
Graph Transformation with Focus
on Incident Edges?

Dominique Duval, Rachid Echahed, and Frédéric Prost

University of Grenoble
B. P. 53, F-38041 Grenoble, France

{Dominique.Duval, Rachid.Echahed, Frederic.Prost}@imag.fr

Abstract. We tackle the problem of graph transformation with particu-
lar focus on node cloning. We propose a new approach to graph rewriting,
called polarized node cloning, where a node may be cloned together with
either all its incident edges or with only its outgoing edges or with only
its incoming edges or with none of its incident edges. We thus subsume
previous works such as the sesqui-pushout, the heterogeneous pushout
and the adaptive star grammars approaches. We first define polarized
node cloning algorithmically, then we propose an algebraic definition.
We use polarization annotations to declare how a node must be cloned.
For this purpose, we introduce the notion of polarized graphs as graphs
endowed with some annotations on nodes and we define graph transfor-
mations with polarized node cloning by means of sesqui-pushouts in the
category of polarized graphs.

1 Introduction

Graph transformation [22, 11, 13] extends string rewriting [3] and term rewriting
[1] in several respects. In the literature, there are many ways to define graphs and
graph rewriting. The proposed approaches can be gathered in two main streams:
(i) the algorithmic approaches, which define a graph rewrite step by means of the
algorithms involved in the implementation of graph transformation (see e.g. [2,
10]); (ii) the second stream consists of the algebraic approaches, first proposed
in the seminal paper [14], and which use categorical constructs to define graph
transformation in an abstract way. The most popular algebraic approaches are
the double pushout (DPO) [14, 5] and the single pushout (SPO) [21, 16, 17, 12].

In this paper we are interested in graph transformation with particular focus
on node cloning. Indeed, making copies of values is a very useful feature shared
by most popular programming languages (see for instance the so-called shallow
cloning [15] or deep cloning [20] operations). Informally, by cloning a node n, we
mean making zero, one or more copies of n with “some” of its incident edges.
The classical DPO and SPO approaches of graph transformation are clearly not
well suited to perform cloning of nodes. As far as we are aware of, there are
two algebraic attempts to deal with node cloning : the sesqui-pushout approach

? This work has been funded by the project CLIMT of the French Agence Nationale
de la Recherche (ANR-11-BS02-016).

(SqPO) [4] and the heterogeneous pushout approach (HPO) [7]. The sesqui-
pushout approach has the ability to clone nodes with all their incident edges
whereas the HPO clones a node only with its outgoing edges. Our aim in this
paper is to investigate a new flexible way to perfom node cloning, so that every
copy of a node n can be made either with all the incident edges (denoted hereafter
n±), with only its outgoing edges (n+), with only its incoming edges (n−), or
without any of its incident edges (denoted simply as n). We call this kind of
graph transformation polarized node cloning. To achieve this task, we introduce
the notion of polarized graphs. Informally, we define a polarized graph X as a
graph X where each node n is annotated as n± , n+, n− or just n. The rules
in our approach are made of a polarized graph K, consisting of a graph K

with annotated nodes, and a span of graphs L
l← K

r→ R. The annotations of
K indicate the cloning strategy of incident edges. We prove that the polarized
node cloning can be described as a SqPO rewriting of polarized graphs, preceded
by the polarization of every node n in the left hand side as n± and followed by
forgetting all polarizations in the right hand side. This is called the polarized
sesqui-pushout rewriting (PSqPO for short).

The paper is organized as follows. The notion of polarized node cloning of
graphs is defined in an elementary algorithmic way in Section 2. In Section 3 we
define polarized graphs and the corresponding sesqui-pushout rewriting, from
which we get the polarized sesqui-pushout rewriting for the polarized node
cloning of graphs. Our approach is adapted to labeled graphs and illustrated
through some examples in Section 4. A comparison with related work is made in
Section 5 and concluding remarks are given in Section 6. An Appendix is added
in order to ease the verification of the accuracy of our results. Detailed proofs
can be found in [8]. We use categorical notions which may be found for instance
in [19].

2 Polarized Node Cloning of Graphs

In this section we introduce some notations involving graphs and define the
notion of polarized node cloning.

2.1 Graphs

Definition 1. A graph X is made of a set of nodes |X|, a set of edges X→ and
two functions source and target from X→ to |X|. An edge e with source n and

target p is denoted n
e→ p. The set of edges from n to p in X is denoted Xn→p.

A morphism of graphs f : X → Y is made of two functions (both denoted f)

f : |X| → |Y | and f : X→ → Y→, such that f(n)
f(e)→ f(p) for each edge n

e→ p.
This provides the category Gr of graphs.

