
Adjunction for Garbage Collection with
Application to Graph Rewriting�

D. Duval1, R. Echahed2, and F. Prost2

1 LJK
B. P. 53, F-38041 Grenoble, France

Dominique.Duval@imag.fr
2 LIG

46, av Félix Viallet, F-38031 Grenoble, France
Rachid.Echahed@imag.fr, Frederic.Prost@imag.fr

Abstract. We investigate garbage collection of unreachable parts of
rooted graphs from a categorical point of view. First, we define this
task as the right adjoint of an inclusion functor. We also show that
garbage collection may be stated via a left adjoint, hence preserving col-
imits, followed by two right adjoints. These three adjoints cope well with
the different phases of a traditional garbage collector. Consequently, our
results should naturally help to better formulate graph transformation
steps in order to get rid of garbage (unwanted nodes). We illustrate this
point on a particular class of graph rewriting systems based on a double
pushout approach and featuring edge redirection. Our approach gives
a neat rewriting step akin to the one on terms, where garbage never
appears in the reduced term.

1 Introduction

Garbage collection has been introduced [5,9] in order to improve the manage-
ment of memory space dedicated to the run of a process. Such memory can be
seen as a rooted graph, where the nodes reachable from the roots represent the
memory cells whose content can potentially contribute to the execution of the
process, while the unreachable nodes represent the garbage, i.e., the cells that
may become allocated at will when memory is required. Several algorithms have
been proposed in the literature in order to compute the reachable and unreach-
able nodes (see for instance [4,8]).

In this paper, we investigate garbage collection from a categorical point of
view. More precisely, our main purpose is a theoretical definition of the process
of calculating the reachable nodes of a rooted graph. This corresponds to re-
moving the garbage, in the sense of calculating the memory space made of the
reachable cells, starting from a memory space that may include reachable as
well as unreachable cells. We show that this process can be defined as the right

� This work has been partly funded by the projet ARROWS of the French Agence
Nationale de la Recherche.

F. Baader (Ed.): RTA 2007, LNCS 4533, pp. 122–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Adjunction for Garbage Collection with Application to Graph Rewriting 123

adjoint of an inclusion functor. We also propose an alternative definition of this
process via a left adjoint, followed by two right adjoints. This second definition
is close to the actual tracing garbage collection algorithms, which proceed by
marking the reachable nodes before sweeping the garbage.

Besides the categorical characterisation of the garbage collection process,
which can be considered as a motivation per se, the original motivation of
this work comes from the definition of graph rewrite steps based on the dou-
ble pushout approach [7]. In these frameworks a rewrite step is defined as a span
L ← K → R where L, K and R are graphs and the arrows represent graph
homomorphisms. Let us consider, for instance, the category of graphs defined in
[6] (this category is similar to the category Gr of section 3.1 except that graphs
are not rooted).

The application of such a rule to a graph G consists in finding a homomor-
phism (a matching) m : L → G and computing the reduced graph H so that the
following diagram

L
m ��

K
l��

d��

r �� R
m′
��

G D
l′�� r′

�� H
constitutes a double pushout (some conditions are required to ensure the exis-
tence of this double pushout [7]).

A main drawback of this approach is that the reduced graph H may contain
unreachable nodes. To illustrate this point, let us consider a simple example.
Let f(x) → f(b) be a classical term rewrite rule. When it is applied on the term
f(a), the resulting term is f(b). However, in the double pushout approach (where
terms are viewed as graphs), the reduced graph is not just f(b): it includes also
the constant a. Indeed, the term rewrite rule f(x) → f(b) is turned into a span
f(x) ← K0 → f(b), where the arrows are graph homomorphims (the content of
K0 does not matter here). When this rule is applied to the graph f(a), according
to the double pushout approach, we get the diagram

f(x)

��

K0��

��

�� f(b)

��
f(a) D0 ���� H0

where H0 contains both terms f(b) and a. Actually, the element a occurs in D0,
because the left-hand side is a pushout; thus, a also occurs in H0, because the
right-hand side is a pushout. In order to get rid of a, and more generally to remove
all unreachable nodes from the graph H , we propose to use our categorical
approach of garbage collection.

When graph rewrite steps are defined following an algorithmic approach such
as [2], garbage is easily incorporated within a rewrite step. Unfortunately, in
categorical approaches to graph rewriting, garbage is not easily handled. In sec-
tion 8 of [1], Banach discussed the problem of garbage in an abstract way. He
mainly considered what is called “garbage retention”, that is to say, garbage is
not removed from a graph, as we do, but it should not participate in the rewrit-
ing process. In [3], Van den Broek discussed the problem of generated garbage

124 D. Duval, R. Echahed, and F. Prost

in the setting of graph transformation based on single pushout approach. He
introduced the notion of proper graphs. Informally, a proper graph is a graph
where garbage cannot be reachable from non garbage part. The rewrite relation
is defined as a binary relation over proper graphs. That is to say, a rewrite rule
can be fired only if the resulting graph is proper. In some sense, Van den Broek
performs a kind of garbage retention as Banach does.

