = px.

For example, the term rewrite rule f(x, y)→ g(x, x) is transformed as:

1 :f
�� �����

�

2x :• 3y :•

1, 2, 3:g
�� �������

4|2x :• 5:clone �� 6|2x :•

When applying a matching substitution m over the right-hand side r of a
term rewrite rule, for every variable x of the left-hand side m constructs as
many copies of the instance m(x) as the number of occurrences of x in r. The
aim of q : clone(p :•) in the definition of r2R(x) is to mimic the application of a
matching substitution on the right-hand side m(r). The function clone builds a
copy of its argument, it can be defined for all operators of a given signature as
follows, where c is a constant and f is an operation of arity n. We write →∗

CLONE

the rewrite relation induced by the following rules.

1 :clone
��

2:c

1|2:•

2:c

α :clone
��

β :f
����� �����

1:• . . . n :•

β :f
���� ��

��
α :f

����� �����

1|1:• . . . n|n :• 1′ :clone
��

. . . n′ :clone
��

1′′|1:• . . . n′′|n :•

Proposition 4. Let R be a left linear term rewrite system built over a signature
Ω. Let T (R) be the termgraph rewrite system made of the rewrite rules which
define the function clone over the operation symbols in Ω, together with the
transformations of the rules l → r in R. Let t be a ground term. If t→R t′ then
there exists a termgraph G1 such that l2L(t)→T (R) G1 →∗

CLONE l2L(t
′).

The proof of this proposition is quite obvious, because the term t is assumed
to be ground. However, reduction of non linear terms is not allowed by the given
transformations. Indeed, variables cannot be cloned by transformation l2L (but
only renamed). For example l2L(f(x, x)) is the termgraph 1 : f(2x : •, 3x : •),
which is not a sound translation of f(x, x). For the instances of nodes 2x and 3x

are not supposed to be isomorphic.

6 Conclusion

In this paper, we have proposed a new way to define termgraph rewrite rules,
and we have defined a rewrite step as a heterogeneous pushout in an appro-
priate category. The proposed rewrite systems offer the possibility to transform
cyclic termgraphs either by performing local edge redirections or global edge
redirections, as defined following a DPO approach in [7], and in addition, it
provides new features such as cloning or deleting nodes. Future work includes
the generalization of the proposed systems to other graphs less constrained than
termgraphs.
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