In order to build large graphs from smaller ones, we will use the sum of
graphs and the edge-sum for adding edges to a graph, as defined below using
the symbol + for the coproduct in the category of sets, i.e., the disjoint union
of sets.

Definition 2. Given two graphs X1 and X2, the sum X1+X2 is the coproduct of
X1 and X2 in the categry of graphs, which means that |X1+X2| = |X1|+|X2| and
(X1 +X2)→ = X1→+X2→ and the source and target functions for X1 +X2 are
induced by the source and target functions for X1 and for X2. Given two graphs
X and E such that |E| ⊆ |X|, the edge-sum X +e E is the pushout, in the
category of graphs, of X and E over their common subgraph made of the nodes
of E and no edge. This means that |X+eE| = |X| and (X +e E)→ = X→+E→
and the source and target functions for X +e E are induced by the source and
target functions for X and for E.

Clearly, the precise set of nodes of E does not matter in the construction of
X +e E, as long as it contains the source and target of every edge of E and is
contained in |X|. This notation is extended to morphisms: let f1 : X1 → Y1 and
f2 : X2 → Y2, then f1 + f2 : X1 +X2 → Y1 +Y2 is defined piecewise from f1 and
f2. Similarly, let f : X → Y and g : E → F with |E| ⊆ |X| and |F | ⊆ |Y |, then
f +e g : X +e E → Y +e F is defined as f on the nodes and piecewise from f
and g on the edges.

Remark 1. Let X be a subgraph of a graph Y . Let X denote the subgraph of
Y induced by the nodes outside |X| and X̃ the subgraph of Y induced by the
edges which are neither in X nor in X, that is, the edges that are incident to
a node (at least) in X but do not belong to X. For all nodes n, p in Y let

X̃n→p denote the subgraph of Y induced by the edges from n to p in X̃ (so that

X̃n→p is empty whenever both n and p are in X). Then Y can be expressed

as Y = (X + X) +e X̃ with X̃→ =
∑

n∈|Y |,p∈|Y | X̃n→p which can also be

written as |Y | = |X|+ |X| and Y→ = X→ +X→ +
∑

n∈|Y |,p∈|Y | X̃n→p

Definition 3. A matching of graphs is a monomorphism of graphs. Given a
matching m : L → G, the nodes and edges in m(L) are called the matching
nodes and the matching edges, respectively.

Thus, a morphism of graphs is a matching if and only if it is injective, in the
sense that both underlying functions (on nodes and on edges) are injections. So,
up to isomorphism, every matching of graphs is an inclusion. For simplicity of
notations, we now assume that all matchings of graphs are inclusions.

2.2 Polarized Node Cloning, Algorithmically

The polarized node cloning of graphs is a graph transformation which allows one
to perform flexible cloning of nodes and their incident edges. Given a rewriting
rule with a left-hand side L and a right-hand side R and a matching m of L
in a graph G, the transformation of the nodes and the matching edges of G is
provided by the rule, while the transformation of the non-matching edges (i.e.,
edges of G not in the image of L) is rather flexible: a node n can be cloned either
with all its non-matching edges, or with all its outgoing non-matching edges, or
with all its incoming non-matching edges, or with none of its non-matching

edges. Definition 4 below provides an algorithmic definition of polarized node
cloning (AlgoPC for short). An algebraic approach, more abstract, is presented
in Section 3.

Definition 4. An AlgoPC rewrite rule consists of a tuple µ = (L,R,C+, C−),
where L and R are graphs and C+, C− : |L| × |R| → N are mappings. Then
L and R are called the left-hand side and the right-hand side, respectively, and
C+, C− are called the cloning multiplicities of µ. Let µ = (L,R,C+, C−) be an
AlgoPC rewrite rule, G a graph and m : L→ G a matching. Thus |G| = |L|+ |L|
and G→ = L→+L→+ L̃→. The AlgoPC rewrite step applying the rule µ to the
matching m builds the graph H and the matching h : R→ H such that h is the
inclusion and |H| = |R|+ |L| and H→ = R→ + L→ +

∑
n∈|H|,p∈|H|En,p where:

1. if n ∈ |R| and p ∈ |R| then there is an edge n
(e,i)→ p in En,p for each edge

nL
e→ pL in L̃→ and each i ∈ {1, . . . , C+(nL, n)× C−(pL, p)};

2. if n ∈ |R| and p ∈ |L| then there is an edge n
(e,i)→ p in En,p for each edge

nL
e→ p in L̃→ and each i ∈ {1, . . . , C+(nL, n)};

3. if n ∈ |L| and p ∈ |R| then there is an edge n
(e,i)→ p in En,p for each edge

n
e→ pL in L̃→ and each i ∈ {1, . . . , C−(pL, p)};

4. if n ∈ |L| and p ∈ |L| then En,p is empty.