Outline of the paper

Rooted graphs are introduced in section 2 in order to model reachable and
unreachable parts in data-structures. Garbage collection is presented in terms of
right and left adjoints in section 3. A double pushout approach for rooted graphs
rewriting is defined in section 4, and garbage collection is incorparated within
this rewriting setting. We conclude in section 5. Due to space limitations, proofs
have been omitted.

2 Rooted Graphs

Rooted graphs are defined as term graphs [2], together with a subset of nodes
called roots. These graphs are intended to model usual data-structures imple-
mented with pointers, such as circular lists. The addition of roots models the
fact that, due to pointer redirections, some data may become unreachable.

Definition 1 (Signature). A signature Ω is a set of operation symbols such
that each operation symbol f in Ω is provided with a natural number ar(f)
called its arity.

We assume Ω fixed throughout the rest of the paper. Moreover, for each set
A, the set of strings over A is denoted A∗, and for each map f : A → B, the
map f∗ : A∗ → B∗ is the extension of f to strings defined by f∗(a1 . . . an) =
f(a1) . . . f(an).

Definition 2 (Graph). A rooted graph is a tuple G = (NG, N R
G , N Ω

G , LG, SG)
where NG is the set of nodes of G, N R

G ⊆ NG is the set of roots, N Ω
G ⊆ NG is the

set of labeled nodes, LG : N Ω
G → Ω is the labeling function, and SG : N Ω

G → N ∗
G

is the successor function such that, for each labeled node n, the length of the
string SG(n) is the arity of the operation LG(n).

The arity of a node n is the arity of its label and the i-th successor of a node
n is denoted succG(n, i). The edges of a graph G are the pairs (n, i) where
n ∈ N Ω

G and i ∈ {1, . . . , ar(n)}, the target is the node tgt(n, i) = succG(n, i).
The set of edges of G is written EG The fact that f = LG(n) is written n : f ,
an unlabeled node n of G is written n : •. Informally, one may think of • as an
anonymous variable. The set of unlabeled nodes of G is denoted NX

G , so that
NG = N Ω

G + NX
G , where “+” stands for the disjoint union.

Adjunction for Garbage Collection with Application to Graph Rewriting 125

Example 1. Let G be the graph defined by NG = {m, n, o, p, q, r, s, t}, N Ω
G =

{m, o, p, s, t}, NX
G = {n, q, r}, LG is defined by: [m �→ f, o �→ g, p �→ h, s �→

i, t �→ j], SG is defined by: [m �→ no, o �→ np, p �→ qrm, s �→ m, t �→ tsn], and
roots of G are N R

G = {m}.
Graphically G is represented as: s : i �� m : f

���
���

�

��

r : •

t : j

��

��
��

n : • o : g�� �� p : h ��

��		����������
q : •

Roots of graphs are underlined. Generally in our examples the order of suc-
cessors is either irrelevant or clear from the context.

Definition 3 (Graph homomorphism). A rooted graph homomorphism ϕ :
G → H is a map ϕ : NG → NH that preserves the roots, the labeled nodes and
the labeling and successor functions, i.e., ϕ(N R

G) ⊆ N R
H , ϕ(N Ω

G) ⊆ N Ω
H , and for

each labeled node n, LH(ϕ(n)) = LG(n) and SH(ϕ(n)) = ϕ∗(SG(n)).
The image ϕ(n, i) of an edge (n, i) of G is defined as the edge (ϕ(n), i) of H .

Example 2. Consider the following graph H : v : i �� a : f

���
��

��
b : • c : g�� �� d : • e : •

Let ϕ : NH → NG, where G is the graph in Example 1, be defined as: ϕ =
[a �→ m, b �→ n, c �→ o, d �→ p, e �→ p, v �→ s]. Then, ϕ is a graph homomorphism
from H to G.

3 Garbage Collection and Adjunction

A node in a rooted graph is reachable if it is a descendant of a root; the un-
reachable nodes form the garbage of the graph. We now address the problem
of garbage collection in graphs, in both its aspects: either removing the un-
reachable nodes or reclaiming them; we also consider the marking of reachable
nodes, which constitutes a major step in the so-called tracing garbage collection
process. We prove in this section that the tracing garbage collection process can
be easily expressed in term of adjunctions.

3.1 Garbage Removal Is a Right Adjoint

Rooted graphs and their homomorphisms form the category of rooted graphs.
From now on, in this paper, the category of rooted graphs is denoted Gr, the
category of non-rooted graphs is denoted Gr0, and by “graph” we mean “rooted
graph”, unless explicitly stated.

Definition 4 (Reachable nodes). The reachable nodes of a graph are defined
recursively, as follows: a root is reachable, and the successors of a reachable node
are reachable nodes.