So, when an AlgoPC rule µ = (L,R,C+, C−) is applied to a matching of
L in G, the image of L in G is erased and replaced by R, the subgraph L
remains unchanged, and the edges in L̃ are handled according to the cloning
multiplicities. The subtleties in building clones lie in the treatment of the edges
in L̃.

Example 1. Let us consider the following rule µ = (L,R,C+, C−) where

L R

f

�� ��

a b

g
|| ""��

c d e

C+(a, c) = 2, C+(a, e) = 1, C−(f, g) = 2, and every other cloning multiplicity
is 0. Now let us consider the graphs G and H:

G H

Γ
��

��

����

f

ww ''
a

??

88

b

Γ
��

�� ��
g

ww ''
��

c

8855

11//

>> AA

d e

``]]

ff

Then G rewrites into H using the rule µ and the matching L → G defined by
the inclusion. Indeed, as specified by the cloning multiplicities, the edge going
out of node a towards Γ is cloned three times, two times by the edges going out
from c towards Γ (C+(a, c) = 2) and a third time by the edge going out from
e (C+(a, e) = 1), the node b is erased as well as all its incident edges, and the
incoming edges of f are duplicated (C−(f, g) = 2) and redirected towards g.
The edge from a towards f is copied four times (C+(a, c)× C−(f, g) = 4) from
c to g and two times (C+(a, e)× C−(f, g) = 2) from e to g.

3 Polarized Sesqui-Pushout of Graphs

In this section, in order to provide an algebraic version of the polarized node
cloning of graphs defined in Section 2.2, we introduce polarized graphs, we study
their sesqui-pushout rewriting and we use it for defining the notion of polarized
sesqui-pushout of graphs.

3.1 Polarized Graphs

A polarized graph is a graph where every node may be polarized in the sense
that it may be marked either with a “+”, with a “−”, with both “±” or with
no mark. The polarizations will be used as cloning instructions.

Definition 5. A polarization X± of a graph X is a pair X± = (|X|+, |X|−)
of subsets of |X|. A node n may be denoted n+ if it is in |X|+, n− if it is in
|X|− and n± if it is in |X|+ ∩ |X|−. A polarized graph X = (X,X±) is a graph
X together with a polarization X± of X such that the source of each edge e of
X→ is in |X|+ and the target of e is in |X|−. A morphism of polarized graphs
f : X → Y, where X = (X,X±) and Y = (Y, Y ±), is a morphism of graphs
f : X → Y such that f(|X|+) ⊆ |Y |+ and f(|X|−) ⊆ |Y |−. This provides the
category Gr± of polarized graphs. The notations in defintion 1 are extended to
polarized graphs: when X = (X,X±) then |X| = |X| and X→ = X→.

Definition 6. Given two polarized graphs X1 and X2, their sum is the polarized
graph X1 + X2 made of the graph X1 + X2 with the polarization |X1 + X2|+ =
|X1|+ + |X2|+ and |X1 + X2|− = |X1|− + |X2|−. Given two polarized graphs
X and E such that |E| ⊆ |X|, |E|+ ⊆ |X|+ and |E|− ⊆ |X|−, their edge-sum
is the polarized graph X +e E made of the graph X +e E with the polarization
|X +e E|+ = |X|+ and |X +e E|− = |X|−.

Definition 7. A matching of polarized graphs is a monomorphism f : X → Y
such that f(|X|+) = f(|X|)∩ |Y |+ and f(|X|−) = f(|X|)∩ |Y |− (we say that f
strictly preserves the polarization).

Thus, a matching of polarized graphs is a matching of graphs which strictly
preserves the polarization. We now assume that all matchings of polarized graphs
are inclusions, which is the case up to isomorphism.

Remark 2. Let f : X → Y be a matching of polarized graphs. Analogously to
Remark 1, using the fact that f strictly preserves the polarization, we can express
Y as Y = (X + X) +e X̃ with X̃→ =

∑
n∈|Y|,p∈|Y| X̃n→p, where X̃n→p denotes the

polarized graph made of the graph X̃n→p as in Remark 1 with its nodes polarized
as in Y.

Example 2. Here is a morphism of polarized graphs which is an inclusion al-
though it is not a matching (the condition f(|X|+) = f(|X|) ∩ |Y |+ is not
fulfilled):

n−

p+

== //
n±

!!

rr

p+

==

//
// q−

Definition 8. The underlying graph of a polarized graph X = (X,X±) is X.
This defines a functor Depol : Gr± → Gr. The polarized graph X induced by
a graph X is X = (X,X±) where |X|+ = |X|− = |X|. This defines a functor
Pol : Gr→ Gr±, which is a right adjoint to Depol (this is denoted Depol a Pol).
Moreover, the functor Depol ◦ Pol is the identity of Gr.

3.2 Sesqui-Pushout Rewriting of Polarized Graphs

In this section we describe the sesqui-pushout of polarized graphs. The sesqui-
pushout rewriting [4] relies on the well-known categorical notions of pushout
(PO) and pullback (PB): a sesqui-pushout rewriting step is made of a final
pullback complement followed by a pushout. Pushouts and final pullback com-
plements of polarized graphs are described in Propositions 1 and 2, respectively.

Proposition 1. Let r : K→ R be a morphism of polarized graphs and d : K→
D a matching of polarized graphs. The following square, where h is the inclusion,
is a pushout of d and r in Gr±.

K

d
��

r // R

h
��

D = (K + K) +e K̃
r1=(r+idK)+er̃

// H = (R + K) +e R̃

where R̃n→p =
∑

nD∈r−1
1 (n),pD∈r−1

1 (p) K̃nD→pD
for all n, p ∈ |H|, nD ∈ |D|+,

pD ∈ |D|−, and where r̃ : K̃→ R̃ maps nD
e→ pD to r1(nD)

e→ r1(pD).

Remark 3. Pushouts are preserved by Depol, because Depol is left adjoint to
Pol. With the notations as in Proposition 1, this implies that Depol(h) can also
be obtained by computing a pushout of Depol(d) and Depol(r) in Gr.

Let us now define final pullback complements in the naive way, this definition
coincides with the one in [9, 4] when both exist.

Definition 9. In a category M, let a : X → Y and g : Y → Y1 be consecutive
morphisms. A pullback complement (PBC) of a and g is an object X1 with a
pair of morphisms f : X → X1, a1 : X1 → Y1 such that there is a pullback:

Y
g
��

X
aoo

f
��

Y1 X1a1

oo

A morphism k : (X1, f, a1) → (X ′1, f
′, a′1) of pullback complements of a and g

is a morphism k : X1 → X ′1 in M such that k ◦ f = f ′ and a′1 ◦ k = a1. This
yields the category of pullback complements of a and g, and the final pullback
complement (FPBC) of a and g is defined as the final object in this category, if
it does exist.

Proposition 2. Let l : K → L be a morphism and m : L → G a matching of
polarized graphs. The following square, where d is the inclusion, is a FPBC of l
and m in Gr±:

L

m
��

Kloo

d
��

G = (L + L) +e L̃ D = (K + L) +e K̃
l1=(l+idL)+e l̃

oo

where K̃nD→pD
= L̃l1(nD)→l1(pD) for all nD ∈ |D|+, pD ∈ |D|− (otherwise

K̃nD→pD
= ∅) and where l̃ : K̃→ L̃ maps nD

e→ pD to l1(nD)
e→ l1(pD).

The next definition is the usual definition of SqPO rewriting [4], applied to
the category of polarized graphs.

Definition 10. A SqPO rewrite rule of polarized graphs is a span of polarized

graphs. Let ρ = L l← K r→ R be a SqPO rewrite rule of polarized graphs and
m : L → G a matching of polarized graphs. The SqPO rewrite step applying
the rule ρ to the matching m builds the polarized graph H and the matching of
polarized graphs h : R → H such that h is the inclusion, in two steps. First a
FPBC of m and l is built as in Proposition 2, which gives rise to a polarized
graph D, a morphism l1 : D → G and a matching d : K → D in Gr±. Then a
pushout of d : K → D and r : K → R is constructed as in Proposition 1, which
gives rise to a graph H, a morphism r1 : D → H and a matching h : R → H
in Gr±.

We represent a SqPO rewrite step of polarized graphs by the following diagram:

L

m

��

Kloo r //

d
��

R

h
��

G D
l1

oo
r1

// H

Merging Propositions 1 and 2 yields the following result, which provides an
explicit description of a SqPO rewrite step of polarized graphs.

Theorem 1. In the category of polarized graphs, let ρ = (L l← K r→ R) be a

SqPO rewrite rule and m : L → G a matching, so that G = (L + L) +e L̃. The
SqPO rewrite step applying ρ to m builds the matching h : R → H where h is
the inclusion and H = (R + L) +e R̃ where, for all nodes n, p in |H|:

R̃n→p =

∑
n+
K∈r−1(n),p−K∈r−1(p) L̃l(nK)→l(pK) when n, p ∈ |R|∑

n+
K∈r−1(n) L̃l(nK)→p when n ∈ |R|, p ∈ |L|∑

p−K∈r−1(p) L̃n→l(pK) when n ∈ |L|, p ∈ |R|
∅ when n, p ∈ |L|

3.3 Polarized Node Cloning of Graphs, Algebraically

In this section we show that the polarized node cloning of graphs can easily be
performed using the sesqui-pushout rewriting of polarized graph. This is called
the polarized sesqui-pushout rewriting system (PSqPO). In a PSqPO rewriting
step, the given matching m : L → G and the resulting matching h : R → H
are matchings of ordinary graphs, while the interface matching d : K → D is
a matching of polarized graphs where the polarization of a node indicates how
the rewriting step acts on the non-matching edges incident to this node. The
adjoint functors Pol : Gr → Gr± (right adjoint) and Depol : Gr± → Gr (left
adjoint) from Definition 8 are used for moving between categories Gr and Gr±.
It should be reminded that Depol ◦ Pol is the identity of Gr.