Example 3. The graph G defined in example 1, has m, n, o, p, q, r as reachable
nodes. Nodes s, t are considered as garbage, as well as the edges out of these
nodes.

126 D. Duval, R. Echahed, and F. Prost

Definition 5 (Reachable graph). A reachable graph is a graph where all
nodes are reachable.

The reachable graphs and the graph homomorphisms between them form a full
subcategory of Gr, called the category of reachable graphs, RGr. Let V denote
the inclusion functor: V : RGr → Gr .

Definition 6 (Maximal reachable subgraph). The maximal reachable sub-
graph of G is the graph Λ(G) such that NΛ(G) is the set of reachable nodes of
G, N R

Λ(G) = N R
G , N Ω

Λ(G) = NΛ(G) ∩ N Ω
G , and LΛ(G), SΛ(G) are the restrictions of

LG, SG to NΛ(G).

Since a graph homomorphism ϕ : G → H preserves the roots and the successors,
it does also preserve the reachable nodes. Hence, it can be restricted to the
maximal reachable subgraphs: Λ(ϕ) : Λ(G) → Λ(H).

Definition 7 (Garbage removal functor). The garbage removal is the func-
tor: Λ : Gr → RGr that maps each graph G to its maximal reachable sub-
graph Λ(G) and each graph homomorphism ϕ : G → H to its restriction
Λ(ϕ) : Λ(G) → Λ(H).

Clearly, the composed functor Λ ◦ V is the identity of RGr : a reachable graph
is not modified under garbage removal. Moreover, the next result proves that
RGr is a coreflective full subcategory of Gr.

Proposition 1 (Garbage removal is a right adjoint). The garbage removal
functor Λ is the right adjoint for the inclusion functor V .

The garbage removal functor Λ : Gr → RGr is not a left adjoint. Indeed, a
left adjoint does preserve the colimits, whereas the functor Λ does not preserve
pushouts, as shown in the following example:

�

�

�

�

m : • ��
�

�

�

	

m : f �� n : •

�� ��
�

�

�

	

p : g �� m : • ��
�

�

�

	

p : g �� m : f �� n : •

If Λ is applied to this square, the graphs of the upper row will be the empty
graphs, whereas the graphs of the lower row will remain unchanged. The obtained
diagram is no longer a pushout in category RGr, since label f and node n : •
appear from nowhere.

3.2 Reachability Marking Is a Left Adjoint

Definition 8 (Marked graph). A marked graph is a graph M with a set
N �

M ⊆ NM of marked nodes, such that every root is marked and every successor
of a marked node is marked (so that all the reachable nodes of a marked graph are
marked but unreachable nodes can be marked). A marked graph homomorphism
is a graph homomorphism that preserves the marked nodes.

Adjunction for Garbage Collection with Application to Graph Rewriting 127

The marked graphs and their homomorphisms form the category of marked
graphs Gr′.

Let Δ : Gr′ → Gr denote the underlying functor, that forgets about the mark-
ing, and let ∇ : Gr → Gr′ denote the functor that generates a marked graph
from a graph, by marking all its reachable nodes. The next result is straightfor-
ward, since the marking does not modify the underlying graph.

Proposition 2 (Reachability marking is a left adjoint). The reachability
marking functor ∇ is the left adjoint for the underlying functor Δ, and this
adjunction is such that Δ ◦ ∇ ∼= IdGr.

Definition 9 (Reachable marked graph). A reachable marked graph is a
marked graph where all nodes are reachable. So, all the nodes of a reachable
marked graph are marked.

The reachable marked graphs and the marked graph homomorphisms form a
full subcategory of Gr′, called the category of reachable marked graphs, RGr′.
One can note that RGr′ is isomorphic to RGr. We make the distinction be-
tween those two cateogries because it enables to give a neat categorical view
of how garbage collection is performed. Let V ′ denote the inclusion functor:
V ′ : RGr′ → Gr′ . As in proposition 1, the inclusion functor V ′ has a right
adjoint: Λ′ : Gr′ → RGr′ which is the garbage removal functor for marked
graphs.

3.3 Tracing Garbage Collection

A tracing garbage collector first determines which nodes are reachable, and then
either discards or reclaims all the unreachable nodes. In categorical terms, the
fact that reachability marking can be used to perform garbage collection is ex-
pressed by theorem 1 and proposition 3 below.

Similarly to the adjunction ∇ � Δ, there is an adjunction ∇R � ΔR where
ΔR : RGr′ → RGr denotes the underlying functor, that forgets about the
marking, and ∇R : RGr → RGr′ denotes the functor that generates a marked
graph from a reachable one, by marking all its nodes. Actually, this adjunction
is an isomorphism. RGr and RGr′ are not identified since they formalize well
a phase of a natural garbage collector. Indeed, classical garbage collector begins
by suspending the execution of current processes. Then it performs a marking
of reachable memory cells (∇). Afterwards, all unmarked cells are deallocated
(Λ′) and finally the marking is forgotten (ΔR).