Definition 11. A PSqPO rewrite rule of graphs is a span of graphs L
l← K

r→ R
together with a polarized graph K such that K = Depol(K). This is denoted by

L
l← K r→ R. Thanks to the adjunction Depol a Pol, each PSqPO rewrite

rule L
l← K r→ R gives rise to a SqPO rewrite rule L l← K r→ R in Gr± where

L = Pol(L) and R = Pol(R). The PSqPO rewrite step applying a PSqPO rewrite

rule ρ = (L
l← K r→ R) to a matching of graphs m : L → G is the following

construction of a matching of graphs h : R→ H.

(i) Let m′ = Pol(m) : L→ G, so that m′ is a matching of polarized graphs.
(ii) Let h′ : R→ H be the matching of polarized graphs obtained by applying the

SqPO rewriting rule ρ′ to the matching m′ in Gr±; note that Depol(R) =
Depol(Pol(R)) = R.

(iii) Let H = Depol(H) and h = Depol(h′) : R → H, this is the required
matching of graphs.

This means that H is made of a copy of R together with the non-matching
nodes of G (i.e., nodes of G which are not in the image of the matching) and

with an edge n
(nD,pD,e)−→ p for each nD in |K|+ + |L| such that r1(nD) = n,

each pD in |K|− + |L| such that r1(pD) = p and each nG
e→ pG in G→ where

nG = l1(nD) and pG = l1(pD). Since l1 and r1 are the identity on |L|, whenever
both n and p are in |L| then Hn→p = Gn→p.

A PSqPO rewrite step of graphs can be represented by the following diagram:

L

m

��

G

� Pol //

L

m′

��

Kloo r //

d′

��

R

h′

��

G D
l1

oo
r1

// H

� Depol
//

R

h
��

H

Remark 4. According to Definitions 11 and 10, applying a PSqPO rewrite rule
ρ′ to a matching m′ can be decomposed in four steps: (i) m is mapped to m′ =
Pol(m), (ii-a) the FPBC of m and l in Gr± provides d′, (ii-b) the PO of d′ and
r in Gr± yields h′, (iii) h′ is mapped to h = Depol(h′). Thanks to remark 3,
steps (ii-b) and (iii) can be “permuted”, in the following way: first d′ is mapped
to d = Depol(d′), then the PO of d and r in Gr yields h. Thus, a PSqPO rewrite
step of graphs can also be represented by the following diagram:

L

m

��

G

� Pol //

L

m′

��

Kloo

d′

��

G D
l1

oo

� Depol
//

K
r //

d
��

R

h
��

D
r1

// H

The next result shows that the PSqPO rewriting of graphs does provide an
algebraic version of the polarized node cloning of graphs. A proof of a more
precise result is provided in [8].

Proposition 3. Let µ = (L,R,C+, C−) be an AlgoPC rewrite rule. Let K be the
polarized graph without edges and with, for each ? ∈ {+,−}, a node (nL, nR)i,?

?

for each pair of nodes (nL, nR) ∈ |L| × |R| and each i ∈ {1, . . . , C?(nL, nR)}.
Let ρ = L

l← K r→ R be the PSqPO rewrite rule where l((nL, nR)i,?) = nL and
r((nL, nR)i,?) = nR. Then the rules µ and ρ are equivalent, in the sense that for
each matching of graphs m : L → G, the AlgoPC rewrite step applying µ to m
and the PSqPO rewrite step applying ρ to m yield the same matching h : R→ H.

Example 3. The rewrite rule µ of Example 1 can be translated to the following
PSqPO rule:

L K R

f

|| !!
a b

loo
f−1 f−2

a+1 a+2 a+3

r //
g

|| ""��

c d e

where l(f1) = l(f2) = f , l(a1) = l(a2) = l(a3) = a, r(f1) = r(f2) = g, r(a1) =
r(a2) = c and r(a3) = e. As in Example 1, the matching is the inclusion of L in

G (below) and the PSqPO rewrite step builds:

G D H

Γ
��

��

����

f

|| ""
a

FF

==

b

l1oo

Γ±
��

uu
��

f−1 f−2

a+1

33

>>
66

a+2

aa OO

UU

a+3

hh
aa

``

r1 //

Γ
��

�� ��
g

ww ''
��

c

8855

11//

>> AA

d e

``]]

ff

The resulting graph H and matching h : R→ H are the same as in Example 1.