In the following diagram, the four adjunction pairs are represented.

Gr
Λ

��

∇

��

⊥

�

RGr
V

∇R

��
Gr′

Λ′
��

Δ

��

RGr′
V ′

ΔR

��

⊥

∼=

128 D. Duval, R. Echahed, and F. Prost

Functors ∇◦V and V ′ ◦∇R are equal, since they both map a reachable graph
H to the marked graph made of H with all its nodes marked:

∇ ◦ V = V ′ ◦ ∇R : RGr → Gr′

Theorem 1 below provides a categorical formalization of the tracing garbage
removal process, which can be decomposed in three steps: First, the main step
freely generates the marked graph ∇(G) from the given graph G. Then, the
reachable marked graph Λ′(∇(G)) is obtained by throwing away the non-marked
nodes. Finally, the reachable graph ΔR(Λ′(∇(G))) is obtained by forgetting the
marking.
According to theorem 1, ΔR(Λ′(∇(G))) is isomorphic to Λ(G).

Theorem 1 (Garbage removal through reachability marking)

Λ ∼= ΔR ◦ Λ′ ◦ ∇ .

So, the garbage removal functor Λ can be replaced by ΔR ◦ Λ′ ◦ ∇. This means
that the main step in the tracing garbage removal process is the reachability
marking: indeed, the application of ΔR is “trivial”, and the application of Λ′ to
the image of ∇ simply throws away the unmarked nodes.

In order to express garbage reclaiming, let N and N � denote the functors
from Gr′ to Set that map a marked graph to its set of nodes and to its set of
marked nodes, respectively. They can be combined into one functor with values
in the following category SubSet: the objects of Subset are the pairs of sets
(X, Y) such that Y ⊆ X , and a morphism is a pair of maps (f, g) from (X, Y)
to (X ′, Y ′), where f : X → X ′, g : Y → Y ′, and g is the restriction of f .
(N , N �) : Gr′ → SubSet
The complement X \ Y is the set of unreachable nodes: this is expressed in the
next result. Note that the set complement, that maps (X, Y) to X \ Y , cannot
reasonably be extended to a functor from SubSet to Set.

Proposition 3 (Garbage reclaiming through reachability marking)
The composition of ∇ with (N , N �), followed by the set complement, provides
the set of unreachable nodes.

So, the garbage reclaiming can be expressed as (N , N �) ◦ ∇ followed by the set
complement. Here also, this means that the main step in the tracing garbage
reclaiming process is the reachability marking.

4 Application: Rooted Graph Rewriting with Garbage
Removal

In this section we focus on a class of graph rewrite systems dedicated to transform
data-structures with pointers [6]. This class has been defined using the double
pushout approach [7]. We mainly show how rewrite steps can be enhanced by
integrating garbage removal. This integration can be generalized to other rewrite
systems based on pushouts, thanks to the fact that left adjoints preserve colimits.

Adjunction for Garbage Collection with Application to Graph Rewriting 129

4.1 Disconnections

This section will be used in the left hand side of the double pushout construction.
Definitions are adapted from [6], with a more homogeneous presentation.

The disconnection of a graph L is made of a graph K and a graph homomor-
phism l : K → L. Roughly speaking, K is obtained by redirecting some edges
of L toward new, unlabeled targets, and the homomorphism l reconnects all
the disconnected nodes: NK is made of NL together with some new, unlabeled
nodes, and l is the identity on NL.

Definition 10 (Disconnection kit). A disconnection kit k = (El, Ng, Eg) for
a graph L, where El, Eg are susbsets of EL and Ng ⊆ NL, is made of: (i) a set
of edges El, called the locally redirected edges, (ii) a set of nodes Ng, called the
globally redirected nodes, and (iii) another set of edges Eg, called the globally
redirected edges, that is disjoint from El and such that the target of every edge
in Eg is in Ng. A disconnection kit (El, Ng, ∅) is simply denoted (El, Ng).

Definition 11 (Disconnection of a graph). Let L be a graph, with a dis-
connection kit k = (El, Ng, Eg). Let K be the graph defined by:
– NK = NL +NE +NN , where NE is made of one new node n[i] for each edge

(n, i) ∈ El and NN is made of one new node n[0] for each node n ∈ Ng,
– N R

K is made of one node for each root n of L: n itself if n ∈ Ng and n[0] if
n ∈ Ng.

– N Ω
K = N Ω

L ,
– for each n ∈ N Ω

L : LK(n) = LL(n),
– for each n ∈ N Ω

L and i ∈ {1, . . . , ar(n)}: if (n, i) ∈ El+Eg then succK(n, i) =
succL(n, i), if (n, i) ∈ El then succK(n, i) = n[i] and if (n, i) ∈ Eg then
succK(n, i) = tgt(n, i)[0].