4 An Extension to Labeled Polarized Graphs

For several modeling purposes, it is useful to add labels to nodes and edges.
In this section we discuss an extension of our proposal in order to perform
polarized sesqui-pushout graph transformation on labeled graphs. We provide
syntactic conditions which ensure the existence of the constructions involved
in the rewriting process. Hereafter, two sets LN and LE are given, they are
called the set of labels for nodes and for edges, respectively. Moreover, all the
constructions are considered up to isomorphism.

Definition 12. A labeled graph (X, lab) is a graph X together with two partial
functions lab : |X| ⇀ LN for the labeling of nodes and lab : X→ ⇀ LE for the
labeling of edges. A morphism of labeled graphs f : (X, labX) → (Y, labY) is a
morphism of graphs f : X → Y which preserves the labels, in the sense that if
a node or an edge x in X is labeled with a then f(x) in Y is labeled with a (if
x is unlabeled there is no restriction on the labeling of f(x)). This provides the
category LGr of labeled graphs (with labels in LN and LE).

A labeled graph (X, lab) is often simply denoted X. A node x is denoted x : a

if it is labeled with a and x : ◦ if it is unlabeled. An edge x→ y is denoted x
a→ y

if it is labeled with a and simply x→ y if it is unlabeled. A matching of labeled
graphs is a matching of graphs which preserves the labels. Since polarizations
and labelings do not interfere, these definitions and results are easily combined
with the definitions and results in Section 3.1. This provides the category LGr±

of labeled polarized graphs, and Proposition 1 and Proposition 2 are generalized
to labeled polarized graphs as follows.

Proposition 4. Let r : K → R be a morphism of labeled polarized graphs and
d : K→ D a matching of labeled polarized graphs. Let us assume that:

– For each node or edge x in K, if r(x) : a and d(x) : b, then a = b.
– For each distinct nodes or edges x, y in K, if r(x) = r(y), d(x) : a and
d(y) : b, then a = b.

Then the pushout of d and r in LGr± exists, its underlying diagram of polarized
graphs is the pushout of d and r in Gr± and each node or edge x in H is labeled
if and only if it is the image of a labeled node or edge in R or in D.

Thanks to the assumptions, no conflict may arise when labeling the graph
H: if a node or edge x in H is the image of several nodes or edges in R or in
D (at most one in R and maybe several in D), then all of them have the same
label, which becomes the label of x.

Proposition 5. Let l : K → L be a morphism of labeled polarized graphs and
m : L → G a matching of labeled polarized graphs. Then the FPBC of l and
m exists, its underlying diagram of polarized graphs is the FPBC in Gr± and
each node or edge xD in the graph D is labeled as follows: if xD is not in the
image of K then xD is labeled in D like l1(xD) in G, otherwise xD = d(xK) for
a unique xK in K and the label of xD in D is determined by the labels of xK in
K, xL = l(xK) in L and xG = m(xL) in G according to the following patterns:

xL : a_
��

xK : a_
��

�oo

xG : a xD : a
�oo

xL : ◦_
��

xK : ◦_
��

�oo

xG : a xD : a�oo

xL : ◦_
��

xK : ◦_
��

�oo

xG : ◦ xD : ◦�oo

xL : a_
��

xK : ◦_
��

�oo

xG : a xD : ◦�oo

The labeled PSqPO rewrite rules cannot be defined simply as PSqPO rewrite
rules where the graphs are labeled and the morphisms preserve the labels: in-
deed, in order to avoid conflicts in labeling the pushout, the assumptions in
Proposition 4 must be satisfied after the construction of the polarized FPBC
(Proposition 5). This leads to the following definition.

Definition 13. A labeled PSqPO rewrite rule is a PSqPO rewrite rule L
l←

K r→ R (Definition 11) where the graphs are labeled and the morphisms preserve
the labels, such that the following conditions are fulfilled (where K = Depol(K)) :
(i) for each unlabeled node or edge x in K, if l(x) is unlabeled in L then r(x) is
unlabeled in R and (ii) for each distinct unlabeled nodes or edges x, y in K, if
l(x) 6= l(y) and l(x) or l(y) is unlabeled in L then r(x) 6= r(y) in R.

Example 4. The behavior of the “if b then...else...” operator in imperative
languages can be modelled thanks to two polarized PSqPO rewrite rules, one
when b is true and another one when b is false. Here is a possible choice
when b is true (morphisms are represented via node name sharing, for instance
r(m) = r(p) = p,m and l(m) = m):

L K R

m : if

��vv &&
n : true p : ◦ q : ◦

loo
m− : ◦

p± : ◦

r //
p,m : ◦

These rules for modeling “if...then...else...” are destructive, in the sense
that nodes n and q disappear during the rewrite step. Non-destructive rules can

also be chosen, here is such a rule for true.

L K R

m :if

��zz !!
n :true p :◦ q :◦

loo
m− :◦

n± :true p± :◦ q± :◦

r //
p,m :◦

n :true q :◦

Example 5. The problem of copying objects in object-oriented languages has
been thoroughly examined. Two generic ways of copying objects are usually
considered: shallow cloning, which is the basic cloning of Java (see the reference
of method clone in class Object [15]) and deep cloning, which is implemented
by deep copy in Eiffel [20]. These two ways of cloning can be modelled by our
approach. We restrict ourselves here to the cloning of a particular data, say
linked lists of constants (a constant is implemented as a node without any out-
going edge) and consider two cloning routines: sc (shallow cloning) and dc

(deep cloning). Intuitively, we would like to implement rules that transform, for
instance, the following graph, where H denotes the end of the list:

X // //

��

//

��

//

��

H

Γ
1
OO 2 <<

3

66u v w

into the following ones, depending whether X is replaced by sc or by dc:

//

��

//

��

//

��

H

Γ

1 ""

2 <<

3

66u v w

//

OO

//

OO

EE

OO

or //

��

//

��

//

��

H

Γ

1 ""

2 <<

3

66u v w

//

��

//

��

EE

��
u v w

Notice that in the case of deep cloning, the edge from Γ to v is not cloned
to point to the “new” occurrence of v (the graph on the right). Indeed, the deep
cloning primitives do not modify the environment.

Let us consider labeled graphs. Label c is used to represent the usual cons
constructor of lists. The parameters of c are identified by edge labels, the next

cell of the list is pointed by an edge labeled n and the element of the cell is
pointed by an edge labeled e.

For the shallow cloning (sc) the recursive case is implemented by the follow-
ing rule where morphisms l, r are represented by node name sharing. All edges
that point to m before the execution of this rule will point to the new c node
(the node m : c in R). The function sc is recursively called by the node s in R.

L K R

m : sc

��
n : c

e
��

n // p : ◦

q : ◦

loo
m± : ◦

n± : c
e��

n // p± : ◦

q± : ◦

r //
s : sc

&&
n : c

e
��

n // p : ◦

q : ◦

m : c
e
OO

n

HH

The base (halt) case is implemented by the following rule where the node m,n
is the image of both m and n by r:

L K R

m : sc // n : H loo
m± : ◦ n± : H r //

m,n : H

For deep cloning (dc), the recursive case is implemented by the following
rule:

L K R

m : dc

��
n : c

e
��

n // p : ◦

q : ◦

loo
m± : ◦

n± : c
e��

n // p± : ◦

q±2 : ◦

q+1 : ◦

r //
s : dc

%%
n : c

e
��

n // p : ◦

q2 : ◦

m : c
e
��

n

HH

q1 : ◦

In this case node q is cloned twice in K: the incoming edges of q are not cloned
as incoming edges of q+1 (as it is the case for the edge from Γ to v).
The base (halt) case for dc is implemented by substituting sc with dc in the
corresponding rule.

5 Related Work

Polarized sesqui-pushout graph rewriting (PSqPO) is a new way to perfom graph
transformations which offers different possibilities to clone nodes and their inci-
dent edges, in addition to classical graph transformations (addition and deletion
of nodes and edges). In this section the PSqPO approach is compared with other
approaches for graph transformations.

In [7] an algebraic approach of termgraph transformation, based on hetero-
geneous pushouts (HPO), has been proposed. With respect to cloning abilities,
the HPO approach offers the possibility to make one or more copies of a node
together with its outgoing edges. Therefore, this way of cloning nodes is limited
to the outgoing edges only and contrasts with the flexible possibilities of cloning

edges proposed in the present paper. In fact, whenever a graph G rewrites into
H according to the HPO approach using a rule (L,R, τ, σ) [7, Definition 5], the

graph G can also be rewritten into H according to a rule L
l← K r→ R where

morphisms l and r encode the functions τ and σ.
Cloning is also one of the features of the sesqui-pushout approach (SqPO)

to graph transformation [4]. The SqPO and PSqPO approaches mainly differ
in the way of handling cloning. In [4], the cloning of a node is performed by
copying all its incident edges. This is a particular case of PSqPO. The use of
polarized graphs helped us to specify for every clone, the way incident edges
can be copied. Therefore, a SqPO rewrite step can be simulated by a PSqPO
rewrite step by polarizing every node n in the interface graph K as n±, but the
converse does not hold in general. For instance, in both rules defining the shallow
cloning operator sc (see Example 5), all nodes are cloned with polarities ±, thus
these rules can be implemented using the SqPO approach in the category of
graphs. However, in the recursive case implementing the deep cloning operator,
dc, one node, q+1 , in K is polarized as + only; it follows that this rule cannot
be modelled with a standard SqPO transformation of graphs. Furthermore, in
[4], the sesqui-pushout approach is compared to the classical DPO and SPO
approaches. Therefore, for comparing our approach with the DPO and SPO, we
may rely on [4, Propositions 12 and 14].