Let l : NK → NL be the map defined by: l(n) = n if n ∈ NL, l(n[i]) =
succL(n, i) if (n, i) ∈ El, l(n[0]) = n if n ∈ Ng. Clearly l preserves the roots,
the labeled nodes and the labeling and successor functions, so that it is a graph
homomorphism. Then l : K → L is the disconnection of L with respect to k.

Example 4. Let L4 be the following graph: x : f

�����
��

�� ����
���

y : • z : g�� �� t : •

If we respec-

tively consider disconnection kits k1 =({(x, 1), (z, 2)}, ∅) and k2 =({(x, 3)}, {x}),
we have the following disconnections of L4, respectively K4 and K ′

4:

x[1] : • x : f��

��

�� t : •

y : • z : g�� �� z[2] : •

x[0] : • x : f

�����
��

��

�� x[3] : •

y : • z : g�� �� t : •

Definition 12 (Matching). Let L be a graph with a disconnection kit k =
(El, Ng). A matching of L consistent with k is a graph homomorphism m : L → G
such that the restriction of m to (N Ω

L ∪ Ng) is injective.

130 D. Duval, R. Echahed, and F. Prost

Definition 13 (Disconnection of a matching). Let L be a graph, with a
disconnection kit k = (El, Ng), and let m : L → G be a matching of L consistent
with k. Let E′

l = m(El) and N ′
g = m(Ng) (since m is a matching, the restrictions

of m are bijections: El
∼= E′

l and Ng
∼= N ′

g). Let E′
g be the set of the edges of

G − m(L) with their target in N ′
g, and let k′ = (E′

l , N
′
g, E

′
g). Let l : K → L be

the disconnection of L with respect to k, and l′ : D → G the disconnection of
G with respect to k′. Let d : NK → ND be the map defined by: d(n) = m(n) if
n ∈ NL, d(n[i]) = m(n)[i] if n[i] ∈ NE and d(n[0]) = m(n)[0] if n[0] ∈ NN .
Clearly, d is a graph homomorphism. Then the following square in Gr is called
the disconnection of m with respect to k:

L

m ������������� K
l�� d �� D

l′

��											

G

In other words the disconnection of a matching with respect to a disconnection
kit consists in the building of, D (and the appropriate morphisms) once K, L, G
and m, l are given. Informally D is made of three parts. The first one is the part
of G that is not matched. The second part is the image of L in G. Finally there
are nodes without labels introduced to perform redirections (m(n)[i] for local
redirections, m(n)[0] for global ones).

Example 5. Consider the following graphs L5, G5:

L5 = x : f
��

��

��

t : •

z : g ��

��

t′ : •

G5 = u : h �� x : f
�� ��

��

t : i

��

v : j ��

�� ��

z : g

�� ��������

and let k be the disconnection kit ({(x, 2)}, {x}), the edge (x, 2) being the edge
joining node x to node z.

The graph homomorphism m5 = [x �→ x, t �→ t, t′ �→ t, z �→ z], is a morphism
from L5 to G5. It is also a matching of L5 consistent with k. Now by disconnection
of G5 with respect to k we have the graphs K5 which is the disconnection of L5
with respect to disconnection kit ({(x, 2)}, {x}), and D5 which is the disconnec-
tion of G5 with respect to disconnection kit ({(x, 2)}, {x}, {(u, 1), (v, 2), (t, 2)}):

K5 =

x : f
��

��

������������ t : • x[0] : •

z : g ��

��

t′ : • x[2] : •

D5 =

u : h �� x[0] : • t : i
��

��

v : j ��

�� ��
z : g ��

��
x : f��

��

��

x[2] : •

4.2 Rooted Graph Rewriting

Definition 14 (Rewrite rule). A rewrite rule, or production, is a span of
graphs p = (L l← K

r→ R) where l is the disconnection of L with respect to a
disconnection kit k = (El, Ng), and the restriction of r to NX

L is injective and
has its values in NX

R . Then p is a rewrite rule consistent with k.

Adjunction for Garbage Collection with Application to Graph Rewriting 131

A rewrite step is defined from a rewrite rule p = (L l← K
r→ R) and a matching

m : L → G, both with respect to a disconnection kit k = (El, Ng) of L. The
role of the rewrite step consists in: (i) adding to G an instance of the right-hand
side R of p, (ii) performing some local redirections of edges in G: each edge
(n, i) in m(El) is redirected to the new target n[i], (iii) performing some global
redirections of edges in G: all incoming edges of a node n in m(Ng), except the
edges in the image of the matching, are redirected to the new target n[0], (iv)
modifying the roots of G: if n is a root in G not in m(Ng) then it remains a root,
but if n is a root in G and in m(Ng) then n[0] becomes a root instead of n.

As in [6], the basic ingredient in the double pushout approach to graph rewrit-
ing is lemma 1 below, about the reflection of pushouts by a faithful functor. The
faithful functor in [6] was the node functor N , from the category Gr0 of non-
rooted graphs to the category of sets. Here, it will be the forgetful functor U0
from the category Gr of rooted graphs to the category Gr0 of non-rooted graphs,
which clearly is faithful. Since this lemma has not been stated in this form in
[6], its proof is given below.

Lemma 1 (Pushout reflection). Let Φ : A → A′ be a faithful functor. Let

Σ = (A1
f1← A0

f2→ A2) be a span and let Γ be a square in A:

A1

g1 �������� A0
f1�� f2 �� A2

g2��������

A
If Φ(Γ) is a pushout in A′ and if for each cocone Δ on Σ in A, there is a

morphism h : A → B in A (where B is the vertex of Δ) such that Φ(h) is the
cofactorisation of Φ(Δ) with respect to Φ(Γ), then Γ is a pushout in A.

For each span Σ of sets (N1
ϕ1← N0

ϕ2→ N2), let ∼ denote the equivalence relation
induced by Σ on N1 +N2, which means that it is generated by ϕ1(n0) ∼ ϕ2(n0)
for all n0 ∈ N0, and let N be the quotient N = (N1 + N2)/ ∼. For i ∈ {1, 2},
let ψi : Ni → N map every node ni of Gi to its class modulo ∼. Then, it is
well-known that the following square is a pushout in Set, which will be called
canonical :

N0ϕ1

�������� ϕ2

��������

N1

ψ1 �������� N2

ψ2��������

N

The notion of “strongly labeled span of graphs” comes from [6], where it was
defined for non-rooted graphs, but actually roots are not involved in this notion.

Definition 15 (Strongly labeled span of graphs). A span Σ = (G1
ϕ1← G0

ϕ2→ G2) in Gr is strongly labeled if, as soon as two labeled nodes in N (G1) +
N (G2) are equivalent with respect to Σ, they have the same label and equivalent
successors.
Definition 16 (Canonical square of graphs). Let Σ = (G1

f1← G0
f2→ G2)

be a strongly labeled span in Gr. The canonical square on Σ is the square in
Gr:

132 D. Duval, R. Echahed, and F. Prost

G1

ψ1 �������� G0
ϕ1�� ϕ2 �� G2

ψ2��������

G
where the underlying square of nodes is the canonical pushout in Set, a node
n in G is a root if and only if n = ψi(ni) for a root ni in G1 or G2, a node
n in G is labeled if and only if n = ψi(ni) for a labeled node ni in G1 or G2,
and moreover the label of n is the label of ni and the successors of n are the
equivalence classes of the successors of ni.

Clearly, Γ (Σ) is a commutative square in Gr. It is actually a pushout in Gr as
stated in Theorem 2. The next result is proved in [6].

Lemma 2 (Pushout of non-rooted graphs). Let Σ be a strongly labeled
span in Gr, and let Γ be the canonical square on Σ. Then U0(Γ) is a pushout
in Gr0.

Theorem 2 (Pushout of rooted graphs). Let Σ be a strongly labeled span
in Gr, and let Γ be the canonical square on Σ. Then Γ is a pushout in Gr.

It is easy to see that a disconnection square is the canonical square on a strongly
labeled span, so that the next result follows from theorem 2.

Theorem 3 (A pushout complement). Let L be a graph with a disconnec-
tion kit k and let m be a matching of L consistent with k. The disconnection
square of m with respect to k is a pushout in the category of graphs.

Theorem 3 means that d and l′ form a complement pushout to l and m. Other
complement pushouts to l and m can be obtained by replacing E′

g, in defini-
tion 13, by any of its subsets.

The next result is not so easy, its proof can be found in [6] (except for the
property of the roots, which is clear).

Theorem 4 (A direct pushout). Let p be a rewrite rule (L l← K
r→ R) and

m : L → G a matching, both consistent with a disconnection kit k of L. Then
the span D

d← K
r→ R is strongly labeled, so that the canonical square on it is

a pushout.

Definition 17 (Rewrite step). Let p be a rewrite rule (L l← K
r→ R) and

m : L → G a matching, both consistent with a disconnection kit k of L. Then
G rewrites to H using rule p if there is a diagram:

L
m ��

K
l��

d��

r �� R
m′��

G D
l′�� r′

�� H
where the left hand side of the diagram is the disconnection of m with respect
to k and the right hand side is a canonical square.

So, according to theorems 3 and 4, a rewrite step corresponds to a double pushout
in the category of graphs.

Adjunction for Garbage Collection with Application to Graph Rewriting 133

Proposition 1 (A description of the nodes). With the notations and as-
sumptions of definition 17, the representatives of the equivalence classes of nodes
of NR + ND can be chosen in such a way that: N Ω

H = (N Ω
G − m(N Ω

L)) +
N Ω

R and NX
H = NX

G + (NX
R − r(NX

L)) and N R
H = r′(N R

D) ∪ m′(N R
R).