Cloning is also subject of interest in [6]. The authors consider rewrite rules
of the form S :=R where S is a star, i.e., S is a (nonterminal) node surrounded
by its adjacent nodes together with the edges that connect them. Rewrite rules
which perform the cloning of a node are given in [6, Definition 6]. These rules
show how a star can be removed, kept identical to itself or copied (cloned) more
than once. Here again, unlike our approach, each node is cloned together with
all its incoming and outgoing edges.

6 Conclusion

We have investigated a new way to perform node cloning in graph transformation
with some flexibility in copying incident edges. To obtain this result, we have
used an auxiliary category of polarized graphs which allows one to declare how
incident edges are cloned. The algebraic definition of a graph rewriting step
is based on a sesqui-pushout transformation in the auxiliary category. In [8],
the reader may find more results such as the equivalence of the algorithmic
and the algebraic definitions of PSqPO as well as the vertical composition of
transformations.

In [18], Löwe proposes a general framework of graph rewriting in span-
categories. He shows how classical algebraic graph transformation approaches
can be seen as instances of his framework. Our approach, which is close to the
sesqui-pushout rewriting, could be presented also as an instance of Löwe’s frame-
work up to some particular considerations due to the use of two kinds of graphs
in our spans, namely polarized and not polarized graphs. Details of the instance,
including the complete definitions of abstract spans and matching of abstract
spans are matter of further investigation.

References

1. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

2. H. Barendregt, M. van Eekelen, J. Glauert, R. Kenneway, M. J. Plasmeijer, and
M. Sleep. Term graph rewriting. In PARLE’87, pages 141–158. LNCS 259, 1987.

3. R. V. Book and F. Otto. String-rewriting systems. Springer-Verlag, 1993.
4. A. Corradini, T. Heindel, F. Hermann, and B. König. Sesqui-pushout rewriting.

In ICGT’06, pages 30–45. LNCS 4178, 2006.
5. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic

approaches to graph transformation - part I: Basic concepts and double pushout
approach. In Handbook of Graph Grammars, pages 163–246, 1997.

6. F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. V. Eetvelde. Adaptive
star grammars. In ICGT’06, pages 77-91. LNCS 4178, 2006.

7. D. Duval, R. Echahed, and F. Prost. A heterogeneous pushout approach to term-
graph transformation. In RTA’09, pages 194-208. LNCS 5595, 2009.

8. D. Duval, R. Echahed, and F. Prost. Graph rewriting with polarized cloning.
arXiv:0911.3786,V3, 2012.

9. R. Dyckhoff and W. Tholen. Exponentiable morphisms, partial products and pull-
back complements. Journal of Pure and Applied Algebra, 1987.

10. R. Echahed. Inductively sequential term-graph rewrite systems. In ICGT’08, pages
84-98. LNCS 5214, 2008.

11. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 2: Applications,
Languages and Tools. World Scientific, 1999.

12. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation - part II: Single pushout approach
and comparison with double pushout approach. In Handbook of Graph Grammars,
pages 247–312, 1997.

13. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformations, Volume 3: Concur-
rency, Parallelism and Distribution. World Scientific, 1999.

14. H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic ap-
proach. In 14th Annual Symposium on Foundations of Computer Science (FOCS),
15-17 October 1973, The University of Iowa, USA, pages 167–180. IEEE, 1973.

15. J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java(TM) Language
Specification. Java SE 7 Edition. Oracle documentation, 2005.

16. R. Kennaway. On “on graph rewritings”. Theoretical Computer Science, 52:37–58,
1987.

17. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109(1&2):181–224, 1993.

18. M. Löwe. Graph rewriting in span-categories. In ICGT’10, pages 218-233. LNCS
6372, 2010.

19. S. Mac Lane. Categories for the Working Mathematician, volume 5. Springer-
Verlag, second edition, 1998.

20. F. Miller, A. Vandome, and J. McBrewster. Eiffel (programming language). Al-
phascript publishing, 2010.

21. J. C. Raoult. On graph rewriting. Theoretical Computer Science, 32:1–24, 1984.
22. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformations, Volume 1: Foundations. World Scientific, 1997.