4.3 Graph Rewriting with Garbage removal

In this section we give a direct application of garbage removal via a left adjoint
in rooted graph rewriting. Indeed, left adjoints preserve pushouts. Therefore it
is possible to apply functor ∇ on the double push out. Then the composition of
ΔR ◦ Λ′ gives us the garbage free reduced graph. This schema applies to every
double pushout settings, we illustrate this on a particular one.

Definition 18 (Rewrite step with garbage removal). Let p be a rewrite
rule (L l← K

r→ R) and m : L → G a matching, both consistent with a discon-
nection kit k of L. Then G rewrites with garbage removal to P using rule p if
there is a diagram:

L
m ��

K
l��

d��

r �� R
m′��

G D
l′�� r′

�� H

where the left hand side is the disconnection of m with respect to k and the
right hand side is a canonical square, and P = V (ΔR(Λ′(∇(H)))) = V (Λ(H)).

Example 6. First, let us simulate a term rewrite rule. Consider the rule f(x) →
g(b). In our setting it can be implemented by the following span s:

�

�

n : f

��
m : •

l��
�

�

�

�

n : f

��

n[0] : •

m : •

r ��
�

�

�

�

n : f

��

o : g

��
m : • p : b

Where l, r are the expected graph homomorphisms with l(n[0]) = n and r(n[0])=
o. Then G6 rewrites to P6 by using the rule s

G6 = q : h ��

n : f �� m : a

!!
P6 = p : b o : g�� q : h

""
��

Indeed one has the following double pushout in Gr:g�
�

�
�

n : f

��
m : •

l��

�
�

�
	

n : f

��

n[0] : •

m : •
r ��

�

�

n : f

��

o : g

��
m : • p : b

m
�� d�� m′

���
�

�
	

q : h ##
$$
n : f

��
m : a

%%�����
l′��

�

�

q : h

�� &&

n : f

��
n[0] : • m : a

''������ r′
��

�

�

o : g

��

q : h
""
((n : f

��
p : b m : a

))�����

134 D. Duval, R. Echahed, and F. Prost

In this example f(a) becomes unreachable because of edge redirection. Let
H6 be the graph at the bottom right of this double pushout. Then, Λ(H6) is the
marked graph P6, as above.

The following graph illustrates well the role played by roots in garbage re-
moval. Consider G′

6 where the root is now n, it rewrites to P ′
6 with:

G′
6 = q : h ##

$$
n : f

��
m : a

))�����

P ′
6 = o : g

��
p : b

This simple example is not possible to simulate in [6] where garbage cannot
be removed.

Another interesting property of graph rewriting with garbage removal is the
management of roots. New roots can be introduced by simple rules like:

�

�

n : f

��
m : a

l��
�

�

�

�

n : f

��

n[0] : •

m : a

r ��
�

�

�

�

n : f

��

o : r

**

m : a

Where r(n[0]) = o and l(n[0]) = n. This rule adds a new root o : r.
Dually, the number of roots can be reduced, in special circumstances: this can

be done by associating two roots equally labeled. For instance consider the span:
�

�

�

�

o1 : f

��

o2 : f

**�����

m : a

l��
�

�

�

�

o1 : f

��

o2 : f

**�����

m : a

r ��

�

�

o : f

��
m : a

where r(o1) = r(o2) = o. Note that by injectivity hypothesis of matching on
labeled nodes, the left hand side of the span must match two different roots.
Note also that injectivity hypothesis on morphism r only applies to unlabeled
nodes, thus o1, o2 can be collapsed to a single node o.

Example 7. Let us now consider a more complicated example: the in-place
reversal of a list between two particular cells. For example, given the graph:

h �� rev �� ���

�

�

�

1 ��
�

�

�

�

2 ��
�

�

�

�

3 ��
�

�

�

�

4 ��
�

�

�

�

5 . . .

we want to produce the following graph: nil
�

�

�

�

1��
�

�

�

�

2��
�

�

�

�

3�� h��

Potentially, the rest of the graph should be removed. rev is defined by means
of four rules. Moreover, one can notice that the programmer does not need to
take a particular care of garbage management: it is automatically managed. The
first rule is for trivial cases (when the first and last items are equal) and is im-
plemented as follows:

�

�

�

	

n : rev ##
$$
m : • l��

�

�

�

�

n : rev ��

m : •

n[0] : •

r ��
�

�

�

	

n : rev ##
$$
m : •

Adjunction for Garbage Collection with Application to Graph Rewriting 135

This rule only performs a global redirection from n to m (r(n[0]) = m and
l(n[0]) = n), thus node n : rev will be garbage removed after the rewrite step
(nothing can no longer points to it because of the global redirection).

The second rule classically introduces an auxiliary function revb of three para-
meters which performs the actual rewriting of the list. The first two parameters
of revb record the pair of list cells to be inverted (current and preceding cells) and
the last parameter stores the halting cell. It is done by the span L7 ← K7 → R7
where:

�

�

�

�

K7 = s : cons

�� ���������
n : rev�� �� e : cons

��

�� e1 : •

s1′ : • s1[2] : • e′ : • s1 : • n[0] : •
�

�

�

�

n : rev

���������
�� e : cons

��

++

L7 = s : cons

��

�� s1 : • e′ : •

s1′ : • e1 : •

�

�

�

�

m : revb

�� ����������

n : rev

���������
�� e : cons

��

++

R7 = s : cons

�� ��������� s1 : • e′ : •

s1′ : • t : nil e1 : •

where n[0] : • mapped to n on L7 and to m on R7, s1[2] is mapped to t in R7.
The general step of revb is given by the span L′

7 ← K ′
7 → R′

7, where:
7 7 7

�

�

K ′

7 = m : revb

�� ���������
�� e : cons ��

,,��
���

�� e1 : • o1[2] : • o2 : •

m[1] : • m[2] : • e′ : • o1 : cons ��

��

o1′ : • p : •�

�

�

�

p : • m : revb��

���������
�� e : cons

++

��
L′

7 = o1 : cons

��

�� o2 : • e′ : •

o1′ : • e1 : •

�

�

�

�

R′
7 = o1 : cons

��

--

m : revb��

��

�� e : cons

++

��
p : • o2 : • e′ : •

o1′ : • e1 : •

where m[1], m[2] are respectively mapped to o1, o2 and o1[2] is mapped to p
in R′

7. This rule disconnects the first two parameters of revb (m[1], m[2]) to
make them progress along the list (p is replaced by o1 and o1 by o2). It also
redirects the local edge of the list to be reversed (second edge from o1) to the
previous cell of the list (node p). One has to remember the injectivity hypothesis
of the matching homomorphism on labeled nodes. It ensures that nodes o1, e are
actually different nodes. Thus there can be no confusion with the halt case.

The halt case for revb is similar to the one on rev and just amounts to a global
redirection, namely:

136 D. Duval, R. Echahed, and F. Prost

�
�

�
	

n : revb ��

��

m : •

p : •

l��

�

�

n : revb ��

��

m : •

p : • n[0] : •

r ��
�
�

�
	

n : revb ��

��

m : •

p : •

where n[0] is mapped to m on the graph on the right side.
We let the reader check on examples that these rules implement the in-situ

list reversal between two given nodes.

5 Conclusion

We have presented a categorical approach to garbage collection and garbage
removal which can be applied to various graph rewriting frameworks, especially
the ones based on pushouts. Garbage removal may be seen either as a right
adjoint or as a left adjoint. The right adjoint is the mathematical translation of
the description of what is garbage collection: the removal of unreachable parts.
On the other hand the left adjoint gives an operational point of view. It illustrates
well the three basic steps of any real garbage collector in programming languages:
when a garbage collector starts there is first a propagation phase to compute the
live parts, then follows the removal of non live nodes and finally the halt of the
garbage collector (the return to a normal evaluation mode). Those three steps
are represented by three associated functors.

As a future work, we plan to use graph transformation frameworks in order
to model memory, as well as mutable objects, transformation.

References

1. Banach, R.: Term graph rewriting and garbage collection using opfibrations. Theo-
retical Computer Science 131, 29–94 (1994)

2. Barendregt, H., van Eekelen, M., Glauert, J., Kenneway, R., Plasmeijer, M.J., Sleep,
M.: Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.)
PARLE’87. LNCS, vol. 259, pp. 141–158. Springer, Heidelberg (1987)

3. Broek, P.V.D.: Algebraic graph rewriting using a single pushout. In: Abramsky,
S. (ed.) TAPSOFT’91: Proceedings of the International Joint Conference on The-
ory and Practice of Software Development. LNCS, vol. 493, pp. 90–102. Springer,
Heidelberg (1991)

4. Cohen, J.: Garbage collection of linked data structures. Computing Surveys 13(3),
341–367 (1981)

5. Collins, G.: A method for overlapping and erasure of lists. Communication of the
ACM 3(12), 655–657 (1960)

6. Duval, D., Echahed, R., Prost, F.: Modeling pointer redirection as cyclic term graph
rewriting. In: TERMGRAPH 06 (2006) (Extended version to appear in ENTCS)

7. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach.
In: FOCS 1973, pp. 167–180 (1973)

8. Jones, R.E., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. J. Wiley & Son, New York (1996)

9. McCarthy, J.: Recursive functions of symbolic expressions and their computation
by machine-i. Communication of the ACM 3(1), 184–195 (1960)

	Adjunction for Garbage Collection with Application to Graph Rewriting
	Introduction
	Rooted Graphs
	Garbage Collection and Adjunction
	Garbage Removal Is a Right Adjoint
	Reachability Marking Is a Left Adjoint
	Tracing Garbage Collection

	Application: Rooted Graph Rewriting with Garbage Removal
	Disconnections
	Rooted Graph Rewriting
	Graph Rewriting with Garbage removal

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

